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1 Introduction
Fixed income securities come in a great variety of shapes and sizes. They have
often built in various termination options which allow a counterparty to exit the
transaction during a contractually specified period of time. From the point of
view of interest rates these exit options may be (i) endogenous, driven by rates
only, or (ii) exogenous, when, in addition to interest rates, they are driven by other
risk factors such as credit or prepayment events. The presence of termination
options in an instrument has an impact on its valuation and risk profile. In this
lecture, we focus on pure interest rate options whose modeling does not require
methodologies going beyond interest rate models.

As an example, an early termination clause may allow a bond issuer to early
repay the principal and cancel all future coupon payments (such bonds are called
callable), or it may allow the bond holder to request early repayment of the princi-
pal (such bonds are called putable) and forfeit the future coupon stream. Typically,
these options are American style, i.e. they allow for multiple exercise dates. Such
pure interest rate options are complicated enough to merit detailed understanding,
and this is the subject of this chapter.

LIBOR market model is a powerful interest rate modeling methodology, and
its practical value lies in the suitability to reliably model complex interest rate
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options. We will cover here a limited number of topics only, and focus the dis-
cussion on the valuation of Bermudan swaptions by means of LMM style Monte
Carlo simulations.

2 Bermudan swaptions
Synthetic instruments corresponding to these embedded termination options trade
in financial markets in a variety of forms.

A callable swap is a fixed for LIBOR swap which gives the fixed rate payer
a periodic right to cancel the remaining cash flows on the swap (“call the swap”).
Typically, the cancelation dates follow an initial lockout period, when no calls
are allowed. A typical example is a 10 year swap, which can be called every 6
months, two business days preceding a fixed rate roll date, following a 2 year
lockout period. In the market lingo, this swap is called a 10 no call 2 swap.

As in the case of vanilla swaps discussed in Lecture 1, callable swaps are often
created on the back of bond issuance. Consider the situation depicted in Figure
1, where an issuer issues a callable bond which is purchased by an investor. In
addition to paying a periodic coupon and the principal at the bond’s maturity, the
issuer has the right to call the bond following an initial lockout period. Because of
the ability to finance themselves at a favorable spread to LIBOR and unwillingness
to manage option risk, the issuer enters into a callable swap with an interest rate
derivatives dealer. The dealer assumes the right to call the swap at the expense
of paying an above the market fixed rate on the swap. Should the dealer call the
swap, the issuer notifies the investor about it, and calls the bond.

Investor Issuer Dealer

Principal

Coupon, principal

Call the bond

LIBOR + spread

Coupon

Call the swap

Figure 1: Swapping a callable bond

A putable swap is a similar structure on which the fixed rate receiver has a
periodic right to cancel the swap, following an initial lockout period. In exchange
for that right, the fixed rate on the swap is below the market swap rate for the term
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of the swap. For example, on a 10 no put 1 swap, the fixed rate receiver can cancel
the swap every quarter, two business days prior the fixed leg roll dates.

Multiple exercise swap options are often referred to as Bermudan swaptions.
Unlike American options in the equity markets, a Bermudan swaption is a multi-
underlying derivative. A Bermudan swaption can be exercised periodically, say
semiannually or quarterly, or at any time excluding an initial lockout period. For
example, a semiannual 5.50% 1 year Bermudan receiver swaption into a 5 year
swap (a “1 into 5” Bermudan receiver) gives the holder the right to receive 5.50%
on a 5 year swap starting in 1 year, or on a 4.5 year swap starting 1.5 year from
now, or ..., or on a 6 month swap starting 5.5 year from now. Note that the total
maturity of the transaction is 1 + 5 = 6 years. More precisely, the option holder
has the right to exercise the option on the 1 year anniversary of today (with the
usual business day convention adjustments) and every six months thereafter, in
which case they enter into a receiver swap starting two business days later. The
maturity of the swap plus the number of years past the first exercise is equal to 5
years. Similarly, a quarterly 5.50% “5 into 10” Bermudan payer swaption gives
the holder the right to pay 5.50% on a 10 year swap starting in 5 year or on a 93

4

year swap starting 51
4

years from now, or ... . Bermudan swaptions trade over the
counter.

It is convenient to think about a callable swap as a basket consisting of a vanilla
swap and a Bermudan swaption. Consider, for example a 10 no call 1 callable
swap paying 3%. From the point of view of the fixed rate receiver, this is a long
position in a 10 year swap paying 3%, and a short position in a 1 into 9 Bermudan
receiver swaption struck at 3%. Calling the swap by the fixed rate payer is equiv-
alent to exercising that swaption. For example, upon exercise two years into the
swap, the fixed rate payer enters into a swap on which they receives a fixed rate of
3% for the the remaining 8 years thus effectively canceling the original swap.

Oftentimes, exotic swaps are structured as callable swaps. As an example,
consider a LIBOR range accrual. If, in addition, the coupon payer has a periodic
right (following, as usual, a lockout period) to call the swap, this structure is called
a callable range accrual. In analogy to a callable swap, a callable range accrual is
a basket of a range accrual and a Bermudan option to enter into the trade offsetting
the reminder of the underlying range accrual. This option is a complicated multi-
underlying option where each of the underlyings is itself a basket of digital options
on LIBOR.
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3 Valuation of American options
Monte Carlo based valuation of options with multiple exercises poses more of a
challenge. The reason is the apparent incompatibility between the forward mov-
ing process of path generation and the backward moving optimal exercise decision
process. In recent years, a number of efficient approximate Monte Carlo algo-
rithms for pricing American options have been proposed, notably by Longstaff
and Schwartz [3]. The method we discuss here is a version of the Longstaff -
Schwartz methodology.

3.1 Principle of optimality and backward induction
We consider an American option which can be exercised on a discrete set of dates.
Specifically, let T0 = 0 denote the valuation date, and let T1 < T2 < . . . < Tn,
where T1 > 0, denote the possible exercise dates. Upon exercise at time Tj the
option seller delivers the underlying instrument. For example, in the case of a 1
into 10 Bermudan receiver swaption struck at K, the underlying instrument is the
swap receiving coupon K which starts at Tj and matures in 11 years. Let gj(Tj)
denote the payoff at the exercise time Tj .

The act of exercising the American option is modeled by a stopping time1 τ ,
a random variable which represents an early exercise policy for the option. For
convenience, we shall work under the terminal forward measure which will be
denoted by Q. Today’s value V0 = V (T0) of the option is the maximum over all
possible stopping times:

V0 = max
τ∈T (T1,...,Tn)

EQ
[
P (0, τ) g(τ)

]
, (1)

where T (T1, . . . , Tn) denotes the set of stopping times taking values in the set
{T1, . . . , Tn}, and where P (t, T ) is the discount factor. We seek to determine the
optimal stopping time τ∗ (or, the optimal exercise policy) such that

V0 = EQ
[
P (0, τ∗) g(τ∗)

]
. (2)

In order to find the optimal exercise policy, and thus the value of an American
option, we shall invoke Bellman’s principle of optimality which reads (in his own

1Recall that a stopping time is a random variable τ such that {τ ≤ t} ∈ Ft for all t. In our
context, this means that the exercise decision at time t is made solely based on the information
prior to t.
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words): An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision. Bellman’s principle leads
us thus to require that, given a state of the world, the value Vj = V (Tj) of the
option at any exercise date Tj , j = 1, . . . , n− 1, satisfies

Vj = max
τ∈T (Tj+1,...,Tn)

Ej[P (Tj, τ) g(τ)]. (3)

where Ej[ · ] is a shorthand for EQ[ · |FTj ] Clearly, we have

Vn = En[g(Tn)]. (4)

This can be expressed algorithmically in terms of backward induction. At each
future scenario, and at each future time the option holder compares the value of
the immediate exercise versus the remaining value of the option. Given a future
scenario, he thus starts at the latest possible exercise date, where the value of
the option is simply equal to its intrinsic value (as there are no further exercise
opportunities left). He then moves backward in time, computes the current value
of the remaining option, and compares it to its intrinsic value. He continues this
processes until reaching the first possible exercise date. The earliest exercise date,
along the scenario, at which the intrinsic value exceeds the continuation value
of the option is the optimal exercise date. He repeats this analysis for all future
scenarios.

This algorithm is easy to implement for models which allow for recombining
tree implementation, such as the Hull - White model. LMM does not allow for a
natural implementation based on recombining trees, and thus all valuations have
to be performed via Monte Carlo simulations. Because backward induction is an
essential part of the valuation logic, calculating prices of American options by
means of naive Monte Carlo simulations is inefficient. The key reason why back-
ward induction is difficult to combine with Monte Carlo simulations lies in the fact
that it is hard to estimate conditional expected values given a future scenario. Sup-
pose that initially we have generated N Monte Carlo scenarios. At each decision
point along a scenario, one would have to generate a new set of N Monte Carlo
paths in order to calculate the continuation value of the option and the value of the
immediate exercise. This process would result in a number of paths that grows
fast in the number of exercises and prove computationally extremely expensive.
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3.2 Snell envelope
For simplicity of exposition we assume that our model is a one factor model driven
by the Wiener process W (s), such as the 1 factor LMM model. Having d factors
is merely a notational complication which would obfuscate the main ideas of the
method. We introduce the notation:

Xj =
W (Tj)√

Tj
, j = 1, . . . , n,

so that each Xj is a standard normal random variable,

Xj ∼ N (0, 1) , (5)

and we let X1:j denote the vector:

X1:j = (X1, . . . , Xj). (6)

Finally, we denote by gj = g(Tj) the payoff function at time Tj . Note that gj is
a function of the path X1:j and, when appropriate, we will make this fact explicit
by writing, somewhat inconsistently, gj = gj(X1:j).

We now proceed in a number of steps. The first step is to construct an auxiliary
process Sj = Sj(X1:j), called the Snell envelope of gj . We begin with j = n, and
set

Sn(X1:n) = gn(X1:n). (7)

As stated before, the time Tn value of the option is equal to the value of the
immediate payoff, as no further opportunities to exercise exist, and thus Vn = Sn.
On the other hand, for j = n − 1, . . . , 1, the value of the option is the greater of
the immediate payoff and the continuation value Cj = Cj(X1:j) of the option. We
set

Sj(X1:j) = max(gj(X1:j), Cj(X1:j)). (8)

The option should be exercised if the maximum in (8) equals gj; otherwise the
option does not get exercised. Clearly, it is optimal to exercise at the earliest
opportunity when max(gj, Cj) = gj . Later we will utilize this observation in
order to relate Sj to Vj .

The continuation value of the option at time Tj is the current (i.e. time Tj)
value of the remaining options conditioned on the current state of the world. In
mathematical terms,

Cj(X1:j) =

{
Pj,j+1 Ej[Sj+1], for j = 0, . . . , n− 1,

0, for j = n,
(9)
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where Pj,k = P (Tj, Tk) is the discount factor from Tj to Tk, j < k. The value S0

of the Snell envelope on the value date is

S0 = P0,1 E[S1]

= C0.
(10)

The Snell envelope has the property that Sj ≥ gj , for all j. In fact, one can
show that Sj is the smallest supermartingale with this property2. Note also that
Sj is not, in general, equal to Vj , as it does not encode the information when it is
optimal to exercise the option.

The key to implementation of the above procedure is the ability to compute,
at each exercise date Tj and for each scenario X1:j , (i) the value of the imme-
diate payoff of the option gj(X1:j), and (ii) the continuation value of the option
Cj(X1:j). In the following two sections we present a methodology for such com-
putations.

3.3 Conditional expected values
Consider a function f(X1:j). Our goal is to compute algorithmically the condi-
tional expected value Ei[f(X1:j)], where i < j.

Let us first take i = j − 1. In order to compute the conditional expectation,
we proceed as follows.
Step 1. We write for j = 1, . . . , n,

W (Tj) = W (Tj−1) +
(
W (Tj)−W (Tj−1)

)
,

and note that this identity implies√
Tj Xj =

√
Tj−1Xj−1 +

√
Tj − Tj−1 ξj ,

with ξj ∼ N(0, 1) independent of Xj−1. Dividing by
√
Tj , we obtain the decom-

position
Xj =

√
αj Xj−1 +

√
1− αj ξj, with ξj ∼ N (0, 1) , (11)

where the innovation ξj is independent of Xj−1, and αj is defined as the ratio of
the consecutive exercise times,

αj =
Tj−1
Tj

. (12)

2Recall that a supermartingale is a process X such that X(s) ≥ E[X(t)|Fs], for s ≤ t.
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This decomposition is key in the following calculations.
Step 2. Viewing f(X1:j) as a function of Xj , we can, according to (42) - (43),
represent it as a series of Hermite polynomials,

f(X1:j) =
∑

0≤k<∞

ck(X1:j−1)hk(Xj). (13)

The Fourier coefficients ck are calculated by

ck(X1:j−1) =

∫ ∞
−∞

f(X1:j)hk(Xj)dµ(Xj). (14)

Step 3. Using the decomposition (11) and the conditioning rule (47) for Hermite
polynomials we find that

Ej−1[hk(Xj)] = Ej−1
[
hk(
√
αj Xj−1 +

√
1− αj ξj)

]
= α

k/2
j hk(Xj−1).

Applying this identity to the expansion (13), we finally obtain the following result:

Ej−1[f(X1:j)] =
∑

0≤k<∞

α
k/2
j ck(X1:j−1) hk(Xj−1). (15)

This formula allows us, in principle, to compute all relevant conditional expecta-
tions in an algorithmic manner.

Let us now turn to the he general case of i < j. Since taking conditional
expected values can be nested,

Ei[f(X1:j)] = Ei[. . .Ej−2[Ej−1[f(X1:j)]] . . .], (16)

Ei[f(X1:j)] can be computed in j − i iterations of the steps described above.

3.4 Monte Carlo simulations and estimation
The problem with the above calculation is, of course, that it requires taking com-
plicated integrals and summing infinite series. A good numerical methodology is
needed in order to make the calculation practical and accurate. Assume that we
have generated N Monte Carlo paths X i

1:n, i = 1, . . . , n, representing samples
from the underlying market dynamics.
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Numerical implementation of the methodology above is done in the three fol-
lowing steps.
1. Truncation. The expansions with respect to the Hermite polynomials are trun-
cated at some finite order κ, i.e.:

f(X1:j) ≈
∑

0≤k≤κ

ck(X1:j−1)hk(Xj). (17)

The conditional expected value has thus the truncated form:

Ej−1[f(X1:j)] ≈
∑

0≤k≤κ

α
k/2
j ck(X1:j−1) hk(Xj−1). (18)

Remarkably, relatively low values of κ, κ ∼ 5, lead to good numerical results.
2. Estimation. The Fourier coefficients ck are replaced by their estimates ĉk. The
naive Monte Carlo estimate, i.e.:

ĉk ≈
1

N

∑
1≤i≤N

f(X i
1:j)hk(X

i
j), (19)

does not perform well, and should not be used. Instead, we shall choose the vector
ĉ of coefficients ĉk so as to minimize the square error:

ĉ = arg min
c0,...,cκ

∑
1≤i≤N

(
f(X i

1:j)−
∑

0≤k≤κ

ck hk(X
i
j)
)2
.

This amounts to regressing the values the function f takes on the Monte Carlo
paths X i

1:j on the first few Hermite polynomials evaluated on X i
j . The Fourier

coefficients are thus estimated as regression coefficients, and are explicitly given
by

ĉ = G−1v. (20)

Here G is a κ× κ matrix whose components are:

Gkl =
1

N

∑
1≤i≤N

hk(X
i
j) hl(X

i
j), for k, l = 1, . . . , κ, (21)

and v is a vector of dimension κ with the components:

vk =
1

N

∑
1≤i≤N

f(X i
1:j) hk(X

i
j), for k = 1, . . . , κ. (22)
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In the limit as N →∞, G tends to the identity matrix, and so (20) and (19) coin-
cide in that limit. We thus arrive at the following estimated conditional expected
value Êj−1[f(X1:j)]:

Êj−1[f(X1:j)] =
∑

0≤k≤κ

α
k/2
j ĉk hk(Xj−1). (23)

It is obtained from (19) by replacing the c′ks with their estimated values ĉ′ks.
3. Acceleration. From the performance point of view, is worthwhile to try to
accelerate the convergence of the series (17). Payoff functions of options are, typ-
ically, not smooth. This causes slowdowns of the rate of convergence at the points
where the payoff has kinks (as in the usual calls or puts) or discontinuities (as
in digital options). This behavior resembles somewhat of the Gibbs phenomenon
encountered in the practice (and theory) of Fourier series, and can be remedied
by using an accelerating filter. This step is really optional and we leave out the
technical details.

3.5 Optimal exercise
Let us now go back to the issue of numerically determining the optimal exercise
policy for an American option. Suppose that we are given N Monte Carlo paths
X i

1:n, i = 1, . . . , N , simulating the underlying dynamics. We shall proceed in two
steps.
Step 1. Assume for simplicity that the immediate payoff of the option is easy to
compute, i.e. it does not require calculating expected values. For example, for
a Bermudan swaption, the underlying instrument is a swap which can be priced
based on the multicurve built off the data available at Tj . If all the gj(X i

1:j) are
known, the first step consists of computing the Snell envelope only.

We proceed inductively. Start with j = n, and set

Cn(X i
1:n) = 0,

Sn(X i
1:n) = gn(X i

1:n).
(24)

Assume that we have already computed Cj(X i
1:j) and Sj(X i

1:j), for some 1 < j <
n, and all i = 1, . . . , N . Then, we set

Cj−1(X
i
1:j−1) = Pj−1,j Êj−1[Sj(X1:j)],

Sj−1(X
i
1:j−1) = max(gj(X

i
1:j−1), Cj(X

i
1:j−1)),

(25)
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where Pj−1,j is the relative discount factor. We continue this process until we
reach j = 1.

If you do not want to get lost in the technical details that follow, you may want,
on the first reading, to skip directly to Step 2.

On the other hand, if the underlying instrument itself is a contingent claim, its
price is a conditional expected value. In this case, the first step requires computing
the payoffs gj(X i

1:j) along with the continuation values. In order to prepare for it,
we first pre-compute all pj(X i

1:n), for j = 1, . . . , n, i = 1, . . . , N , where pj(X i
1:n)

denotes the present value at Tj of the cash flows of the underlying instrument along
the Monte Carlo path X i

1:n. The payoff gj(X i
1:j) is then equal to the conditional

expected value of pj(X i
1:n) given X i

1:j , namely gj(X i
1:j) = Ej[pj(X

i
1:n)]. Using

the nesting property (16) of conditional expectation, we write this as

gj(X
i
1:j) = Ej[Ej+1[. . .En[pj(X

i
1:n)] . . .]], (26)

and calculate gj(X i
1:j) in a sequence of steps starting at the last exercise date.

We thus arrive at the following inductive procedure. Start with j = n, and set

gl(X
i
1:n) = pl(X

i
1:n), for l = 1, . . . , n,

Cn(X i
1:n) = 0,

Sn(X i
1:n) = gn(X i

1:n).

(27)

Assume that we have computed p1(X i
1:j), . . . , pj(X

i
1:j), Cj(X i

1:j), and Sj(X i
1:j),

for some 1 < j < n, and all i = 1, . . . , N . Then, we set

pl(X
i
1:j−1) = Êj−1[pl(X

i
1:j)], for l = 1, . . . , j − 1,

gj−1(X
i
1:j−1) = pj−1(X

i
1:j−1),

Cj−1(X
i
1:j−1) = Pj−1,j Êj−1[Sj(X

i
1:j)],

Sj−1(X
i
1:j−1) = max(gj(X

i
1:j−1), Cj(X

i
1:j−1)),

(28)

where, as before, Pj−1,j is the relative discount factor. We continue this process
until we reach j = 1.

Having estimated the conditional expected values (and thus calculated the con-
secutive continuation values), we construct the optimal stopping time as follows.
Step 2. Let now X i = (X i

0, X
i
1, . . . , X

i
n), i = 1, . . . , N , be a Monte Carlo path.

For each i, we initialize the value of the stopping time to the last possible option
expiration, τ∗(X i) = Tn. As we move backward along X i, we update the value
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of τ∗(X i) according to the following rule

for j = n to j = 1

if gj(X i
1:j) ≥ Cj(X

i
1:j)

then τ∗(X i
1:n) = Tj

(29)

In other words,

τ∗(X
i
1:n) = min

{
j : Sj(X

i
1:j) = gj(X

i
1:j)
}
. (30)

The value of the option is the arithmetic mean over all Monte Carlo paths:

V0 ≈
1

N

∑
1≤i≤N

P0,j∗ gj∗(X i
1:j∗), (31)

where j∗ = j∗(X
i
1:n) is the index j for which τ∗(X i

1:n) = Tj . This formula repre-
sents a Monte Carlo approximation to the valuation formula (2).

A Hermite polynomials and their properties

A.1 Classical Hermite polynomials
The classical Hermite polynomials Hn (x) , n = 0, 1, . . ., are defined by means
of the expansion:

Ψ (t, x) =
∑
n≥0

tn

n!
Hn (x) , (32)

where Ψ (t, x), the generating function, is given by

Ψ (t, x) = e−t
2+2tx. (33)

This expansion can be viewed as the Taylor expansion of the function t→ Ψ (t, x)
around t = 0, and it thus implies that

Hn (x) =
dn

dtn
e−t

2+2tx
∣∣
t=0

= (−1)n ex
2 dn

dxn
e−x

2

.

(34)
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Explicitly, the first few Hermite polynomials are:

H0 (x) = 1,

H1 (x) = 2x,

H2 (x) = 4x2 − 2,

H3 (x) = 8x3 − 12x,

...

(35)

Simple manipulations using formula (34) show that the Hermite polynomials sat-
isfy the following recurrence relations:

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) ,

H ′n (x) = 2nHn−1 (x) .
(36)

These in turn lead to the following differential equation obeyed by Hn (x):

H ′′n (x)− 2xH ′n (x) + 2nHn (x) = 0. (37)

A.2 Normalized Hermite polynomials
It will be convenient for our purposes to use the normalized Hermite polynomials,
denoted here by hn (x), n = 0, 1, . . ., which are defined as follows:

hn(x) =
1

2n/2
√
n!
Hn

( x√
2

)
. (38)

The reader will verify that the recurrence relations (36) restated in terms of the
normalized Hermite polynomials read:

√
n+ 1 hn+1 (x) = x hn (x)−

√
n hn−1 (x)

h′n (x) =
√
n hn−1 (x) .

(39)

From these relations, one verifies readily that the normalized Hermite polynomials
form an orthonormal system,∫ ∞

−∞
hm (x)hn (x) dµ (x) = δmn, (40)

with respect to the Gaussian measure

dµ (x) =
1√
2π

e−x
2/2 dx. (41)
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In fact, they form an orthonormal basis for the Hilbert space L2(R, dµ) of func-
tions on the real line which are square integrable with respect to the Gaussian
measure (41). Namely, any function f ∈ L2(R, dµ) can be expressed as a conver-
gent series,

f(x) =
∑
n≥0

an hn(x), (42)

where the Fourier coefficient an is given by:

an =

∫ ∞
−∞

hn(x)f(x)dµ(x). (43)

A.3 The addition theorem

A useful property of the Hermite polynomials is the addition theorem. For any
0 ≤ α ≤ 1, the following identity holds

Hn

(
α1/2x+ (1− α)1/2y

)
=
∑

0≤k≤n

(
n

k

)
αk/2 (1− α)(n−k)/2Hk (x)Hn−k (y) .

(44)

The proof is an immediate consequence of the following identity for the generat-
ing function (33):

Ψ
(
t, α1/2x+ (1− α)1/2y

)
= Ψ(α1/2 t, x)Ψ((1− α)1/2 t, y). (45)

This identity is easy to establish by manipulating the properties of the exponential
function. The normalized version of (44) reads:

hn
(
α1/2x+ (1− α)1/2y

)
=
∑

0≤k≤n

√(
n

k

)
αk/2(1− α)(n−k)/2hk(x)hn−k(y).

(46)

A consequence of the identity above is the following conditioning rule:∫ ∞
−∞

hn
(
α1/2x+ (1− α)1/2y

)
dµ(y) = αn/2hn(x). (47)
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