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1 Arbitrage asset pricing in a nutshell

This is a technical intermezzo in preparation for next themes: valuation of options
on interest rates, CMS based instruments, and term structure modeling. We start
by reviewing briefly some basic concepts of arbitrage pricing theory, just enough
to cover our upcoming needs. For a full account of this theory, I encourage you to
take the course in continuous time finance offered in this program. In particular,
I will be skipping over a lot of technicalities while discussing the probabilistic
concepts underlying this framework, and, again, I recommend further study for a
more in depth understanding of these concepts. Next, we will discuss the tech-
nique of change of numeraire, which will play a key role in the following lectures.

1.1 Self-financing portfolios

We consider a financial market which consists of a number of frictionlessly (i.e.
liquidly and without transaction costs) tradeable assets I0, I1, . . . , IN . We model
the price processes of these assets by S0 (t) , S1 (t) , . . . , SN (t), i.e. Si (t) denotes
the price of asset Ii at time t. We emphasize that these processes represent market
observable asset prices, and not merely some state variables.

Each price process is a diffusion process, i.e. there is an underlying multidi-
mensional Wiener process W1 (t) ,W1 (t) , . . . ,Wd (t), d ≤ N + 1, and the price
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process follows a stochastic differential equation (SDE) of the form:

dSj (t) = ∆j (S (t) , t) dt+
d∑

k=1

Cjk (S (t) , t) dWk (t) . (1)

The coefficient ∆j (S (t) , t) is called the drift coefficients, while the coefficients
Cjk (S (t) , t) are referred to as the diffusion coefficients.

For example, in the classic Black-Scholes model, S0 (t) = B (t) is the riskless
bond, and S1 (t) = S (t) is a (risky) stock, with the dynamics given by

dB (t) = rB (t) dt,

dS (t) = µS (t) dt+ σS (t) dW (t) .
(2)

A portfolio is specified by the weights w0 (t) , w1 (t) , . . . , wN (t), of the assets
at time t. We assume, of course, that the weights are non-negative, and they add
up to one. The value process of the portfolio is given by

V (t) =
∑

0≤i≤N

wi (t)Si (t) . (3)

A portfolio is self-financing, if

dV (t) =
N∑
i=0

wi (t) dSi (t) , (4)

or, equivalently,

V (t) = V (0) +

∫ t

0

N∑
i=0

wi (s) dSi (s) . (5)

In other words, the price process of a self-financing portfolio does not allow for
infusion or withdrawal of capital.

A fundamental assumption of arbitrage pricing theory is that financial mar-
kets (or at least, their models) are free of arbitrage opportunities1. An arbitrage
opportunity arises if one can construct a self-financing portfolio such that:

(a) The initial value of the portfolio is zero, V (0) = 0.

1This assumption is, mercifully, violated frequently enough so that the entire hedge fund in-
dustry can sustain itself exploiting the market’s lack of respect for arbitrage freeness.



4 Interest Rates & FX Models

(b) With probability one, the portfolio has a non-negative value at maturity,
P (V (T ) ≥ 0) = 1.

(c) With a positive probability, the value of the portfolio at maturity is positive,
P (V (T ) > 0) > 0.

We say the model is arbitrage free if it does not allow arbitrage opportunities.
Requiring arbitrage freeness has important consequences for price dynamics.

1.2 The fundamental theorem
A key concept in modern asset pricing theory is that of a numeraire. A numeraire
is any tradeable asset with price process N (t) such that N (t) > 0, for all times
t. The relative price process of asset Ii is defined by

SN
i (t) =

Si (t)

N (t)
. (6)

In other words, the relative price of an asset is its price expressed in the units of
the numeraire.

A probability measure Q is called an equivalent martingale measure for the
above market, with numeraire N (t), if it has the following properties:

(a) Q is equivalent to P, i.e.

dP (ω) = DPQ (ω) dQ (ω) ,

and
dP (ω) = DQP (ω) dQ (ω) ,

with some DPQ (ω) > 0 and DQP (ω) > 0.

(b) The relative price processes SN
i (t) are martingales under Q,

SN
i (s) = EQ

[
SN
i (t)

∣∣Fs

]
. (7)

The Fundamental Theorem of arbitrage free pricing states that the model is ar-
bitrage free if and only if there exists an equivalent martingale measure Q.

In other words, in an arbitrage free market, we can express the prices of all assets
in the units of a single asset (the numeraire) so that the prices are martingales.
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An important consequence of this theorem is the arbitrage pricing law:

V (s)

N (s)
= EQ

[
V (T )

N (T )

∣∣∣Fs

]
. (8)

One is free to change numeraire N (t) → N ′ (t). Girsanov’s theorem (see the
Appendix for a summary) implies that there exists a martingale measure Q′ such
that

V (s)

N ′ (s)
= EQ′

[
V (T )

N ′ (T )

∣∣∣Fs

]
, (9)

and thus the Radon-Nikodym derivative is given by the ratio of the numeraires:

dQ′

dQ

∣∣∣
s
=

N (s)

N (T )

N ′ (s)

N ′ (T )

=
N (s)

N (T )

N ′ (T )

N ′ (s)
.

(10)

We will have more to say about this important fact. In the meantime, let us review
some of the most important numeraires encountered in interest rates modeling.

2 Examples of numeraires
We shall now revisit the numeraires that we have encountered in Lecture 2 in the
context of valuation of vanilla interest rate options.

2.1 Spot numeraire
The spot numeraire (or rolling numeraire) is simply a $1 deposited in a bank and
accruing the (riskless) instantaneous rate. Its value at time t is

N (t) = exp

(∫ t

0

f (s) ds

)
. (11)

The special case of a constant riskless rate f (t) = r plays a key role in the Black-
Scholes model, and the rolling numeraire is the riskless bond B (t) mentioned
before.
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2.2 Forward numeraire
The T -forward numeraire is simply the zero coupon bond for maturity T . Its price
at t < T is given by

NT (t) = P (t, T ) . (12)

As explained in Lecture 2, the T -forward numeraire arises naturally in pricing
instruments based of forwards maturing at T . Forward rates for maturity at T are
martingales under the measure associated with this numeraire.

2.3 Annuity numeraire
The annuity numeraire is associated with a (forward starting) swap. The annuity
pays $1 on each coupon day of the swap, accrued according to the swap’s day
count day conventions. Its PV for the value day t is given by the forward level
function:

NTstart,Tmat (t) = L (t, Tstart, Tmat)

=
n∑

j=1

αjP (t, Tj) ,
(13)

where the summation runs over the coupon dates of the annuity.
The annuity numeraire arises as the natural numeraire when valuing swap-

tions. As explained in Lecture 2, the swap rate S (Tstart, Tmat) is a martingale under
the measure associated with the annuity numeraire.

3 Change of numeraire technique
Choice of a numeraire is a matter of convenience and is dictated by the valuation
problem at hand. Asset valuation leads frequently to complicated stochastic pro-
cesses, and one way of making the problem easier to eliminate the drift term from
the stochastic differential equation defining the process. The change of numeraire
technique allows us to achieve precisely this: modify the probability law (the mea-
sure) of the process so that, under this new measure, the process is driftless, i.e. it
is a martingale.

Consider a financial asset whose dynamics is given in terms of the state vari-
able X (t). Under the measure P this dynamics reads:

dX (t) = ∆P (t) dt+ C (t) dW P (t) . (14)
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Our goal is to relate this dynamics to the dynamics of the same asset under an
equivalent measure Q:

dX (t) = ∆Q (t) dt+ C (t) dWQ (t) . (15)

Remember that the diffusion coefficients in these equations are the unaffected by
the change of measure! We assume that P is associated with the numeraire N (t)
whose dynamics is given by:

dN (t) = AN (t) dt+BN (t) dW P (t) , (16)

while Q is associated with the numeraire M (t) whose dynamics is given by:

dM (t) = AM (t) dt+BM (t) dW P (t) . (17)

According to Girsanov’s theorem, the Radon-Nikodym derivative

D (t) =
dQ

dP

∣∣∣
t

(18)

is a martingale under P, and solves the stochastic differential equation:

dD (t) = θ (t)D (t) dW P (t) , (19)

with

θ (t) =
∆Q (t)−∆P (t)

C (t)
. (20)

Explicitly, D (t) is given by

D (t) = exp

(∫ t

0

θ (s) dW P (s)− 1

2

∫ t

0

θ (s)2 ds

)
. (21)

On the other hand, from the fundamental theorem of asset pricing we infer that

D (t) =
N (0)

M (0)

M (t)

N (t)
. (22)

Since D (t) is a martingale under P, we conclude that the process M (t) /N (t) is
driftless under P. As a consequence,

d

(
M (t)

N (t)

)
=

M (t)

N (t)

(
BM (t)

M (t)
− BN (t)

N (t)

)
dW P (t) .
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Comparing this with (18) we infer that

θ (t)
M (t)

N (t)
=

M (t)

N (t)

(
BM (t)

M (t)
− BN (t)

N (t)

)
. (23)

This leads to the following drift transformation law:

∆Q (t)−∆P (t) = C (t)

(
BM (t)

M (t)
− BN (t)

N (t)

)
= dX (t) d

(
log

M (t)

N (t)

)
.

(24)

The formula above expresses the change in the drift in the dynamics of the state
variable, which accompanies a change of numeraire, in terms of the processes
themselves.

In order to rewrite (24) in a more intrinsic form, let us establish a bit of nota-
tion. For two stochastic processes X (t) and Y (t) we define the following bracket
operation, we let :

{X, Y } (t) = dX (t) d
(
log Y (t)

)
. (25)

Thus the change of numeraire formula can be stated in the elegant, easy to remem-
ber form:

∆Q (t) = ∆P (t) +

{
X,

M
N

}
(t) . (26)

A Girsanov’s theorem
In this appendix we briefly review, leaving out most of the technicalities, Gir-
sanov’s theorem. For a complete discussion, we refer to any text on stochastic
calculus, e.g. [3].

We consider a Brownian motion W (t), and the associated probability space
(Ω,F ,P), where Ω is the sample space, F = (Ft)t≥0, is the filtered information
set, and P is the probability measure. By E (or EP , when we want to be precise)
we denote the expected value with respect to the measure P.

We say that a measure Q on Ω is absolutely continuous with respect to P if
there exists a positive function D (called the Radon-Nikodym derivative) such
that

Q (A) =

∫
A

D (ω) dP (ω) , (27)
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for A ⊂ Ω, or
dQ

dP
(ω) = D (ω) . (28)

In other words, the “volume element” dQ is always proportional to the “volume
element” dP, with the proportionality factor being a positive function throughout
the probability space. In the context of a Brownian motion, we also require that
the Radon-Nikodym derivative respect the filtration by time, i.e. the identity above
holds if we condition on the information up to time t:

dQ

dP
(ω)
∣∣∣
t
= D (ω, t) . (29)

Two probability measures Q and P are called equivalent, if Q is absolutely con-
tinuous with respect to P and P is absolutely continuous with respect to Q.

Consider now a diffusion process:

dX (t) = ∆ (X (t) , t) dt+ C (X (t) , t) dW (t) . (30)

A natural question arises: can we transform a diffusion process into a diffusion
process with a different drift,

dX (t) = ∆̃ (X (t) , t) dt+ C (X (t) , t) dW̃ (t) . (31)

by a change to an equivalent probability measure Q? In particular, can we make
the new process a martingale? Recall that if the process X (t) is a martingale, the
diffusion above is driftless, i.e. ∆̃ (X (t) , t) = 0. Recall that a process X (t) is a
martingale if EQ [|X (t)|] < ∞, for all t, and

X (s) = EQ [X (t) |Fs] , (32)

where EQ [ · |Fs] denotes the conditional expected value. In other words, given
all information up to time s, the expected value of future values of a martingale is
X (s). An affirmative answer to this question is provided by Girsanov’s theorem.

One might heuristically proceed like this. Write

dX (t) = ∆̃ (t) dt+ C (t)

(
∆(t)− ∆̃ (t)

C (t)
dt+ dW (t)

)
= ∆̃ (t) dt+ C (t) dW̃ (t) ,

(33)
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where

W̃ (t) = W (t) +

∫ t

0

∆(s)− ∆̃ (s)

C (s)
ds

≡ W (t)−
∫ t

0

θ (s) ds.

(34)

This looks like a new Brownian motion! Girsanov’s theorem asserts that, un-
der some technical assumptions on the drift and diffusion coefficients, W̃ (t) is
indeed a Brownian motion provided that the probability measure is modified ap-
propriately.

More precisely, define the stochastic process:

D (t) = exp

(∫ t

0

θ (s) dW (s)− 1

2

∫ t

0

θ (s)2 ds

)
. (35)

Note that we have changed our notation: as always when dealing with stochastic
processes, we have suppressed the argument ω in D, and made the dependence on
t explicit. We now define the equivalent measure Q with

dQ

dP

∣∣∣
t
= D (t) . (36)

Assume that the following technical condition (Novikov’s condition) holds:

EP

[
exp

(
1

2

∫ t

0

θ (s)2 ds

)]
< ∞. (37)

Then

(a) The process D (t) is a martingale under P. Furthermore, it satisfies the
following stochastic differential equation:

dD (t) = θ (t)D (t) dW (t) . (38)

(a) W̃ (t) is a Wiener process under Q.

We have stated Girsanov’s theorem for a one-dimensional Brownian motion.
This assumption is not essential and, using a bit of linear algebra, one can eas-
ily formulate a version of Girsanov’s theorem for an arbitrary multidimensional
Brownian motion.
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