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Beyond local volatility models

In general, local volatility models do not fit well the interest rate options prices.

Among the issues is the “wing effect” exhibited by the implied volatilities of some
maturities (especially short dated) and tenors which is not captured by these
models: the implied volatilities tend to rise for high strikes forming the familiar
“smile” shape.

A way to address these issues is stochastic volatility. In this approach, a suitable
volatility parameter is assumed to follow a stochastic process.

The dynamics of the SABR model is given by:

dF (t) = σ (t) C (F (t)) dW (t) ,

dσ (t) = ασ (t) dZ (t) .
(1)

Here F is the forward rate which, depending on context, may denote a LIBOR
forward, a forward swap rate, or a forward bond yield1, and σ is the volatility
parameter.

1
The SABR model specification is also used in markets other than interest rate market, and thus F may denote

e.g. a crude oil forward.

A. Lesniewski Interest rate volatility



Dynamics of SABR

The process is driven by two Brownian motions, W (t) and Z (t), with

E [dW (t) dZ (t)] = ρdt , (2)

where the correlation ρ is assumed constant.

The diffusion coefficient C (F ) is assumed to be of the CEV type:

C (F ) = Fβ . (3)

The process σ (t) is the stochastic component of the volatility of F (t), and α is
the volatility of σ (t) (vol of vol), which is also assumed to be constant.

We supplement the dynamics with the initial condition

F (0) = F0,

σ (0) = σ0,
(4)

where F0 is the current value of the forward, and σ0 is the current value of the
volatility parameter.

Note that the dynamics (1) requires a boundary condition at F = 0. One usually
imposes the absorbing (Dirichlet) boundary condition.
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Dynamics of SABR

It is conceptually and practically important that the process F (t) generated by
the SABR dynamics is a martingale.

This issue is settled by a theorem proved by Jourdain [2]:
F (t) is a martingale if β < 1 (it can be negative). If β = 1, F (t) is a
martingale only for ρ < 0.
Otherwise, F (t) is not a martingale.
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Monte Carlo simulation of SABR

Despite is formal simplicity, the probability distribution associated with the SABR
model is fairly complicated and can be accessed exactly only through Monte
Carlo simulations.

In order to assure that the stochastic volatility σ is positive, we rewrite the
dynamics in terms of X = logσ:

dF (t) = exp(X (t)) F (t)β dW (t) ,

dX (t) = −
1
2
α2dt + αdZ (t) .

(5)

This leads to the following log-Euler scheme is based on the following
discretization of the SABR dynamics

Fk+1 =
(
Fk + σk Fβk ∆Wk

)+
,

σk+1 = σk exp(α∆Zk − δα2/2),
(6)

where δ is the time step, and ∆Wk ,∆Wk ∼ N(0, δ) are normal variates with
variance δ and correlation coefficient ρ.
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Monte Carlo simulation of SABR

Note that the presence of (·)+ = max(·, 0) imposes absorbing boundary
condition at zero forward.

The dynamics (5) is incompatible with the Milstein scheme: second order (in
Brownian motion increments) discretization contains “Levy area” terms of the
form

∫ t+δ
t dW (s) dZ (s), which are hard to simulate.

However, the following quasi Milstein scheme:

Fk+1 =
(
Fk + σk Fβk ∆Wk +

β

2
σ2

k F 2β−1
k (∆W 2

k − δ)
)+
,

σk+1 = σk exp(α∆Zk − δα2/2),

(7)

converges faster than the Euler scheme discussed above.

The price of a European payer swaption is thus given by

Ppay(T ,K ,F0) = A0
1
N

∑
1≤j≤N

(
F (j)

n − K
)+
, (8)

where A0 denotes the annuity function, and N is the number of Monte Carlo
paths.
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SABR PDE

Because of their relatively slow performance, Monte Carlo solutions are not
always practical.

A large portfolio of options at a broker / dealer, asset manager, or central
counterparty requires frequent revaluations in order to:

recalibrate the model, as the market evolves,
update the portfolio risk metrics

These calculations require multiple applications of the pricing model.

As a result, it is desirable to have a closed form solution of the model or at least
a good analytic approximate solution.

This requires a more detailed analysis of the model by means of asymptotic
methods [5], [6].

The use of asymtotic techniques in finance was pioneered in [4].
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SABR PDE

The starting point of such an analysis is the terminal value problem for the
backward Kolmogorov equation associated with the SABR process (1).

We consider an “Arrow - Debreu security” with a singular payoff at expiration
given by the Dirac function δ(F (T )− F )δ(σ (T )− Σ).

Its time t price G = G(t , x , y ; T ,F ,Σ) is called Green’s function (where x
corresponds to the forward and y corresponds to the volatility parameter), and is
the solution to the following terminal value problem:

∂

∂t
G +

1
2

y2
(

x2β ∂2

∂x2
+ 2αρxβ

∂2

∂x∂y
+ α2 ∂2

∂y2

)
G = 0,

G(T , x , y ; T ,F ,Σ) = δ(x − F )δ(y − Σ).

(9)

Here, F and Σ are the terminal values of the forward and volatility parameter at
option expiration T .
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SABR PDE

The time t < T price of a (call) option is then given by

Pcall(T ,K ,F0, σ) = N (0)

∫ ∞
0

∫ ∞
0

(F − K )+G(T − t ,K , σ; F ,Σ)dΣdF . (10)

Note, in particular, that the terminal values of Σ are “integrated out”.

From a numerical perspective, this expresiion is rather cumbersome: it requires
solving the three dimensional PDE (9) and then calculating the double integral
integral (10).

Except for the special case of β = 0, no explicit solution to this model is known,
and even in this case the explicit solution is to complex to be of practical use.

We now outline how a practical, analytic solution can be constructed by means
of asymptotic analysis.
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Normal SABR model

We first consider the normal SABR model [6], which is given by the following
choice of parameters: β = 0 and ρ = 0.

Equation (9) takes then the following form:

∂

∂t
G +

1
2

y2
( ∂2

∂x2
+ α2 ∂2

∂y2

)
G = 0,

G(T , x , y ; T ,F ,Σ) = δ(x − F )δ(y − Σ).

(11)

For convenience, we change variables τ = T − t and rewrite the above terminal
value problem as the initial value problem:

∂

∂τ
G =

1
2

y2
( ∂2

∂x2
+ α2 ∂2

∂y2

)
G,

G(0, x , y ; 0,F ,Σ) = δ(x − F )δ(y − Σ).

(12)
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Normal SABR model

This problem has an explicit solution given by McKean’s formula:

G(τ, x , y ; F ,Σ) =
e−α

2τ/8
√

2
(2πτα2)3/2

∫ ∞
d

ue−u2/2α2τα2

√
cosh u − cosh d

du. (13)

Here, d = d(x , y ,K ,Σ) is the “geodesic distance” function given by

cosh d(x , y ,F ,Σ) = 1 +
α2(x − F )2 + (y − Σ)2

2yΣ
. (14)

In order to proceed, we assume that the parameter ε = α2T is small. This will be
the basis of the approximations that we make in the following. As it happens, this
parameter is typically small for all swaptions and the approximate solution is
quite accurate. A typical range of values of α is 0.2 / α / 2.2

Also significantly, this solution is very easy to implement in computer code, and it
lends itself well to risk management of large portfolios of options in real time.

2
On a few days at the height of the recent financial crisis the value of α corresponding to 1 month into 1 year

swaptions was as high as 4.7.
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Normal SABR model

We substitute u =
√

4α2τw + d2 in the integral (13) in order to shift the lower
limit of integration to 0. We then expand the integrand in a Taylor series in α2τ .

As a consequence, we obtain the following approximation. For τ → 0,

G(τ, x , y ; F ,Σ) =
1

2πα2τ

√
d

sinh d
exp

(
−

d2

2πτα2

)(
1 + O(α2τ)

)
.

Next, we have to carry out the integration over the terminal values of Σ.

To this end, we will use the steepest descent method: Assume that φ (x) is
positive and has a unique minimum x0 in (0,∞) with φ′′(x0) > 0. Then, as
ε→ 0,

∫ ∞
0

f (x)e−φ(x)/ε du =

√
2πε
φ′′(x0)

e−φ(x0)/εf (x0) + O(ε). (15)
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Normal SABR model

Specifically, the marginal density for the forward x is thus given by:

g(τ, x , y ; F ) =

∫ ∞
0

G(τ, x , y ; F ,Σ)dΣ

=
1

2πα2τ

∫ ∞
0

√
d

sinh d
exp

(
−

d2

2πτα2

)
dΣ + O(α2τ).

We evaluate the integral above by means of the steepest descent method (15).

The exponent φ(Σ) = 1
2 d(x , y ,F ,Σ)2 has a unique minimum at Σ0 given by

Σ0 = y
√
ζ2 + 1 ,

where ζ = α(x − F )/y . Σ0 is the “most likely value” of Σ, and thus it is the
leading contribution to the observed implied volatility.
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Normal SABR model

Let D(ζ) denote the value of d(x , y ,K ,Σ) with Σ = Σ0. Explicitly,

D (ζ) = log
(
I(ζ) + ζ

)
. (16)

where we use the notation:
I(ζ) =

√
ζ2 + 1. (17)

Then, we find that the terminal probability distribution is given, to within O(ε), by

g(τ, x , y ; F ) =
1
√

2πτ

1
yI(ζ)3/2

exp
(
−

D2

2τα2

)(
1 + O(ε)

)
. (18)

Comparing this expression with the probability density of the normal distribution
we see that

σn(T ,K ,F0, σ0, α, β, ρ) = α
F0 − K

D
(
α(F0 − K )/σ0

)(1 + O(ε)
)
. (19)

This is the asymptotic expression for the implied normal volatility in the case of
the normal SABR model.
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Terminal probability distribution in the full SABR model

The good news is that the full SABR model can essentially (up to some minor
headaches) be mapped onto normal SABR

This is accomplished by means of the following transformation of variables:

x ′ =
1√

1− ρ2

(∫ x

0

dz
C (z)

− ρ
y
α

)
,

y ′ = y .
(20)

This leads to the following expression, generalizing (15), for the terminal
probability distribution:

g(τ, x , y ; F ) =
1
√

2πτ

1
yC(F )I(ζ)3/2

exp
(
−

D(ζ)2

2τα2

)
×
(

1 +
yC′ (x) D(ζ)

2α
√

1− ρ2 I(ζ)
+ O(ε)

)
.

(21)
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Terminal probability distribution in the full SABR model

Here,

ζ =
α

y

∫ x

F

dz
C (z)

=
α

y(1− β)
(x1−β − F 1−β).

(22)

The distance function D(ζ) is given by:

D(ζ) = log
( I(ζ) + ζ − ρ

1− ρ

)
, (23)

where
I(ζ) =

√
1− 2ρζ + ζ2. (24)

These expressions reduce to the corresponding expressions that we derived for
the normal SABR model when β = 0, ρ = 0.

The most detailed analysis of the terminal probability distribution (up to the
second order in ε) is carried out in [8].
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Implied volatility in the full SABR model

A careful analysis shows that the implied normal volatility in full SABR model is
approximately given by:

σn(T ,K ,F0, σ0, α, β, ρ) = α
F0 − K
D(ζ)

{
1 +

[2γ2 − γ2
1

24

×
(σ0C(Fmid)

α

)2
+
ργ1

4
σ0C(Fmid)

α
+

2− 3ρ2

24

]
ε+ . . .

}
.

(25)

Here, Fmid denotes a conveniently chosen midpoint between F0 and K (such as
(F0 + K ) /2), and

γ1 =
C′ (Fmid)

C (Fmid)
,

γ2 =
C′′ (Fmid)

C (Fmid)
.
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Implied volatility in the full SABR model

A similar asymptotic formula exists for the implied lognormal volatility σln.
Namely,

σln(T ,K ,F0, σ0, α, β, ρ) = α
log(F0/K )

D(ζ)

{
1 +

[2γ2 − γ2
1 + 1/F 2

mid

24

×
(σ0C(Fmid)

α

)2
+
ργ1

4
σ0C(Fmid)

α
+

2− 3ρ2

24

]
ε+ . . .

}
.

(26)
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Calibration of SABR

For each option maturity we need to fix four model parameters: σ0, α, β, ρ. We
choose them so that the model matches closely the market implied vols for
several different strikes.

It turns out that there is a bit of redundancy between the parameters β and ρ. As
a result, one usually calibrates the model by fixing β.

A popular choice is β = 0.5. This works quite well under “normal” conditions.

In times of distress, such as during the crisis 2007 - 2009, the choice of β = 0.5
occasionally led to extreme calibrations of the correlation parameters (ρ = ±1).
As a result, some practitioners choose high β’s, β ≈ 1 for short expiry options
and let it decay as option expiries move out.

Calibration results show a persistent term structure of the model parameters as
functions of option expiration and the underlying tenor. On a given market
snapshot, the highest α is located in the upper left corner of the volatility matrix
(short expirations and short tenors), and the lowest one is located in the lower
right corner (long expirations and long tenors).
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Calibration of SABR

Figure 1 shows a market snapshot of SABR calibrated to the Eurodollar option
volatilities.

Figure: 1. SABR calibrated to ED options.
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Calibration of SABR

Graph 2 shows a snapshot of the expiry dependence of α.

Figure: 2. Dependence of α on option expiration (β = 0.5)
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Calibration of SABR

Graph 3 shows a snapshot of the expiry dependence of ρ.

Figure: 3. Dependence of ρ on option expiration (β = 0.5)
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Calibration of SABR

Graph 4 shows the time series of the calibrated parameter α for the 5Y into 10Y
swaption.

Figure: 4. Historical values of the calibrated parameter α (β = 0.5)
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Calibration of SABR

Graph 5 shows the time series of the calibrated parameter ρ for the 5Y into 10Y
swaption. Notice the spike around the Lehman crisis.

Figure: 5. Historical values of the calibrated parameter ρ (β = 0.5)
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Pricing with SABR

There are two basic ways in which the asymptotic solution can be used for
pricing options:

(i) based on the asymptotic terminal probability distribution, or
(ii) based on the asymptotic implied volatility formula.

The former approach requires a numerical calculation of an integral of the form:

Pcall = N (0)

∫ ∞
0

(F − K )+gT (F ,F0)dF , (27)

where we use the notation gT (F ,F0) = g(T ,F0, σ0; F ).

A potential issue with this approach is that the mean of the distribution gT (F ,F0)
is not exactly F0 and needs to exogenously adjusted.
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Pricing with SABR

The latter approach is more popular. We force the valuation formula to be of the
form

Pcall(T ,K ,F0, σn) = N (0) Bcall
n (T ,K ,F0, σn),

Pcall(T ,K ,F0, σn) = N (0) Bput
n (T ,K ,F0, σn),

(28)

given by the normal model, with the implied volatility
σn = σn(T ,K ,F0, σ0, α, β, ρ) depending on the SABR model parameters.

Under typical market conditions, these two approaches lead to identical results.
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Pricing with SABR

Figure 6 shows the graphs of the asymptotic terminal PDF (black line) against
the PDF implied by (28) (red line) in the case of a 3M option (T = 0.25,
σ0 = 0.05, α = 1.2, β = 0.5, ρ = −0.2). The two graphs are very similar.

Figure: 6. Comparison of the asymptotic PDFs: short expiration
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Pricing with SABR

Figure 6 shows the graphs of the asymptotic terminal PDF (black line) against
the PDF implied by (28) (red line) in the case of a 5Y option (T = 5, σ0 = 0.05,
α = 0.4, β = 0.5, ρ = −0.2). The differences between the two graphs are
noticeable.

Figure: 7. Comparison of the asymptotic PDFs: long expiration

A. Lesniewski Interest rate volatility



Adding mean reversion: λ-SABR

An extension of SABR with mean reverting volatility parameter is given by the
following system:

dF (t) = σ (t) F (t)β dW (t) ,

dσ (t) = λ(µ− σ (t))dt + ασ (t) dZ (t) .
(29)
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Dealing with negative rates: shifted SABR

Negative rates are abnormality but they are reality.

In order to accommodate the SABR model to negative rates in the markets where
they are observed (such as EUR), we shift the forward by a positive amount θ:

dF (t) = σ (t) (F (t) + θ)βdW (t) ,

dσ (t) = ασ (t) dZ (t) .
(30)

The shift θ cannot be directly calibrated to the market prices. A reasonable
choice is θ = 4%.

Explicit formulas for the implied volatilities and probability distributions are
obtained by substituting C(F ) = (F + θ)β (in place of C(F ) = Fβ ) in the
corresponding equations in Presentation I.
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Arbitrage freeness and SABR

The explicit implied volatility given by formulas (25) or (26) make the SABR
model easy to implement, calibrate, and use. These implied volatility formulas
are usually treated as if they were exact, even though they are derived from an
asymptotic expansion which requires that ε = α2T � 1.

The implicit assumption is that, instead of treating these formulas as an accurate
approximation to the SABR model, they could be regarded as the exact solution
to some other model which is well approximated by the SABR model. This is a
valid viewpoint as long as the option prices obtained using the explicit formulas
for σn (or σln) are arbitrage free.

There are two key requirements for arbitrage freeness of a volatility smile model:
(i) Put-call parity, which holds automatically since we are using the same

implied volatility σn for both calls and puts.
(ii) The terminal probability density function implied by the call and put prices

needs to be positive.
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Arbitrage freeness and SABR

To explore the second condition, recall that call and put prices can be written
quite generally as

Pcall(T ,K ) = N (0)

∫ ∞
0

(F − K )+ gT (F ,F0)dF ,

Pput(T ,K ) = N (0)

∫ ∞
0

(K − F )+ gT (F ,F0)dF ,
(31)

where gT (F ,F0) is the terminal PDF at the exercise date (possibly including the
delta function from the Dirichlet boundary condition).

As we saw in Presentation I,

∂2

∂K 2
Pcall(T ,K ) =

∂2

∂K 2
Pput(T ,K )

= gT (K ,F0)

(32)

Arbitrage freeness is represented by the condition that

gT (K ,F0) ≥ 0, (33)

for all K .
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Arbitrage freeness and SABR

In other words, there cannot be a “butterfly arbitrage”. As it turns out, it is not
terribly uncommon for this requirement to be violated for very low strike and long
expiry options. In the graph below, T = 10, σ0 = 0.05, α = 0.1, β = 0.5,
ρ = −0.2.

Figure: 8. Implied probability distribution of a 10Y option
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Arbitrage freeness and SABR

The problem does not appear to be the quality of the call and put prices obtained
from the explicit implied volatility formulas, because these usually remain quite
accurate.

Rather, the problem seems to be that implied volatility curves are not a robust
representation of option prices for low strikes. It is very easy to find a reasonable
looking volatility curve σn(K , . . .)) which violates the arbitrage free constraint in
(32) for a range of values of K .

This issue is addressed by a number of authors, see [3], [1], and [7].

A. Lesniewski Interest rate volatility



References

Andreasen, J., and Huge, B. N.: Expanded forward volatility, Risk Magazine,
January, 101 - 107 (2013).

Jourdain, B.: Loss of martingality in asset price models with lognormal stochastic
volatility, preprint (2014).

Doust, P.: No-arbitrage SABR, J. Comp. Finance, 15, 3 - 31 (2012).

Hagan, P., and Woodward, D.: Equivalent Black volatilities, Appl. Math. Finance,
6, 147 - 157 (1999).

Hagan, P., Kumar, D., Lesniewski, A., and Woodward, D.: Managing smile risk,
Wilmott Magazine, September, 84 - 108 (2002).

Hagan, P., Lesniewski, A., and Woodward, D.: Probability distribution in the SABR
model of stochastic volatility, preprint (2005).

Hagan, P., Kumar, D., Lesniewski, A., and Woodward, D.: Arbitrage Free SABR,
Wilmott Magazine, January (2014).

Paulot, L.: Precision flying on the wings of SABR, preprint (2014).

A. Lesniewski Interest rate volatility


	The SABR model
	Asymptotic solution of the SABR model
	Calibration of SABR

