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1 Introduction
The levels of interest rates fluctuate. Because of the existence of term structure of
rates (i.e. the fact that the level of a rate depends on the term of the underlying
loan), the dynamics of rates is highly complex. While a good analogy to the price
dynamics of an equity is a particle moving in a medium exerting random shocks to
it, a natural way of thinking about the evolution of rates is that of a string moving
in a random environment where the shocks can hit any location along its length.
Additional complications arise from the presence of various spreads between rates
(we have encountered some of them in Lecture 1) which reflect credit worthiness
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of the borrowing entity, liquidity of the instrument, or counterparty risk. In the
remainder of these lectures we describe some of the mathematical methodologies
to to capture and quantify this dynamics so that it can be used to

(a) put a value on the optionality embedded in various financial instruments,

(b) help risk manage portfolios of fixed income securities, and

(c) help identify mispricings and trading opportunities in the fixed income mar-
kets.

We have already taken the first step in this direction, namely learned how to
construct the current snapshot of the rates market. This current snapshot serves as
the starting point for the stochastic process describing the curve dynamics. The
next step is to construct the volatility cube, which is used to model the uncertain-
ties in the future evolution of the rates. The volatility cube is built out of implied
volatilities of a number of liquidly trading options.

2 Options on LIBOR based instruments

2.1 Caps and floors
Caps and floors are baskets of European calls (called caplets) and puts (called
floorlets) on LIBOR forward rates. They trade over the counter.

Let us consider for example, a 10 year spot starting cap struck at 2.50%. It
consists of 39 caplets each of which expires on the 3 month anniversary of today’s
date. It pays max (current LIBOR fixing − 2.50%, 0)×act/360 day count fraction.
The payment is made at the end of the 3 month period covered by the LIBOR con-
tract and follows the modified business day convention. Notice that the very first
period is excluded from the cap: this is because the current LIBOR fixing is al-
ready known and no optionality is left in that period.

In addition to spot starting caps and floors, forward starting instruments trade.
For example, a 1 year × 5 years (in the market lingo: “1 by 5”) cap struck at
2.50% consists of 16 caplets struck at 2.50% the first of which matures one year
from today. The final maturity of the contract is 5 years, meaning that the last
caplets matures 4 years and 9 months from today (with appropriate business dates
adjustments). Unlike in the case of spot starting caps, the first period is included
into the structure, as the first LIBOR fixing is of course unknown. Note that the
total maturity of the m× n cap is n years.
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The definitions of floors are similar with the understanding that a floorlet pays
max (strike − current LIBOR fixing%, 0) × act/360 day count fraction at the end
of the corresponding period.

2.2 Eurodollar options
Eurodollar options are standardized contracts traded at the Merc. These are short
dated American style calls and puts on Eurodollar futures. At each time options
on the eight front (Whites and Reds) quarterly Eurodollar futures contracts and
on two front serial futures are listed. Their expirations coincide with the maturity
dates of the underlying Eurodollar contracts. The exchange sets the strikes for
the options spaced every 25 basis points (or 12.5 bp for the front contracts). The
options are cash settled.

Strike Calls Puts
98.875 0.5325 0.0525
99.000 0.4175 0.0625
99.125 0.3075 0.0775
99.250 0.2025 0.0975
99.375 0.1125 0.1325
99.500 0.0450 0.1900
99.625 0.0100 0.2800
99.750 0.0025 0.3975
99.875 0.0025 0.5200

Table 1: ED options: March 2012 expirations. Price of the underlying 99.355

In addition to the quarterly and serial contracts, a number of midcurve options
are listed on the Merc. These are American style calls and puts with expirations
between three months and one year on longer dated Eurodollar futures. Their
expirations do not coincide with the maturity on the underlying futures contracts,
which mature one, two, or four years later.

2.3 Swaptions
European swaptions are European calls and puts (in the market lingo they are
called payers and receivers, respectively) on interest rate swaps. A holder of a
payer swaption has the right, upon exercise, to pay fixed coupon on a swap of
contractually defined terms. Likewise, a holder of a receiver swaption has the
right to receive fixed on a swap. Swaptions are traded over the counter.
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Strike Calls Puts
98.875 0.5275 0.0925
99.000 0.4200 0.1100
99.125 0.3150 0.1300
99.250 0.2175 0.1575
99.375 0.1275 0.1925
99.500 0.0650 0.2250
99.625 0.0250 0.3400
99.750 0.0075 0.4475
99.875 0.0025 0.5650

Table 2: ED options: June 2012 expirations. Price of the underlying 99.31

For example, a 2.50% 1Y → 5Y (“1 into 5”) receiver swaption gives the holder
the right to receive 2.50% on a 5 year swap starting in 1 year. More precisely, the
option holder has the right to exercise the option on the 1 year anniversary of today
(with the usual business day convention adjustments) in which case they enter into
a receiver swap starting two business days thereafter. Similarly, a 3.50% 5Y →
10Y (“5 into 10”) payer swaption gives the holder the right to pay 3.50% on a 10
year swap starting in 5 years. Note that the total maturity of the m → n swaption
is m+ n years.

Table 3 contains the December 13, 2011 snapshot of the at the money swaption
market. The rows in the matrix represent the swaption expiration and the columns
represent the tenor of the underlying swap. Each entry in the table represents the
swaption premium expressed as a percentage of the notional on the underlying
swap.

1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 0.06% 0.11% 0.18% 0.27% 0.37% 0.67% 1.10% 1.70% 2.17% 2.94%
3M 0.10% 0.20% 0.31% 0.48% 0.68% 1.18% 1.91% 2.90% 3.69% 5.02%
6M 0.14% 0.30% 0.47% 0.74% 1.04% 1.73% 2.71% 4.06% 5.17% 6.97%
1Y 0.21% 0.45% 0.75% 1.16% 1.60% 2.51% 3.82% 5.56% 7.05% 9.45%
2Y 0.40% 0.85% 1.37% 1.94% 2.55% 3.66% 5.26% 7.38% 9.23% 12.20%
3Y 0.62% 1.26% 1.91% 2.58% 3.25% 4.50% 6.26% 8.61% 10.64% 13.77%
4Y 0.78% 1.54% 2.28% 3.02% 3.75% 5.11% 7.00% 9.52% 11.66% 15.11%
5Y 0.88% 1.74% 2.56% 3.35% 4.13% 5.58% 7.57% 10.21% 12.49% 16.15%
7Y 0.97% 1.90% 2.78% 3.63% 4.44% 5.97% 8.09% 10.81% 13.16% 16.86%
10Y 1.01% 1.96% 2.86% 3.71% 4.53% 6.08% 8.22% 10.86% 13.12% 16.71%

Table 3: ATM swaption prices

Since a swap can be viewed as a particular basket of underlying LIBOR for-
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wards, a swaption is an option on a basket of forwards. This observation leads
to the popular relative value trade of, say, a 2 → 3 swaption straddle versus a
2× 5 cap / floor straddle. Such a trade my reflect the trader’s view on the correla-
tions between the LIBOR forwards or a misalignment of swaption and cap / floor
volatilities.

3 Valuation of LIBOR options

3.1 Black’s model
The market standard for quoting prices on caps / floors and swaptions is in terms
of Black’s model. This is a version of the Black-Scholes model adapted to handle
forward underlying assets. We will now briefly discuss this model and in the
following section we will describe some popular extensions of Black’s model.

We assume that a forward rate F (t), such as a LIBOR forward or a forward
swap rate, follows a driftless lognormal process reminiscent of the basic Black-
Scholes model,

dF (t) = σF (t)dW (t). (1)

Here W (t) is a Wiener process, and σ is the lognormal volatility. It is understood
here, that we have chosen a numeraire N with the property that, in the units of
that numeraire, F (t) is a tradable asset. The process F (t) is thus a martingale,
and we let Q denote the probability distribution.

The solution to this stochastic differential equation reads:

F (t) = F0 exp

(
σW (t)− 1

2
σ2t

)
. (2)

We consider a European call struck at K and expiring in T years. Assuming that
the numeraire has been chosen so that N (T ) = 1, we can write its today’s value
as

P call(T,K, F0, σ) = N (0)EQ [max (F (T )−K, 0)]

= N (0)
1√
2πT

∫ ∞

−∞
max

(
F0e

σW− 1
2
σ2T −K, 0

)
e−

W2

2T dW,
(3)

where EQ denotes expected value with respect to Q. The last integral can easily
be carried out, and we find that

P call(T,K, F0, σ) = N (0)
[
F0N (d+)−KN (d−)

]
≡ N (0)Bcall (T,K, F0, σ) .

(4)
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Here,

N(x) =
1√
2π

∫ x

−∞
e−y2/2dy (5)

is the cumulative normal distribution, and

d± =
log

F0

K
± 1

2
σ2T

σ
√
T

. (6)

Similarly, the price of a European put is given by:

P put(T,K, F0, σ) = N (0)
[
− F0N (−d+) +KN (−d−)

]
≡ N (0)Bput (T,K, F0, σ) .

(7)

3.2 Valuation of caps and floors
A cap is a basket of options on LIBOR forward rates. Consider the OIS forward
rate F (S, T ) covering the accrual period [S, T ]. Its time t ≤ S value F (t, S, T )
can be expressed in terms of discount factors:

F (t, S, T ) =
1

δ

(
P (t, t, S)

P (t, t, T )
− 1

)
=

1

δ

P (t, t, S)− P (t, t, T )

P (t, t, T )
.

(8)

The interpretation of this identity is that F (t, S, T ) is a tradable asset if we use
the zero coupon bond maturing in T years as numeraire. Indeed, the trade is as
follows:

(a) Buy 1/δ face value of the zero coupon bond for maturity S.

(b) Sell 1/δ face value of the zero coupon bond for maturity T .

The value of this position in the units of P (t, t, T ) is F (t, S, T ). An OIS forward
rate can thus be modeled as a martingale! We call the corresponding martingale
measure the T -forward measure and denote it by QT .

Consider now a LIBOR forward L(S, T ) spanning the same accrual period.
Throughout these lectures we will make the assumption that the LIBOR / OIS
spread is deterministic (rather than stochastic). This assumption is, clearly, a gross
oversimplification of reality but it has some merits. There are no liquidly trading



8 Interest Rates & FX Models

options on this spread, and thus calibrating a model with a stochastic spread is
problematic. On the theoretical side, the picture is more transparent with a deter-
ministic spread. Namely, we have from formula (13) of Lecture 1,

L(t, S, T ) = F (t, S, T ) +B(t, S, T )

=
1

δ

P (t, t, S)− P (t, t, T ) + δB(t, S, T )P (t, t, T )

P (t, t, T )
.

(9)

This shows that the LIBOR forward is a martingale under the T -forward measure
QT .

Choosing, for now, the process to be (1), we conclude that the price of a call
on L(S, T ) (or caplet) is given by

P caplet(T,K,L0, σ) = δP0(0, T )B
call(S,K,L0, σ), (10)

where L0 denotes here today’s value of the forward, namely L(0, S, T ) = L0(S, T ).
Since a cap is a basket of caplets, its value is the sum of the values of the

constituent caplets:

P cap =
n∑

j=1

δjB
call(Tj−1, K, Lj, σj)P0(0, Tj), (11)

where δj is the day count fraction applying to the accrual period starting at Tj−1

and ending at Tj , and Lj is the LIBOR forward rate for that period. Notice that,
in the formula above, the date Tj−1 has to be adjusted to accurately reflect the ex-
piration date of the option (2 business days before the start of the accrual period).
Similarly, the value of a floor is

P floor =
n∑

j=1

δjB
put(Tj−1, K, Lj, σj)P0(0, Tj). (12)

What is the at the money (ATM) cap? Characteristic of an ATM option is that
the call and put struck ATM have the same value. We shall first derive a put / call
parity relation for caps and floors. Let EQj denote expected value with respect to
the Tj-forward measure QTj

. Then,

P floor − P cap

=
n∑

j=1

δj
(
EQj [max (K − Lj, 0)]− EQj [max (Lj −K, 0)]

)
P0(0, Tj)

=
n∑

j=1

δjE
Qj [K − Lj]P0(0, Tj).
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Now, the expected value EQj [Lj] is the current value of the LIBOR forward
L0(Tj−1, Tj). Hence we have arrived at the following put / call parity relation:

P floor − P cap = K
n∑

j=1

δjP0(0, Tj)−
n∑

j=1

δjL0(Tj−1, Tj)P0 (0, Tj) , (13)

which is the present value of the swap receiving K on the quarterly, act/360 basis.
This is an important relation. It implies that:

(a) It is natural to think about a floor as a call option, and a cap as a put option.
The underlying asset is the forward starting swap on which both legs pay
quarterly and interest accrues on the act/360 basis. The coupon dates on the
swap coincide with the payment dates on the cap / floor.

(a) The ATM rate is the break-even rate on this swap. This rate is close to but
not identical to the break-even rate on the standard semi-annual swap.

3.3 Valuation of swaptions
Consider a swap that settles at T0 and matures at T . Let S(t, T0, T ) denote the
corresponding (break-even) forward swap rate observed at time t < T0 (in partic-
ular, S0(T0, T ) = S(0, T0, T )). We know from Lecture 1 that the forward swap
rate is given by

S(t, T0, T ) =

∑
1≤j≤nf

δjLjP (t, Tval, T
f
j)

A(t, Tval, T0, T )
, (14)

where Tval ≤ T0 is the valuation date of the swap (its choice has no impact on the
value of the rate). Here, Bj is the LIBOR / OIS spread, and A(t, Tval, T0, T ) is the
forward level function:

A(t, Tval, T0, T ) =
∑

1≤j≤nc

αjP (t, Tval, T
c
j ). (15)

Using formula (4) of Lecture 1, we write this as

S(t, T0, T ) =

∑
1≤j≤nf

δjLjP (t, t, T f
j)

A(t, t, T0, T )

=
P (t, t, T0)− P (t, t, T ) +

∑
1≤j≤nf

δjBjP (t, t, T f
j)

A(t, t, T0, T )
.

(16)
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The forward level function A(t, t, T0, T ) is the time t present value of an annuity
paying $1 on the dates T c

1 , . . . , T
c
nc

, as observed at t.
As in the case of a simple LIBOR forward, the interpretation of (16) is that

S(t, T0, T ) is a tradable asset if we use the annuity as numeraire. Recall that we
are assuming that all the LIBOR / OIS spreads are deterministic. Indeed, consider
the following trade:

(a) Buy $1 face value of the zero coupon bond for maturity T0.

(b) Sell $1 face value of the zero coupon bond for maturity T .

(c) Buy a stream of δjBj face value zero coupon bonds for maturity T f
j , j =

1, . . . , nf.

A forward swap rate can thus be modeled as a martingale! We call the martingale
measure associated with the annuity numeraire the swap measure.

Choosing, again, the lognormal process (1), we conclude that today’s value of
a receiver swaption is thus given by

P rec = A0(T0, T )B
put(T0, K, S0, σ), (17)

and the value of a payer swaption is

P pay = A0(T0, T )B
call(T0, K, S0, σ). (18)

Here A0(T0, T ) = A(0, 0, T0, T ), i.e.

A0(T0, T ) =
∑

1≤j≤nc

αjP0(0, T
c
j ) (19)

(all discounting is done to today), and S0 is today’s value of the forward swap rate
S0(T0, T ).

The put / call parity relation for swaptions is easy to establish, namely

P rec − P pay = PV of the swap paying K on the semi-annual, 30/360 basis.

Therefore,

(a) It is natural to think about a receiver as a call option, and a payer as a put
option.

(a) The ATM rate is the break-even rate on the underlying forward starting
swap.
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4 Beyond Black’s model
The basic premise of Black’s model, that σ is independent of K and F0, is not
supported by the interest rates markets. In particular, for a given maturity, option
implied volatilities exhibit a pronounced dependence on their strikes. This phe-
nomenon is called the skew or the volatility smile. It became apparent especially
over the past fifteen years or so, that in order to accurately value and risk manage
options portfolios refinements to Black’s model are necessary.

An improvement over Black’s model is a class of models called local volatil-
ity models. The idea is that even though the exact nature of volatility (it could be
stochastic) is unknown, one can, in principle, use the market prices of options in
order to recover the risk neutral probability distribution of the underlying asset.
This, in turn, will allow us to find an effective (“local”) specification of the under-
lying process so that the implied volatilities match the market implied volatilities.

Local volatility models are usually specified in the form

dF (t) = C(t, F (t))dW (t), (20)

where C(t, F ) is a certain effective instantaneous volatility. In general, C(t, F (t))
is not given in a parametric form. It is, however, a matter of convenience to
work with a parametric specification that fits the market data best. Popular local
volatility models which admit analytic solutions include:

(a) The normal model.

(b) The shifted lognormal model.

(c) The CEV model.

We now briefly discuss the basic features of these models.

4.1 Normal model
The dynamics for the forward rate F (t) in the normal model reads

dF (t) = σdW (t), (21)

under the suitable choice of numeraire. The parameter σ is appropriately called
the normal volatility. This is easy to solve:

F (t) = F0 + σW (t). (22)
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This solution exhibits one of the main drawbacks of the normal model: with non-
zero probability, F (t) may become negative in finite time. Under typical circum-
stances, this is, however, a relatively unlikely event.

Prices of European calls and puts are now given by:

P call(T,K, F0, σ) = N (0)Bcall
n (T,K, F0, σ),

P put(T,K, F0, σ) = N (0)Bput
n (T,K, F0, σ).

(23)

The functions Bcall
n (T,K, F0, σ) and Bput

n (T,K, F0, σ) are given by:

Bcall
n (T,K, F0, σ) = σ

√
T
(
d+N (d+) +N ′ (d+)

)
,

Bput
n (T,K, F0, σ) = σ

√
T
(
d−N (d−) +N ′ (d−)

)
,

(24)

where

d± = ± F0 −K

σ
√
T

. (25)

The normal model is (in addition to the lognormal model) an important bench-
mark in terms of which implied volatilities are quoted. In fact, many traders are in
the habit of thinking in terms of normal implied volatilities, as the normal model
often seems to capture the rates dynamics better than the lognormal (Black’s)
model.

4.2 Shifted lognormal model

The shifted lognormal model (also known as the displaced diffusion model) is a
diffusion process whose volatility structure is a linear interpolation between the
normal and lognormal volatilities. Its dynamics reads:

dF (t) = (σ1F (t) + σ0) dW (t).

The volatility structure of the shifted lognormal model is given by the values of
the parameters σ1 and σ0.

Prices of calls and puts are given by the following valuation formulas:

P call(T,K, F0, σ0, σ1) = N (0)Bcall
sln (T,K, F0, σ0, σ1),

P call(T,K, F0, σ0, σ1) = N (0)Bput
sln (T,K, F0, σ0, σ1).

(26)
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The functions Bcall
sln (T,K, F0, σ0, σ1) and Bput

sln (T,K, F0, σ0, σ1) are generaliza-
tions of the corresponding functions for the lognormal and normal models:

Bcall
sln (T,K, F0, σ0, σ1) =

(
F0 +

σ0

σ1

)
N (d+)−

(
K +

σ0

σ1

)
N (d−) , (27)

where

d± =
log

σ1F0 + σ0

σ1K + σ0

± 1

2
σ2
1T

σ1

√
T

, (28)

and

Bput
sln (T,K, F0, σ0, σ1) = −

(
F0 +

σ0

σ1

)
N (−d+)+

(
K +

σ0

σ1

)
N (−d−) . (29)

The shifted lognormal model is used by some market practitioners as a con-
venient compromise between the normal and lognormal models. It captures some
aspects of the volatility smile.

4.3 The CEV model
Another model in-between the normal and lognormal models is the CEV model1,
whose volatility structure is a power interpolation between the normal and lognor-
mal volatilities. Its dynamics is explicitly given by

dF (t) = σF (t)βdW (t),

where β < 1. Note that the exponent β is allowed to be negative. In order for
the dynamics to be well defined, we have to prevent F (t) from becoming negative
(otherwise F (t)β would turn imaginary!). To this end, we specify a boundary
condition at F = 0. It can be

(a) Dirichlet (absorbing): F |0 = 0. Solution exists for all values of β, or

(b) Neumann (reflecting): F ′|0 = 0. Solution exists for 1
2
≤ β < 1.

Unlike the models discussed above, where the option valuation formulas can
be obtained by purely probabilistic methods, the CEV model requires solving a

1CEV stands for ”constant elasticity of variance”.
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terminal value problem for a partial differential equation, namely the backward
Kolmogorov equation:

∂

∂t
B (t, f) +

1

2
σ2f 2β ∂2

∂f 2
B (t, f) = 0,

B (T, f) =

{
(f −K)+ , for a call,
(K − f)+ , for a put,

(30)

This equation has to be supplemented by a boundary condition, Dirichlet of Neu-
mann, at zero f .

Pricing formulas for the CEV model can be obtained in a closed (albeit some-
what complicated) form. For example, in the Dirichlet case the prices of calls and
puts are:

P call(T,K, F0, σ) = N (0)Bcall
CEV(T,K, F0, σ),

P put(T,K, F0, σ) = N (0)Bput
CEV(T,K, F0, σ).

(31)

The functions Bcall
CEV(T,K, F0, σ) and Bput

CEV(T,K, F0, σ) are the time t = 0 so-
lutions to the terminal value problem (30), and can be expressed in terms of the
cumulative function of the non-central χ2 distribution:

χ2 (x; r, λ) =

∫ x

0

p (y; r, λ) dy, (32)

whose density is given by a Bessel function [3]:

p (x; r, λ) =
1

2

(x
λ

)(r−2)/4

exp

(
−x+ λ

2

)
I(r−2)/2

(√
λx
)
. (33)

We also need the quantity:

ν =
1

2 (1− β)
, i.e. ν ≥ 1

2
. (34)

A tedious computation shows then that the valuation formulas for calls and
puts under the CEV model with the Dirichlet boundary condition read:

Bcall
CEV(T,K, F0, σ) = F0

(
1− χ2

(4ν2K1/ν

σ2T
; 2ν + 2,

4ν2F
1/ν
0

σ2T

))
−Kχ2

(4ν2F
1/ν
0

σ2T
; 2ν,

4ν2K1/ν

σ2T

)
,

(35)
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and

Bput
CEV(T,K, F0, σ) = F0χ

2
(4ν2K1/ν

σ2T
; 2ν + 2,

4ν2F
1/ν
0

σ2T

)
−K

(
1− χ2

(4ν2F
1/ν
0

σ2T
; 2ν,

4ν2K1/ν

σ2T

))
,

(36)

respectively.
From these formulas one can deduce that the terminal probability density

g(T, F ) is given by

g(T, F ) =
4νF0F

1/ν−2

σ2T
p

(
4ν2F 1/ν

σ2T
; 2ν + 2,

4ν2F
1/ν
0

σ2T

)
. (37)

This is the “transition portion” of the process only. Indeed, the total mass of the
density g(T, F ) is less than one, meaning that there is a nonzero probability of
absorption at zero. Using the series expansion [3]:

Iν (z) =
∑
k≥0

1

k! Γ (ν + k + 1)

(z
2

)2k+ν

, (38)

we readily find that∫ ∞

0

g(T, F ) dF = 1− 1

Γ(ν)
Γ
(
ν,

2ν2F
1/ν
0

σ2T

)
, (39)

where
Γ (ν, x) =

∫ ∞

x

tν−1e−tdt (40)

is the complementary incomplete gamma function [3].
The quantity

1

Γ(ν)
Γ
(
ν,

2ν2F
1/ν
0

σ2T

)
(41)

is the probability of absorption at zero. For example, in the square root process
case, i.e. ν = 1, that probability equals exp(− 2F0

σ2T
). The total terminal probability

is thus the sum of g(T, F ) and the Dirac delta function δ(F ) multiplied by the
absorption probability (41).

Similar valuation formulas hold for the Neumann boundary condition but we
will not reproduce them here.
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5 Stochastic volatility and the SABR model
The volatility skew models that we have discussed so far improve on Black’s
models but still fail to reflect the market dynamics. One issue is, for example, the
“wing effect” exhibited by the implied volatilities of some maturities (especially
shorter dated) and tenors which is not captured by these models: the implied
volatilities tend to rise for high strikes forming the familiar “smile” shape. Among
the attempts to move beyond the locality framework are:

(a) Stochastic volatility models. In this approach, we add a new stochastic fac-
tor to the dynamics by assuming that a suitable volatility parameter itself
follows a stochastic process.

(b) Jump diffusion models. These models use a broader class of stochastic pro-
cesses (for example, Levy processes) to drive the dynamics of the underlying
asset. These more general processes allow for discontinuities (“jumps”) in
the asset dynamics.

Because of time constraints we shall limit our discussion to an example of ap-
proach (a), namely the SABR stochastic volatility model.

5.1 Implied volatility
The SABR model is an extension of the CEV model in which the volatility pa-
rameter is assumed to follow a stochastic process. Its dynamics is explicitly given
by:

dF (t) = σ(t)C (F (t)) dW (t),

dσ(t) = ασ(t)dZ(t).
(42)

Here F (t) is the forward rate process which, depending on context, may denote
a LIBOR forward or a forward swap rate2, and σ(t) is the stochastic volatility
parameter. The process is driven by two Brownian motions, W (t) and Z(t), with

E [dW (t)dZ(t)] = ρdt,

where the correlation ρ is assumed constant. The diffusion coefficient C (F ) is
assumed to be of the CEV type:

C (F ) = F β. (43)
2The SABR model specification is also used in markets other than interest rate market, and

thus F (t) may denote e.g. a crude oil forward.
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Note that we assume that a suitable numeraire has been chosen so that F (t) is a
martingale. The process σ(t) is the stochastic component of the volatility of Ft,
and α is the volatility of σ(t) (the volvol) which is also assumed to be constant.
As usual, we supplement the dynamics with the initial condition

F (0) = F0,

σ (0) = σ0,
(44)

where F0 is the current value of the forward, and σ0 is the current value of the
volatility parameter.

As in the case of the CEV model, the analysis of the SABR model requires
solving the terminal value problem for the backward Kolmogorov equation asso-
ciated with the process (42). Namely, the valuation function B = B (t, f, σ) is the
solution to

∂

∂t
B +

1

2
σ2
(
f 2β ∂2

∂f 2
+ 2αρfβ ∂2

∂f∂σ
+ α2 ∂2

∂σ2

)
B = 0,

B(T, f, σ) =

{
(f −K)+ , for a call,
(K − f)+ , for a put.

(45)

This is a more difficult problem than the models discussed above. Except for the
special case of β = 0, no explicit solution to this model is known. The general
case can be solved approximately by means of a perturbation expansion in the
parameter ε = Tα2, where T is the maturity of the option. As it happens, this pa-
rameter is typically small and the approximate solution is actually quite accurate.
Also significantly, this solution is very easy to implement in computer code, and
lends itself well to risk management of large portfolios of options in real time.

There is no known closed form option valuation formula in the SABR model.
Instead, one takes the following approach. We force the valuation formula to be of
the form (23) given by the normal model, with the (normal) implied volatility σn

depending on the SABR model parameters. An analysis of the model dynamics
shows that the implied normal volatility is then approximately given by:

σn(T,K, F0, σ0, α, β, ρ) = α
F0 −K

δ (K,F0, σ0, α, β)
×{

1 +

[
2γ2 − γ2

1

24

(
σ0C (Fmid)

α

)2

+
ργ1
4

σ0C (Fmid)

α
+

2− 3ρ2

24

]
ε

+ . . .
}
,

(46)
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where Fmid denotes a conveniently chosen midpoint between F0 and K (such as√
F0K or (F0 +K) /2), and

γ1 =
C ′ (Fmid)

C (Fmid)
,

γ2 =
C ′′ (Fmid)

C (Fmid)
.

The “distance function” entering the formula above is given by:

δ (K,F0, σ0, α, β) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
,

where

ζ =
α

σ0

∫ F0

K

dx

C (x)

=
α

σ0 (1− β)

(
F 1−β
0 −K1−β

)
.

(47)

A similar asymptotic formula exists for the implied lognormal volatility σln.

5.2 Calibration of SABR
For each option maturity and underlying we have to specify 4 model parameters:
σ0, α, β, ρ. In order to do it we need, of course, market implied volatilities for
several different strikes. Given this, the calibration poses no problem: one can
use, for example, Excel’s Solver utility.

It turns out that there is a bit of redundancy between the parameters β and ρ.
As a result, one usually calibrates the model by fixing one of these parameters:

(a) Fix β, say β = 0.5, and calibrate σ0, α, ρ.

(b) Fix ρ = 0, and calibrate σ0, α, β.

Calibration results show interesting term structure of the model parameters as
functions of the maturity and underlying. Typical is the shape of the parameter
α which start out high for short dated options and then declines monotonically
as the option maturity increases. This indicates presumably that modeling short
dated options should include a jump diffusion component.
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6 Volatility cube
Market implied volatilities are usually organized by:

(a) Option maturity.

(b) Tenor of the underlying instrument.

(c) Strike on the option.

This three dimensional object is called the volatility cube. The markets provide
information for certain benchmark maturities (1 month, 3 months, 6 months, 1
year, ...), underlyings (1 year, 2 years, ...), and strikes (ATM, ±50 bp, ...) only,
and the process of volatility cube construction requires performing intelligent in-
terpolations.

6.1 ATM swaption volatilities
The market quotes swaption volatilities for certain standard maturities and un-
derlyings. Table 4 contains the December 13, 2011 snapshot of the matrix of
lognormal (Black) at the money swaption volatilities for the standard expirations
and underlyings.

1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 71.7% 68.2% 61.8% 56.0% 50.6% 49.7% 47.3% 44.4% 43.4% 43.0%
3M 73.6% 68.8% 61.1% 55.9% 51.5% 49.6% 47.2% 44.0% 42.8% 42.8%
6M 72.2% 70.0% 60.0% 55.6% 51.9% 49.0% 46.1% 42.9% 42.1% 41.9%
1Y 73.8% 65.5% 57.1% 52.9% 49.7% 46.6% 43.8% 40.8% 40.3% 40.0%
2Y 73.7% 59.0% 51.4% 47.2% 45.4% 42.0% 39.4% 37.0% 36.6% 36.4%
3Y 57.8% 49.0% 44.3% 41.8% 40.4% 37.9% 36.0% 34.3% 34.1% 33.4%
4Y 46.0% 41.6% 39.2% 37.8% 36.8% 35.1% 33.9% 32.7% 32.4% 32.1%
5Y 39.7% 37.8% 36.6% 35.6% 34.8% 33.5% 32.6% 31.7% 31.6% 31.3%
7Y 34.4% 33.4% 32.4% 31.7% 31.2% 30.7% 30.7% 30.0% 29.7% 29.2%
10Y 29.8% 29.4% 29.1% 28.8% 28.7% 28.8% 29.2% 28.2% 27.5% 26.8%

Table 4: Swaption ATM lognormal volatilities

Alternatively, Table 5 contains the matrix of normal at the money swaption
volatilities expressed, for ease of readability, in basis points.

The matrix of at the money volatilities should be accompanied by the matrix
of forward swap rates, calculated from the rate market snapshot. These are the at
the money strikes for the corresponding swaptions. This is illustrated by Table 6.
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1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 48 48 51 58 65 85 101 111 114 116
3M 51 49 53 61 69 88 102 111 113 116
6M 51 52 56 66 75 91 103 110 112 115
1Y 52 56 63 74 82 94 104 108 110 111
2Y 72 76 83 88 94 99 103 104 104 104
3Y 91 93 95 98 100 101 103 102 101 99
4Y 101 101 101 102 102 102 103 100 98 97
5Y 105 104 104 104 104 103 102 99 97 95
7Y 103 102 101 100 100 99 98 94 92 89
10Y 98 97 96 95 94 93 92 87 84 81

Table 5: Swaption ATM normal volatilities (in basis points)

1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 0.67% 0.70% 0.82% 1.04% 1.29% 1.72% 2.13% 2.49% 2.62% 2.71%
3M 0.69% 0.72% 0.87% 1.10% 1.35% 1.77% 2.18% 2.52% 2.64% 2.72%
6M 0.71% 0.76% 0.94% 1.19% 1.45% 1.86% 2.25% 2.57% 2.67% 2.75%
1Y 0.72% 0.87% 1.13% 1.41% 1.66% 2.03% 2.38% 2.66% 2.74% 2.80%
2Y 1.02% 1.33% 1.64% 1.90% 2.10% 2.39% 2.66% 2.84% 2.88% 2.90%
3Y 1.64% 1.96% 2.21% 2.39% 2.52% 2.72% 2.91% 3.00% 3.00% 3.00%
4Y 2.27% 2.50% 2.64% 2.75% 2.84% 2.98% 3.09% 3.11% 3.09% 3.07%
5Y 2.72% 2.84% 2.92% 2.99% 3.06% 3.15% 3.21% 3.18% 3.14% 3.11%
7Y 3.08% 3.16% 3.21% 3.26% 3.29% 3.31% 3.29% 3.22% 3.17% 3.13%
10Y 3.40% 3.41% 3.41% 3.40% 3.38% 3.33% 3.26% 3.18% 3.14% 3.11%

Table 6: Forward swap rates (ATM strikes)

6.2 Stripping cap volatility

A cap is a basket of options of different maturities and different moneynesses.
For simplicity, the market quotes cap / floor prices in terms of a single number,
the flat volatility. This is the single volatility which, when substituted into the
valuation formula (for all caplets / floorlets!), reproduces the correct price of the
instrument. Clearly, flat volatility is a dubious concept: since a single caplet may
be part of different caps it gets assigned different flat volatilities. The process of
constructing actual implied caplet volatility from market quotes is called stripping
cap volatility. The result of stripping is a sequence of ATM caplet volatilities for
maturities ranging from one day to, say, 30 years. Convenient benchmarks are
3 months, 6 months, 9 months, ... . The market data usually include Eurodollar
options and OTC caps and floors.

There are various methods of stripping at the money cap volatility. Among
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them we mention:
Bootstrap. One starts at the short end and moves further trying to match the prices
of Eurodollar options and spot starting caps / floors. This method tends to produce
a jagged shape of the volatility curve.
Optimization. This method produces a smooth shape of the cap volatility curve
but is somewhat more involved. We use a two step approach: in the first step fit
the caplet volatilities to the hump function:

H(t) = (α + βt) e−λt + µ. (48)

Generally, the hump function gives a qualitatively correct shape of the cap volatil-
ity. Quantitatively, the fit is insufficient for accurate pricing and should be refined.
An good approach is to use smoothing B-splines. Once α, β, λ, and µ have been
calibrated, we use cubic B-splines in a way similar to the method explained in
Lecture 1 in order to nail down the details of the caplet volatility curve.

6.3 Adding the third dimension
The third dimension of the volatility cube is the strike dependence of volatility.
It is best characterized in terms of the parameters of the smile model such as
the parameters α, β, and ρ of the SABR model. We can conveniently organize
these parameters in matrices of the same dimensions as the at the money volatility
matrices.
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