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1 Introduction
The real challenge in modeling interest rates is the existence of a term structure
of interest rates embodied in the shape of the forward curve. Fixed income in-
struments typically depend on a segment of the forward curve rather than a single
point. Pricing such instruments requires thus a model describing a stochastic time
evolution of the entire forward curve.

There exists a large number of term structure models based on different choices
of state variables parameterizing the curve, number of dynamic factors, volatility
smile characteristics, etc. The industry standard for interest rates modeling that
has emerged over the past few years is the LIBOR market model (LMM). Un-
like the older approaches (short rate models which we do not discuss in these
lectures), where the underlying state variable is an unobservable instantaneous
rate, LMM captures the dynamics of the entire curve of interest rates by using the
(market observable) LIBOR forwards as its state variables. The time evolution
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of the forwards is given by a set of intuitive stochastic differential equations in a
way which guarantees arbitrage freeness of the process. The model is intrinsically
multi-factor, meaning that it captures accurately various aspects of the curve dy-
namics: parallel shifts, steepenings / flattenings, butterflies, etc. In this lecture we
discuss two versions of the LMM methodology: (i) the classic LMM with a local
volatility specification, and (ii) its SABR style extension.

One of the main difficulties experienced by the pre-LMM term structure mod-
els is the fact that they tend to produce unrealistic volatility structures of forward
rates. The persistent “hump” occurring in the short end of the volatility curve
leads to overvaluation of instruments depending on forward volatility. The LMM
model offers a solution to this problem by allowing one to impose an approxi-
mately stationary volatility and correlation structure of LIBOR forwards. This
reflects the view that the volatility structure of interest rates retains its shape over
time, without distorting the valuation of instruments sensitive to forward volatility.

On the downside, LMM is far less tractable than, for example, the Hull-White
model. In addition, it is not Markovian in the sense short rate models are Marko-
vian. As a consequence, all valuations based on LMM have to be done by means
of Monte Carlo simulations.

2 LIBOR market model

2.1 Dynamics of the LIBOR market model

We shall consider a sequence of approximately equally spaced dates 0 = T0 <
T1 < . . . < TN which will be termed the standard tenors. A standard LIBOR
forward rate Lj , j = 0, 1, . . . , N − 1 is associated with a FRA which starts on
Tj and matures on Tj+1. Usually, it is assumed that N = 120 and the Lj’s are 3
month LIBOR forward rates. Note that these dates refer to the actual start and end
dates of the contracts rather than the LIBOR “fixing dates”, i.e. the dates on which
the LIBOR rates settle. To simplify the notation, we shall disregard the difference
between the contract’s start date and the corresponding forward rate’s fixing date.
Proper implementation, however, must take this distinction into account.

Each LIBOR forward Lj is modeled as a continuous time stochastic process
Lj(t). Clearly, this process has the property that it gets killed at t = Tj . The dy-
namics of the forward process is driven by an N -dimensional, correlated Wiener
process W1(t), . . . ,WN(t). We let ρjk denote the correlation coefficient between
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Wj(t) and Wk(t):
E [dWj(t)dWk(t)] = ρjkdt ,

where E denotes expected value.
In order to motivate the form of the stochastic differential equations describing

the dynamics of the LIBOR forwards, let us first consider the world in which there
is no volatility of interest rates. The shape of the forward curve would be set once
and for all by a higher authority, and each LIBOR forward would have a constant
value Lj(t) = Lj0. In other words,

dLj(t) = 0,

for all j’s. The fact that the rates are stochastic forces us to replace this simple
dynamical system with a system of stochastic differential equations of the form:

dLj(t) = ∆j(t)dt+ Cj(t)dWj(t), (1)

where

∆j(t) = ∆j(t, L(t)),

Cj(t) = Cj(t, L(t)),

are the drift and instantaneous volatility, respectively.
As discussed in Lecture 3, the no arbitrage requirement of asset pricing forces

a relationship between the drift term and the diffusion term: the form of the drift
term depends thus on the choice of numeraire.

Recall from Lecture 3 that Lk is a martingale under the Tk+1-forward measure
Qk, and so its dynamics reads:

dLk(t) = Ck(t)dWk(t),

where Ck(t) is an instantaneous volatility function which will be defined later. For
j ̸= k,

dLj(t) = ∆j(t)dt+ Cj(t)dWj(t).

Since the j-th LIBOR forward settles at Tj , the process for Lj(t) is killed at t =
Tj . We shall determine the drifts ∆j(t) by requiring lack of arbitrage.

Let us first assume that j < k. The numeraires for the measures Qj and Qk are
the prices P (t, Tj+1) and P (t, Tk+1) of the zero coupon bonds expiring at Tj+1

and Tk+1, respectively. Explicitly,

P (t, Tj+1) = P (t, Tγ(t))
∏

γ(t)≤i≤j

1

1 + δiFi(t)
, (2)
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where Fi denotes the OIS forward1 spanning the accrual period [Ti, Ti+1), and
where γ : [0, TN ] → Z is defined by

γ(t) = m+ 1, if t ∈ [Tm, Tm+1) .

Notice that P (t, Tγ(t)) is the “stub” discount factor over the incomplete accrual
period [t, Tγ(t)].

Since the drift of Lj(t) under Qj is zero, formula (26) (or (27)) of Lecture 2
yields:

∆j(t) =
d

dt

[
Lj, log

P ( · , Tj+1)

P ( · , Tk+1)

]
(t)

= − d

dt

[
Lj, log

∏
j+1≤i≤k

(1 + δiFi)
]
(t)

= −
∑

j+1≤i≤k
dLj(t)

δidFi(t)

1 + δiFi(t)

= −Cj(t)
∑

j+1≤i≤k

ρjiδiCi(t)

1 + δiFi(t)
,

where, in the third line, we have used the fact that the spread between Lj and Fj

is deterministic, and thus its contribution to the quadratic variation is zero.
Similarly, for j > k, we find that

∆j(t) = Cj(t)
∑

k+1≤i≤j

ρjiδiCi(t)

1 + δiFi(t)
.

We can thus summarize the above discussion as follows. In order to streamline
the notation, we let dWj(t) = dWQk

j (t) denote the Wiener process under the
measure Qk. Then the dynamics of the LMM model is given by the following
system of stochastic differential equations. For t < min(Tk, Tj),

dLj(t) = Cj(t)

×


−
∑

j+1≤i≤k

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t), if j < k,

dWj(t), if j = k,∑
k+1≤i≤j

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t), if j > k .

(3)

1Recall that all discounting is done on OIS.
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These equations have to be supplied with initial values for the LIBOR forwards:

Lj (0) = Lj0, (4)

where Lj0 is the current value of the forward which is implied by the current yield
curve.

In addition to the forward measures discussed above, it is convenient to use
the spot measure. It is expressed in terms of the numeraire:

B(t) =
P (t, Tγ(t))∏

1≤i≤γ(t) P (Ti−1, Ti)
. (5)

Under the spot measure, the LMM dynamics reads:

dLj(t) = Cj(t)
( ∑

γ(t)≤i≤j

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t)

)
. (6)

2.2 Structure of the instantaneous volatility
So far we have been working with a general instantaneous volatility Cj(t) for the
forward Lj(t). In practise, we assume Cj(t) to be one of the following standard
volatility specifications discussed in Lecture 3:

Cj(t) =


σj(t) (normal model),
σj(t)Lj(t)

βj (CEV model),
σj(t)Lj(t) (lognormal model),
σj(t)Lj(t) + ϑj(t) (shifted lognormal model),

(7)

where the functions σj(t) and ϑj(t) are deterministic, and where βj ≤ 1. In
the following, we will be assuming the CEV model specification, and thus the
dynamics of the LIBOR forwards is given by the system:

dLj(t) = σj(t)Lj(t)
βj

×


−
∑

j+1≤i≤k

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t), if j < k,

dWj(t), if j = k,∑
k+1≤i≤j

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t), if j > k,

(8)
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under Qk, or under the spot measure:

dLj(t) = σj(t)Lj(t)
βj

( ∑
γ(t)≤i≤j

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t)

)
. (9)

We recall from the discussion in Lecture 3 that the CEV model needs care at zero
forward. Experience shows that the Dirichlet (absorbing) boundary condition at
zero works better than the Neumann (reflecting) condition, and we will assume
that the Dirichlet condition is imposed. What it means is that if a path realizing
the process for Lj hits zero, it gets killed and stays zero forever.

2.3 Factor reduction
In a market where the forward curve spans 30 years, there are 120 quarterly LI-
BOR forwards and thus 120 stochastic factors. So far we have not imposed any
restrictions on the number of these factors, and thus the number of Brownian mo-
tions driving the LIBOR forward dynamics is equal to the number of forwards.
Having a large number of factors poses severe problems with the model’s imple-
mentation. On the numerical side, the “curse of dimensionality” kicks in, leading
to unacceptably slow performance. On the financial side, the parameters of the
model are severely underdetermined and the calibration of the model becomes
unstable.

We are thus led to the assumption that only a small number d of independent
Brownian motions Za(t), a = 1, . . . , d, with

E [dZa(t)dZb(t)] = δabdt , (10)

should drive the process. Typically, d = 1, 2, 3, or 4. We set

dWj(t) =
∑

1≤a≤d

Uja dZa(t), (11)

where U is an N × d matrix with the property that UU ′ is close to the correlation
matrix. Of course, it is in general impossible to have UU ′ = ρ. We can easily
rewrite the dynamics of the model in terms of the independent Brownian motions:

dLj(t) = ∆j(t)dt+
∑

1≤a≤d

Bja(t)dZa(t), (12)

where
Bja(t) = Uja Cj(t). (13)
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We shall call this system the factor reduced LMM dynamics. It is the factor
reduced form of LMM that is used in practice.

3 Calibration of the LMM model
Calibration (to a selected collection of benchmark instruments) is a choice of the
model parameters so that the model reprices the benchmark instruments to a de-
sired accuracy. The choice of the calibrating instruments is dictated by the char-
acteristics of the portfolio to be managed by the model.

An important feature of LMM is that it leads to pricing formulas for caps and
floors which are consistent with the market practice of quoting the prices of these
products in terms of Black’s model. This makes the calibration of LMM to caps
and floors very easy. On the other hand, from the point of view of the LMM model,
swaptions are exotic structures whose fast pricing poses serious challenges. In this
section we describe our strategy of dealing with these issues.

3.1 Approximate valuation of swaptions
A key ingredient of any efficient calibration methodology for LMM is rapid and
accurate swaption valuation. A swap rate is a non-linear function of the underly-
ing LIBOR forward rates. The stochastic differential equation for the swap rate
implied by the LMM model cannot be solved in closed form, and thus pricing
swaptions within LMM requires Monte Carlo simulations. This poses a serious
issue for efficient model calibration, as such simulations are very time consuming.

Let us describe a closed form approximation which can be used to calibrate
the model. We consider a standard forward starting swap, whose start and end
dates are denoted by Tm and Tn, respectively. Recall from Lecture 1 that the level
function of the swap is defined by:

Amn(t) =
∑

m≤j≤n−1

αjP (t, Tj+1) , (14)

where αj are the day count fractions for fixed rate payments, and where P (t, Tj)
is the time t value of $1 paid at time Tj . Typically, the payment frequency on the
fixed leg is not the same as that on the floating leg2 (which we continue to denote

2Remember, the default convention on US dollar swaps is a semiannual 30/360 fixed leg versus
a quarterly act/360 floating leg.
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by δj). This fact causes a bit of a notational nuisance but needs to be taken properly
into account for accurate pricing. We let Smn(t) denote the corresponding forward
swap rate. In order to lighten up the notation, we will suppress the subscripts mn
throughout the remainder of this lecture.

A straightforward calculation shows that, under the forward measure Qk, the
dynamics of the swap rate process can be written in the form:

dS(t) = Ω(t, L)dt+
∑

m≤j≤n−1

Λj(t, L)dWj(t), (15)

where

Ω =
∑

m≤j≤n−1

∂S

∂Fj

∆j +
1

2

∑
m≤i,j,≤n−1

ρij
∂2S

∂Fi∂Fj

CiCj , (16)

and
Λj =

∂S

∂Fj

Cj. (17)

Not surprisingly, the stochastic differential equation for S has a drift term: the
forward swap rate is not a martingale under a forward measure. Shifting to the
martingale measure Qmn (the swap measure),

dW (t) =

∑
m≤j≤n−1 Λj(t, F )dWj(t) + Ω(t, F )dt

νmn(t)
, (18)

where
νmn(t)

2 =
∑

m≤i,j≤n−1

ρijΛi(t, L)Λj(t, L), (19)

we get
dS(t) = ν(t)dW (t). (20)

In order to be able to use this dynamics effectively, we have to approximate
it by quantities with tractable analytic forms. The simplest approximation con-
sists in replacing the values of the stochastic forwards Lj(t) by their initial values
Lj0. This amounts to “freezing” the curve at its current shape. Within this ap-
proximation, the coefficients in the diffusion process (15) for the swap rate are
deterministic:

Λj(t, L) ≈ Λj(t, L0), (21)

and
Ω(t, L) ≈ Ω(t, L0). (22)
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Let ν0(t) denote the value of ν(t) in this approximation, i.e. ν0(t) is given by (19)
with all Λj(t, L) replaced by Λj(t, L0). The stochastic differential equation (20)
can then be solved in closed form,

S(t) = S0 +

∫ t

0

ν0(s)dW (s). (23)

This is a normal model with deterministic time dependent volatility and thus the
swaption implied normal volatility ζmn is approximately given by

ζ2mn ≈ 1

Tm

∫ t

0

ν0(s)
2ds

=
1

Tm

∑
m≤j,l≤n−1

ρjl

∫ t

0

Λj(s, F0)Λl(s, F0)ds .
(24)

This formula is easy to implement in code, and leads to reasonably accurate re-
sults.

The frozen curve approximation can be regarded as the lowest order term in
the “small noise expansion”. With a bit of extra work, one can compute higher
order terms in that expansion.

3.2 Parametrization of the volatility surface
For the purpose of calibration we require that the deterministic instantaneous CEV
volatilities σj(t) in (8) are piecewise constant. In order to help the intuition, we
organize constant components as a lower triangular matrix in Table 1.

t ∈ [T0, T1) t ∈ [T1, T2) . . . t ∈ [TN−1, TN)
σ0(t) 0 0 . . . 0
σ1(t) σ1,0 0 . . . 0
σ2(t) σ2,0 σ2,1 . . . 0

...
...

...
...

...
σN−1(t) σN−1,0 σN−1,1 . . . 0

Table 1: General volatility structure

Clearly, the problem of determining all the σj,i’s is vastly overparametrized.
Table 1 contains 7140 parameters (assuming N = 120)! A natural remedy to
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the overparametrization problem is assuming that the instantaneous volatility is
stationary, i.e.,

σj,i = σj−i,0

≡ σj−i ,
(25)

for all i < j. This assumption appears natural and intuitive, as it implies that
the structure of cap volatility will look in the future exactly the same way as
it does currently. Consequently, the “forward volatility problem” plaguing the
traditional terms structure models would disappear. Under the stationary volatility
assumption, the instantaneous volatility has the structure summarized in Table 2.
It is a good idea to reduce the number of parameters even further, and try to find

t ∈ [T0, T1) t ∈ [T1, T2) . . . t ∈ [TN−1, TN)
σ0(t) 0 0 . . . 0
σ1(t) σ1 0 . . . 0
σ2(t) σ2 σ1 . . . 0

...
...

...
...

...
σN−1(t) σN−1 σN−2 . . . 0

Table 2: Stationary volatility structure

a parametric fit σi = h(Ti), i = 1, . . . , N − 1. A popular (but, by no means the
only) choice is the hump function

h(t) = (at+ b)e−λt + µ. (26)

Despite its intuitive appeal, the stationarity assumption is not sufficient for
accurate calibration of the model. The financial reason behind this fact appears
to be the phenomenon of mean reversion of long term rates. Unlike the Vasicek
style models, it is impossible to take this phenomenon into account by adding
an Ornstein - Uhlenbeck style drift term to the LMM dynamics as this would
violate the arbitrage freeness of the model. On the other hand, one can achieve a
similar effect by suitably specifying the instantaneous volatility function. In order
to implement this idea, we assume that the long term volatility structure is given
by σi = h(Ti), i = 1, . . . , N − 1, where h(t) is another hump shaped function.
We then set

σj,i = piσj−i + qiσj−i, (27)
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i.e. the σ’s are mixtures of the short term σ’s and the equilibrium σ’s. The weights
pi and qi are parametrized so that pi, qi ≥ 0, pi + qi = 1, and pi → 0, as i → ∞.
In other words, as we move forward in time, the volatility structure looks more
and more like the long term limit. This specification is summarized in Table 3.

t ∈ [T0, T1) t ∈ [T1, T2) . . . t ∈ [TN−1, TN)
σ0(t) 0 0 . . . 0
σ1(t) p1σ1 + q1σ1 0 . . . 0
σ2(t) p1σ2 + q1σ2 p2σ1 + q2σ1 . . . 0

...
...

...
...

...
σN−1(t) p1σN−1 + q1σN−1 p2σN−2 + q2σN−2 . . . 0

Table 3: Approximately stationary volatility structure

The lower triangular matrix in Table 3, LMM’s internal representation of
volatility, is referred to as the LMM volatility surface. We leave out the details
of this methodology, as that would make the presentation a bit tedious. In the final
result, we have a parametrization of the volatility surface by a manageable number
of parameters θ = (θ1, . . . , θd) (such as the parameters of the hump functions h(t)
and h(t), and of the weights pi), such that σj,i = σj,i(θ) can be calibrated to the
market and has an intuitive shape.

3.3 Parametrization of the correlation matrix
The central issue is to calibrate the model, at the same time, to the cap / floor
and swaption markets in a stable and consistent manner. An important part of this
process is determining the correlation matrix ρ = {ρjk}0≤j,k≤N−1. The dimen-
sionality of ρ is N (N + 1) /2, clearly far too high to assure a stable calibration
procedure.

A convenient approach to correlation modeling is to use a parameterized form
of ρij . An intuitive and flexible parametrization is given by the formula:

ρij = ρmin(i,j) +
(
1− ρmin(i,j)

)
exp

(
−βmin(i,j) |Ti − Tj|

)
, (28)

where
ρk = ρ tanh (αTk) , (29)

and
βk = βT−κ

k . (30)
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The meaning of the parameters is as follows: ρ is the asymptotic level of corre-
lations, α is a measure of speed at which ρ is approached, β is a the decay rate
of correlations, and κ is an asymmetry parameter. Intuitively, positive κ means
that two consecutive forwards with short maturities are less correlated than two
such forwards with long maturities. The parameters in this formula can be cali-
brated by using, for example, historical data. A word of caution is in order: this
parametrization produces a matrix that is only approximately positive definite.

3.4 Optimization
In order to calibrate the model we seek instantaneous volatility parameters σi so
that to fit the at the money caplet and swaption volatilities. These can be expressed
in terms of the instantaneous volatilities are as follows.

Let ζm denote the at the money implied normal volatility of the caplet expiring
at Tm. Then, within the frozen curve approximation,

ζm(θ)
2 =

1

Tm

L2βm

m0

∑
0≤i≤m−1

σm,i(θ)
2 δi, (31)

where δi = Ti+1 − Ti, and θ denotes the set of parameters of the LMM volatility
surface. This relationship is reasonably accurate, and can be used for calibration.
However, in practice, one needs to improve on this formula by going beyond the
frozen curve approximation.

Similarly, for the at the money implied normal volatility ζmn of the swaption
expiring at Tm into a swap maturing at Tn we have an approximate expression:

ζmn(θ)
2 =

1

Tm

∑
0≤i≤m−1

∑
m≤j,l≤n−1

ρjlΛj,iΛl,iδi, (32)

where Λj,i is the (constant) value of Λj(s, L0), the frozen curve approximation to
(17), for s ∈ [Ti, Ti+1). Note that the coefficients Λj,i depend on the parameters
of the LMM volatility surface.

The objective function for optimization is given by:

L(θ) =
∑
m

wm

(
ζm(θ)− ζm

)2
+
∑
m,n

wmn

(
ζmn(θ)− ζmn

)2
, (33)

where ζm and ζmn are the market observed caplet and swaption implied normal
volatilities. The coefficients wm and wmn are weights which allow the user select
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the calibration instruments and their relative importance. Finally, it is a good
idea to add a Tikhonov style regularization in order to maintain stability of the
calibration. A convenient and computationally efficient choice of the Tikhonov
penalty term is the integral of the square of the mean curvature (of elementary
differential geometry of surfaces) of the parameterized LMM volatility surface.
The impact of this penalty term is to discourage regions of extreme curvature
(such as a sharp ridge along the diagonal) at the expense of slightly less accurate
fit.

4 Generating Monte Carlo paths for LMM
LMM does not allow for a natural implementation based on recombining trees,
and thus all valuations have to be performed via Monte Carlo simulations. We
shall describe two numerical schemes for generating Monte Carlo paths for LMM:
Euler’s scheme and Milstein’s scheme. They both consist in replacing the in-
finitesimal differentials by suitable finite differences.

We choose a sequence of event dates t0, t1, . . . , tm, and denote by Ljn ≃
Lj (tn) the approximate solution. We also set

∆jn = ∆j(tn, Ln),

Bjan = Bja(tn, Ljn),
(34)

and δtn = tn+1 − tn.
Euler’s scheme. This is the simplest, universally applicable discretization method.
Applied to LMM, it reads:

Lj,n+1 = Ljn +∆jnδtn +
∑

1≤a≤d

Bjan δZna , (35)

where δZna = Za (tn+1) − Za (tn) is the discretized Brownian motion, see Ap-
pendix. Euler’s scheme is of order of convergence 1/2 meaning that the approx-
imate solution converges in a suitable norm to the actual solution at the rate of
δt1/2, as δt ≡ max δtn → 0.
Milstein’s scheme. This is a refinement of Euler’s scheme. It is universally ap-
plicable to stochastic differential equations driven by a single Brownian motion,
but generally does not work for equations driven by several Brownian motions
(for example, it is not suitable for the SABR model). Fortunately, LMM is in the
category of models which satisfy the assumptions required for Milstein’s scheme
to work.
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In order to lighten up the notation, let us define:

Υjabn ≡ Bja(tn, Ljn)
∂Bjb(tn, Ljn)

∂Lj

. (36)

Then Milstein’s scheme for the LMM model reads:

Lj,n+1 = Ljn +
(
∆jn −

1

2

∑
1≤a≤d

Υjaan

)
δtn

+
∑

1≤a≤d

Bjan δZna +
1

2

∑
1≤a,b≤d

Υjabn δZna δZnb .
(37)

Milstein’s scheme is of order of convergence 1 meaning that the approximate solu-
tion converges in a suitable norm to the actual solution at the rate of δt, as δt → 0.

A bit of a challenge lies in handling the drift terms. Because of their complex-
ity, their calculation (at each time step) takes up to 50% of the total computation
time. A simple remedy to this problem is to freeze the drift terms at today’s values
of the forward curve (the frozen curve approximation) but this leads to noticeable
inaccuracies in pricing of longer dated options. Going one step in the low noise
expansion beyond the frozen curve approximation produces satisfying results.

5 The SABR / LMM model
The classic LMM model has a severe drawback: while it is possible to calibrate
it so that it matches at the money option prices, it generally misprices out of the
money options. The main reason for this is its specification. While the market uses
stochastic volatility models in order to price out of the money vanilla options,
LMM is incompatible with such models. In order to remedy the problem, we
describe a model that combines the key features of the LMM and SABR models.

5.1 Dynamics of the SABR / LMM model
To this end, we assume that the instantaneous volatilities Cj(t) of the forward
rates Lj are of the form

Cj(t) = σj(t)Lj(t)
βj , (38)

with stochastic volatility parameters σj(t). Furthermore, we assume that, under
the Tk+1-forward measure Qk, the full dynamics of the forward is given by the
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stochastic system:

dLk(t) = Ck(t)dWk(t),

dσk(t) = Dk(t)dZk(t),
(39)

where the diffusion coefficient of the process σk(t) is of the form

Dk(t) = αk(t)σk(t). (40)

Note that αk(t) is assumed here to be a (deterministic) function of t rather than a
constant. This extra flexibility is added in order to make sure that the model can
be calibrated to market data.

In addition, we impose the following instantaneous volatility structure:

E [dWj(t)dZk(t)] = rjk dt, (41)

and
E [dZj(t)dZk(t)] = ηjkdt. (42)

The block matrix

Π =

[
ρ r
r′ η

]
(43)

is assumed to be positive definite.
Let us now derive the dynamics of such an extended LIBOR market model

under the common forward measure Qk. According to the arbitrage pricing the-
ory, the form of the stochastic differential equations defining the dynamics of the
LIBOR forward rates depends on the choice of numeraire.

Under the Tk+1-forward measure Qk, the dynamics of the forward rate Lj(t),
j ̸= k reads:

dLj(t) = ∆j(t)dt+ Cj(t)dWj(t).

We determine the drifts ∆j(t) = ∆j(t, L(t), σ(t)) by requiring lack of arbitrage.
This is essentially the same calculation as in the derivation of the drift terms for
the classic LMM, and we can thus summarize the result as follows. In order to
streamline the notation, we let dW (t) = dWQk(t) denote the Wiener process
under the measure Qk. Then, as expected,

dLj(t) = Cj(t)

×


−
∑

j+1≤i≤k

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t), if j < k,

dWj(t), if j = k,∑
k+1≤i≤j

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t), if j > k .

(44)
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Similarly, under the spot measure, the SABR / LMM dynamics reads:

dLj(t) = Cj(t)
( ∑

γ(t)≤i≤j

ρjiδiCi(t)

1 + δiFi(t)
dt+ dWj(t)

)
. (45)

Let us now compute the drift term Γj(t) = Γj(t, L(t), σ(t)) for the dynamics
of σj(t), j ̸= k, under Qk,

dσj(t) = Γj(t)dt+Dj(t)dZj(t).

Let us first assume that j < k. The numeraires for the measures Qj and Qk are
the prices P (t, Tj+1) and P (t, Tk+1) of the zero coupon bonds maturing at Tj+1

and Tk+1, respectively. Since the drift of Lj(t) under Qj is zero, formula (26) of
Lecture 2 yields:

Γj(t) =
d

dt

[
σj, log

P ( · , Tj+1)

P ( · , Tk+1)

]
(t)

= − d

dt

[
σj, log

∏
j+1≤i≤k

(1 + δiFi)
]
(t)

= −
∑

j+1≤i≤k
dσj(t)

δidFi(t)

1 + δiFi(t)

= −Dj(t)
∑

j+1≤i≤k

rjiδiCi(t)

1 + δiFi(t)
dt.

Similarly, for j > k, we find that

Γj(t) = Dj(t)
∑

k+1≤i≤j

rjiδiCi(t)

1 + δiFi(t)
.

This leads to the following system:

dσj(t) = Dj(t)

×


−
∑

j+1≤i≤k

rjiδiCi(t)

1 + δiFi(t)
dt+ dZj(t), if j < k,

dZj(t), if j = k,∑
k+1≤i≤j

rjiδiCi(t)

1 + δiFi(t)
dt+ dZj(t), if j > k ,

(46)
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under Qk, and

dσj(t) = Dj(t)
( ∑

γ(t)≤i≤j

rjiδiDi(t)

1 + δiFi(t)
dt+ dZj(t)

)
, (47)

under the spot measure.
We now plug in the explicit choices made in (38) and (40). Under the Tk+1-

forward measure Qk, the dynamics of the full model reads:

dFj(t) = σj(t)Lj(t)
βj

×


−
∑

j+1≤i≤k

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t), if j < k,

dWj(t), if j = k,∑
k+1≤i≤j

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t), if j > k .

(48)

and

dσj(t) = αj(t)σj(t)

×


−
∑

j+1≤i≤k

rjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dZj(t), if j < k,

dZj(t), if j = k,∑
k+1≤i≤j

rjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dZj(t), if j > k ,

(49)

supplemented by the initial conditions:

Lj (0) = Lj0,

σj (0) = σj0.
(50)

Here, Lj0’s and σj0’s are the currently observed values. Similarly, under the spot
measure Q0, the dynamics is given by the stochastic system:

dLj(t) = σj(t)Lj(t)
βj

( ∑
γ(t)≤i≤j

ρjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dWj(t)

)
,

dσj(t) = αj(t)σj(t)
( ∑

γ(t)≤i≤j

rjiδiσi(t)Li(t)
βi

1 + δiFi(t)
dt+ dZj(t)

)
.

(51)
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5.2 Practicalities of the SABR / LMM model

Time does not permit us to get into any detailed discussion of the practical aspects
of SABR / LMM, and we will just highlight a number of issues. To a large degree,
in order to implement SABR / LMM one follows the steps described above in the
case of the classic LMM. The model has to be factor reduced in order to make it
practical, sensible parametrizations for the volatilities and correlations have to be
found, and a good deal of analytic work needs to be done to prepare ground for
calibration. Let us note a number of new features of the SABR / LMM model as
compare to the original models.

Not surprisingly, unlike the classic LMM model, exact closed form valuation
of caps and floors is not possible in SABR / LMM. This is simply a reflection
of the fact that SABR itself does not have have closed form solutions, and one
either relies on sensible approximations or Monte Carlo simulations. However,
the reassuring fact is that SABR / LMM allows for pricing of caps / floors which is
in principle consistent with market practice. This can be seen as follows. Assume
that we have chosen the Tk+1-forward measure Qk for pricing. A cap is a basket
of caplets spanning a number of consecutive accrual periods. Consider the caplet
spanning the period [Tj, Tj+1]. Shifting from Qk to the Tj+1-forward measure Qj ,
we note that its dynamics is that of the classic SABR model. Since instrument
valuation is invariant under change of numeraire, this shows that the price of the
caplet is consistent with its SABR price.

The correlation structure of SABR / LMM is very rich: in addition to the block
of correlations between the forwards, we have the blocks of correlations between
the volatilities, and the block of correlations between the forwards and volatilites.
Together, these correlations determine the shape of volatility smile.

SABR / LMM specifies the values of the CEV exponents βj for each bench-
mark forward Lj but it does not use explicit CEV exponents βmn for the bench-
mark forward swap rates Smn. These are internally implied by the model. There is
no simple relation between the caplet β’s and the swaption β’s. An approximation
which works well in practice is given by the following formulas:

βmn =
∑

m≤j≤n−1

amn,jβj + bmn, (52)
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where

amn,k =
2 logLk0

(n−m)2

∑
m≤j≤n−1

1

logLj0 + logLk0

,

bmn =
1

(n−m)2

∑
m≤j,k≤n−1

log ρjk
logLj0 + logLk0

.

(53)

Note that ∑
m≤j≤n−1

amn,j = 1. (54)

Consequently, the CEV power of a swaption is a weighted average of the CEV
powers of the spanning forwards plus a convexity correction. Under a perfectly
flat forward curve amn,j = 1/(n − m), for all j. The convexity correction b is
rather small. On a typical market snapshot it is of the order of magnitude 10−3,
and thus for all practical purposes it can be assumed zero.

Swaptions are the most liquid volatility instruments in the interest rates mar-
kets, and a term structure model should be calibrated to a suitable set of swaptions.
Calibration of SABR / LMM to swaptions requires understanding the relation-
ships between swaption SABR parameters (as discussed in Lecture 3), and the
caplet parameters appearing in the SABR / LMM model. An example of such a
relationship is the approximate equality (52). Other relations of this type are: rela-
tions between caplet βj-volatility processes σj(t) and the swaption βmn-volatility
processes, relations between the corresponding “volvols”, and between the swap-
tion SABR correlation coefficient and the correlation structure of SABR / LMM.
Such relationships are fairly easy to derive within the crude “frozen curve” ap-
proximation discussed above but, even then, they take some space to write down,
and a good deal of coding effort to make them work.

A Simulating Brownian motion
There exist many more of less refined methods for simulating a Wiener process;
here we describe two of them.

The random walk method is easy to implement at the expense of being rather
noisy. It represents a Wiener process as a random walk sampled at a finite set of
event dates t0 < t1 < . . . < tm:

W (t−1) = 0,

W (tn) = W (tn−1) +
√
tn − tn−1 ξn, n = 0, . . . , m,

(55)
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where t−1 = 0, and where ξn are i.i.d. random variables with ξn ∼ N (0, 1).
A good method of generating the ξn’s is to first generate a sequence of uniform
pseudorandom numbers un (using, say, the Mersenne twister algorithm), and then
set

ξn = N−1 (un) , (56)

where N−1 (x) is the inverse cumulative normal function.
The spectral decomposition method generally leads to much better perfor-

mance than the random walk method. It assures that the simulated process has
the same covariance matrix as the Wiener process W (t) sampled at t0, t1, . . . , tm.
The latter is explicitly given by:

Cij = E
[
W (ti)W (tj)

]
= min(ti, tj).

(57)

Consider the eigenvalue problem for C:

CEj = λjEj, j = 0, . . . , m, (58)

with orthonormal Ej’s. Since the covariance matrix C is positive definite, all of its
eigenvalues λj are nonnegative, and we will assume that

λ0 ≥ . . . ≥ λm ≥ 0. (59)

We will denote the n-th component of the vector Ej by Ej (tn), and consider the
random variable

W (tn) =
∑

0≤j≤m

√
λj Ej (tn) ξj, (60)

where ξj are, again, i.i.d. random variables with ξj ∼ N (0, 1). These numbers
are best calculated by applying the inverse cumulative normal function to a se-
quence of Sobol numbers. Alternatively, one could use a sequence of uniform
pseudorandom numbers; this, however, leads to a significantly higher sampling
variance. Then, for each n = 0, . . . , m, W (tn) ∼ N (0, tn), and

E
[
W (ti)W (tj)

]
=

∑
0≤k≤0

λk Ek(ti)Ek(tj)

= Cij.
(61)

We can thus regard W (tn) a realization of the discretized Wiener process3. In
practice, we may want to use only a certain portion of the spectral representation

3This realization of the discretized Wiener process is related to the well known Karhounen-
Loeve expansion of the (continuous time) Wiener process.
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(60) by truncating it at some p < m. This eliminates the high frequencies from
W (tn), and lowers the sampling variance. The price for this may be systemati-
cally lower accuracy.
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