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MFT approximation

We consider a multi-factor system whose state variable X is a vector taking
values in RN .
Suppose that we are faced with the problem of solving a complex system of
SDEs involving X :

dX (t) = A(t ,X (t))dt + B(t ,X (t))dW (t) ,

X (0) = X0,
(1)

where the drift A(t ,X) takes values in RN , and the diffusion coefficient B(t ,X) is
a matrix in MatN,D(R).
Closed form solutions for systems of this form are rarely available, and Monte
Carlo simulations tend to be computationally expensive. For many purposes, a
good approximate solution is sufficient.
The idea behind the mean field theory (MFT) approximation is to represent the
solution to (1) as

X (t) ≈ X (t) + ξ (t) , (2)

where X (t) is the deterministic component (“mean field”) of the evolution, and
ξ (t) is the fluctuation around the mean field.
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MFT approximation

Ideally, we would like to have X (t) = E[X (t)]. Then,

d
dt

X (t) = E[A(t ,X (t))]. (3)

However, this is not an equation for X (except if A is linear in X ), as the
expression on the right hand side is not a function of X .

We define the mean field X as the solution to the system of self-consistent
ODEs:

d
dt

X (t) = A(t ,X (t)),

X (0) = X0.

(4)

In other words, we make an approximation in which we replace X in (3) by its
expected value. This idea goes back to the work of Curie and Weiss on the
“molecular field” approach to the theory of ferromagnetism in the early 1900s.
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In order to find the equation for the fluctuation process, we linearize the drift term,

A(t ,X (t)) = A(t ,X (t) + ξ (t))

≈ A(t ,X (t)) +∇A(t ,X (t))ξ (t) .
(5)

Similarly, we approximate the diffusion coefficient by

B(t ,X (t)) ≈ B(t ,X (t)). (6)

These approximations lead to the following system of SDEs for ξ:

dξ (t) = ∇A(t ,X (t))ξ (t) dt + B(t ,X (t))dW (t) ,

ξ (0) = 0.
(7)

In summary, the mean field approximation consists in replacing the original
nonlinear stochastic system (1) with:

(i) the system (4) of nonlinear ODEs, and
(ii) the system (7) of linear SDEs.
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Example

To illustrate the power of this approach, we consider the following Riccati type
1-factor stochastic dynamics:

dX (t) = µ(1 + X (t)2)dt + σdW (t) ,

X (0) = X0.
(8)

Integrating the equation for the mean field we find readily that

X (t) = tan(µt + θ), (9)

where θ = tan−1(X0).
This leads to the following equation for the fluctuation process:

dξ (t) = 2µ tan(µt + θ)ξ (t) dt + σdW (t) , (10)

whose solution reads:

ξ (t) =
σ

cos(µt + θ)2

∫ t

0
cos(µs + θ)2dW (s) . (11)
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Example

Figure 1 shows two sample paths: one generated by the exact dynamics (8) (in
black) and one generated by the mean field dynamics (9), (11) (in red). We use
µ = 0.01 and σ = 0.15.

Figure: 1. Exact solution versus mean field solution
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Suppose now that our objective is to evaluate the expected value of a (nonlinear)
function V of X ,

E[V (T ,X (T ))]. (12)

In general, this calculation is only possible by means of Monte Carlo simulation.
Within the mean field approximation, we can compute (12) explicitly. We expand
V around the mean field X as follows:

V (T ,X (T )) ≈ V (T ,X (T )) +∇V (T ,X (T ))Tξ (T )

+
1
2
ξ (T )T∇2V (T ,X (T ))ξ (T ) .

(13)

Its expected value can be now computed explicitly:

E[V (T ,X (T ))] ≈ V (T ,X (T )) +
1
2

tr
(
C (T )∇2V (T ,X (T ))

)
, (14)

where C (T ) is the covariance matrix of the fluctuation process:

C (T ) = E[ξ (T ) ξ (T )T]. (15)

Note that the second term on the right hand side of (14) represents a convexity
correction to the mean field value of the expectation.
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The MFT equations for Lj and σj read:

d
dt

Lj (t) = ∆
(k)
j (t , L (t) , σ (t)),

d
dt
σj (t) = Γ

(k)
j (t , L (t) , σ (t)),

(16)

with

Lj (0) = Lj0,

σj (0) = σj0.
(17)

This is a system of ODEs does not have a closed form solution, and has to be
solved numerically. The solution should be cashed.

The time required to carry out this computation is a fixed overhead which is
independent of other resource requirements.
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MFT solution to SABR-LMM

In fact, since the right hand side of (16) is a slowly varying function of t , the
following approximation is sufficient for accurate pricing:

Lj (t) ≈ Lj0 +

∫ t

0
∆

(k)
j (s, L0, σ0)ds,

σj (t) ≈ σj0 +

∫ t

0
Γ

(k)
j (s, L0, σ0)ds.

(18)

The full MFT solution to SABR-LMM reads

Lj (t) = Lj (t) +

∫ t

0
σj (s) Lj (s)βj dWj (s) ds,

σj (t) = σj (t) +

∫ t

0
αj (s)σj (s) dZj (s) ,

(19)

with Lj and σj given by (18).
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MFT solution to SABR-LMM

The covariance matrix (15) is explicitly given by the block matrix

C (T ) =
{∫ T

0 σi (t) Li (t)βi ρijσj (t) Lj (t)βj dt
} {∫ T

0 σi (t) Li (t)βi rijαj (t)σj (t) dt
}

{∫ T
0 σi (t) Li (t)βi rijαj (t)σj (t) dt

}T {∫ T
0 αi (t)σi (t) ηijαj (t)σj (t) dt

}
 (20)

In the following, we will use the abbreviated notation for the matrix of second
derivatives:

∇2V =


{

∂2V
∂Li∂Lj

} {
∂2V
∂Li∂σj

}
{

∂2V
∂Li∂σj

}T {
∂2V
∂σi∂σj

}
 . (21)
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Approximate valuation of swaptions

A key issue is the ability to calibrate SABR-LMM to swaption volatility.

Remember that a swap rate is a non-linear function of the underlying LIBOR
forward rates. The SDE describing the swap rate dynamics that is implied by the
SABR-LMM does not have a closed form solution.

Consequently, pricing swaptions within SABR-LMM requires Monte Carlo
simulations. This poses a serious issue for efficient model calibration, as such
simulations are noisy and computationally expensive.

To solve the problem we develop a closed form approximation to the swaption
price which can be used to calibrate the model.

We consider a standard forward starting swap, whose start and end dates are
denoted by Tm and Tn, respectively. Recall from Session I that the annuity
function of the swap is defined by:

Amn (t) =
∑

m≤j≤n−1

αj P(t ,Tj+1), (22)

where αj are the day count fractions for fixed rate payments, and where P(t ,Tj )
are the discount factors.
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SABR-LMM dynamics for the forward swap rate

Using Ito’s lemma we see that, under the measure Qk , the dynamics of the swap
rate process can be written in the form:

dSmn (t) = Ω(t , L (t) , σ (t))dt +
∑

m≤j≤n−1

Λj (t , L (t) , σ (t))dWj (t) , (23)

where

Ω =
∑

m≤j≤n−1

∆j
∂S
∂Lj

+
1
2

∑
m≤i,j≤n−1

ρij Ci Cj
∂2S
∂Li∂Lj

, (24)

and

Λj = Cj
∂S
∂Lj

. (25)

Not surprisingly, the stochastic differential equation for S has a drift term: the
forward swap rate is not a martingale under a forward measure!

There are no terms proportional to the dZj ’s in (23), as S does not explicitly
depend on the σj ’s.
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SABR-LMM dynamics for the forward swap rate

We now shift to the martingale measure Qmn (the swap measure),

dWmn (t) =
Ω(t , L (t) , σ (t))dt +

∑
m≤j≤n−1 Λj (t , L (t) , σ (t))dWj (t)

νmn (t)
, (26)

where

νmn (t)2 =
∑

m≤i,j≤n−1

ρij Λi (t , L (t) , σ (t))Λj (t , L (t) , σ (t))

= Λ(t , L (t) , σ (t))ρΛ(t , L (t) , σ (t)).

(27)

The process Wmn (t) is a Brownian motion.

The process νmn (t) is the stochastic volatility process for the swap rate Smn
implied by SABR-LMM. The SDE for the swap rate reads

dSmn (t) = νmn (t) dW (t) . (28)

Our next goal to relate (28) to the vanilla swaption market.
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SABR-LMM dynamics for the forward swap rate

To this end, we define

σmn (t) = S (t)−βmn νmn (t) , (29)

so that
dSmn (t) = σmn (t) S (t)βmn dW (t) . (30)

Let us now derive the SDE for the volatility process σmn (t).

Using Ito’s lemma we see that, under the measure Qk , we find that:

dσmn (t) = Φ (t) dt +
∑

m≤j≤n−1

Θj (t) dWj (t) + Ψj (t) dZj (t)

= Φ (t) dt + Θ (t)T dW (t) + Ψ (t)T dZ (t) .

(31)
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SABR-LMM dynamics for the forward swap rate

Here Φ (t) = Φ(t , L (t) , σ (t)) is given by

Φ =
∑

m≤j≤n−1

∆j
∂σmn

∂Lj
+ Γj

∂σmn

∂σj

+
1
2

∑
m≤i,j,≤n−1

ρij Ci Cj
∂2σmn

∂Li∂Lj
+ 2rij Ci Γj

∂2σmn

∂Li∂σj
+ ηij Γi Γj

∂2σmn

∂σi∂σj
,

(32)

and

Θj = Cj
∂σmn

∂Lj
,

Ψj = Dj
∂σmn

∂σj
.

(33)

We now define a new Brownian motion,

dZmn (t) =
Φ (t) dt + Θj (t)T dW (t) + Ψ (t)T dZ (t)

ζmn (t)
. (34)
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SABR-LMM dynamics for the forward swap rate

Here

ζmn (t)2 = Θ (t)T ρΘ (t) + Θ (t)T (r + rT)Ψ (t) + Ψ (t)T ηΨ (t)

is a stochastic vol of vol process, and thus

dσmn (t) = ζmn (t) dZmn (t) .

The correlation ρmn between dWmn and dZmn,

dWmn (t) dWmn (t) = ρmn (t) dt

is given by:

ρmn (t) =
Λ (t)T ρΘ (t) + Λ (t)T rΨ (t)

νmn (t) ζmn (t)
. (35)
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SABR-LMM dynamics for the forward swap rate

Since ζmn (t) > 0 we can write it in the form

ζmn (t) = αmn (t)σmn (t) ,

where αmn (t) is a process, so that

dσmn (t) = αmn (t)σmn (t) dZmn (t) . (36)

The initial value of σmn is the deterministic constant σmn (0).

Pricing a swaption using the system (30) - (36) is equivalent to pricing using the
original state variables; we have merely switched to the annuity measure.

The system (30) - (36) looks very much like the SABR dynamics. There is a fly in
the ointment: both αmn (t) and ρmn (t) are stochastic.
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SABR-LMM dynamics for the forward swap rate

We approximate this system with the system below where αmn (t) and αmn (t)
are replaced with their MFT approximations given by (14):

αmn (t) ≈ α(t , L, σ) +
1
2

tr
(
C (t)∇2α(t , L, σ)

)
,

ρmn (t) ≈ ρ(t , L, σ) +
1
2

tr
(
C (t)∇2ρ(t , L, σ)

)
,

(37)

where C (t) is the covariance matrix defined by (11).

This leads to the following values of the swaption α and ρ parameters:

αmn =

√
1

Tm

∫ Tm

0
αmn (t)2 dt ,

ρmn =
1

Tm αmn

∫ Tm

0
αmn (t) ρmn (t) dt .

(38)
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Optimization

Optimization consists in determining the SABR-LMM model parameters, so that
its prices of the benchmark caps / floors and swaptions match closely the market
prices.

We have already observed that SABR-LMM can be exactly calibrated to the
caps. For simplicity of exposition, we assume that this has been done; in practice
one usually calibrates simultaneously to caps and swaptions.

We select the set of swaptions for calibration: since we wish to calibrate the
model globally, we may choose the entire swaption matrix. Each benchmark
swaption is represented by the market observed SABR parameters σmn,0, αmn,
βmn, and ρmn.

To this end, for each benchmark swaption we consider the objective function:

Lmn =
1
2

(
(σmn (0)− σmn,0)2 + (αmn − αmn)2

+ (aTmn β + bmn − βmn)2 + (ρmn − ρmn)2
)
,

(39)

where σmn (0) is the t = 0 value of the process (29), αmn and ρmn are given by
(38), and aTmn β + bmn is defined in equation (32) of Presentation IV.
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Optimization

The total objective function is given to the sum of Lmn over all benchmark
swaptions,

L =
∑
m,n
Lmn. (40)

Depending on the choice of parameterization, L is a function of moderate
number of variables. It can be minimized using an efficient optimization algorithm
such the Levenberg-Marquardt algorithm.

As noticed above, it is advantageous to optimize jointly to caps and swaptions
(rather than setting the cap volatility parameters), in which case (40) is
supplemented by addition terms coming from the benchmark caps.

Also, a Tikhonov style penalty term may added to (40) to assure a smooth
structure of the calibrated model parameters.
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Monte Carlo method for SABR-LMM

SABR-LMM does not allow for a natural implementation based on recombining
trees, and thus all valuations have to be performed via Monte Carlo simulations.

We shall describe two numerical schemes for generating Monte Carlo paths for
SABR-LMM: Euler’s scheme and Milstein’s scheme. They both rely on replacing
continuous time stochastic differential equations by suitable finite difference
schemes.

First, we perform a reduction in the number of stochastic drivers of the system.
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Factor reduction

In a market where the forward curve spans 30 years, there are 120 quarterly
LIBOR forwards and 120 corresponding stochastic volatilities. Such a process is
driven by 240 stochastic factors.
Having a large number of factors is neither desirable nor necessary for the model
implementation. On the performance side, the “curse of dimensionality” kicks in,
leading to unacceptably slow performance. On the financial side, overabundance
of parameters may result in their instability.
It is known that the dimensionality of the system can be reduced without
substantial loss of information: PCA shows that three factors capture virtually all
of the curve and volatility matrix dynamics.
We are thus led to the idea that only a small number d of independent Brownian
motions wa (t), a = 1, . . . , d (d =1, 2, 3, or 4), with

dwa (t) dwb (t) = δabdt , (41)

should drive the rates process, while the independent Brownian motions za (t),
a = 1, . . . , d ,

dza (t) dzb (t) = δabdt (42)

drive the volatilities process.
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Factor reduction
We set

dWj (t) =
∑

1≤a≤d

Uja dwa (t) ,

dZj (t) =
∑

1≤a≤d

Vja dza (t) ,
(43)

where U and V are N × d matrices such that UUT ≈ ρ and VVT ≈ η,
respectively. U and V can be determined from PCA.
We can easily rewrite the dynamics of the model in terms of the independent
Brownian motions:

dLj (t) = ∆j (t) dt +
∑

1≤a≤d

Cj (t) Uja dwa (t) ,

dσj (t) = Γj (t) dt +
∑

1≤a≤d

Dj (t) Vja dza (t) .
(44)

This system is the factor reduced SABR-LMM dynamics.
For notational ease, we continue using the Brownian motions Wj and Zj , with the
understanding that they are defined in terms of the independent Brownian
motion by means of (43).
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One factor Brownian motion

Next, we discuss briefly an efficient, low simulation noise methodology for
generation of Brownian paths.
There exist several more of less refined methods for simulating a Brownian
motion; here we compare two of them.
The random walk method is easy to implement at the expense of being rather
noisy. It represents a Brownian motion as a random walk sampled at a finite set
of event dates t0 < t1 < . . . < tm:

Z (t−1) = 0,

Z (tn) = Z (tn−1) +
√

tn − tn−1 ξn, n = 0, . . . , m,
(45)

where t−1 = 0, and where ξn are i.i.d. random variables with ξn ∼ N(0, 1).
A good method of generating the ξn ’s is to first generate a sequence of uniform
pseudorandom numbers un (using, say, the Mersenne twister algorithm), and
then set

ξn = N−1(un), (46)

where N−1(x) is the inverse cumulative normal function. N−1(x) can be
efficiently and accurately computed using e.g. the Beasley-Springer-Moro
algorithm, see [1].
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One factor Brownian motion

The spectral decomposition method generally leads to much better performance
than the random walk method. It assures that the simulated process has the
same covariance matrix C as the Brownian motion Z (t) sampled at
t0, t1, . . . , tm.

The covariance matrix is explicitly given by:

Cij = E
[
Z (ti )Z (tj )

]
= min(ti , tj ).

(47)

Consider the eigenvalue problem for C:

CEj = λj Ej , j = 0, . . . , m, (48)

with orthonormal Ej ’s.

Since the covariance matrix C is positive definite, all of its eigenvalues λj are
nonnegative, and we will assume that

λ0 ≥ . . . ≥ λm ≥ 0. (49)
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One factor Brownian motion
We will denote the n-th component of the vector Ej by Ej (tn), and consider the
random variable

Z (tn) =
∑

0≤j≤m

√
λj Ej (tn)ξj , (50)

where ξj are, again, i.i.d. random variables with ξj ∼ N(0, 1).
These numbers are best calculated by applying the inverse cumulative normal
function to a sequence of Sobol numbers. Alternatively, one could use a
sequence of uniform pseudorandom numbers; this, however, leads to a higher
sampling variance.
Then, for each n = 0, . . . , m, Z (tn) ∼ N(0, tn), and

E
[
Z (ti )Z (tj )

]
=

∑
0≤k≤0

λk Ek (ti )Ek (tj )

= Cij .

(51)

We can thus regard Z (tn) a realization of the discretized Wiener process1. For
computational efficiency, we may want to truncate (50) at some p < m. This
eliminates the high frequencies from Z (tn), and lowers the variance. The price
for this may be systematically lower accuracy.

1
This realization of the discretized Brownian motion is related to the well known Karhounen-Loeve expansion of

the (continuous time) Brownian motion.
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Multi factor Brownian motion

We now consider the case of a multi-factor Brownian motion Za(t), with

E[dZa (t) dZb (t)] = ρabdt .

The Cholesky decomposition of ρ yields

ρ = LLT, (52)

where L is a d × d dimensional, lower triangular matrix.

For example, if

ρ =

[
1 ρ12
ρ12 1

]
, (53)

then

L =

[
1 0

ρ
√

1− ρ2
12

]
, (54)

A. Lesniewski Interest Rate Volatility



Mean field theory approximation
Calibration of SABR-LMM

Monte Carlo simulation of SABR-LMM

Multi factor Brownian motion

Now, if X ∈ Rd is a vector of independent standard normal variables, then LX is
a multivariate normal variable with correlation matrix ρ.

Indeed,

E[(LX)a(LX)b] =
∑

0≤k,l≤d

Lak Lbl E[Xk Xl ]

=
∑

0≤k,l≤d

Lak Lblδkl

=
∑

0≤k≤d

Lak Lbk

=
∑

0≤k≤d

Lak (LT)kb

= (LLT)kl

= ρkl .
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Discretizing SABR-LMM

Finally, we discretize the system of SDEs defining the SABR-LMM process.

We choose a sequence of event dates t0, t1, . . . , tm, and denote by Lj,k ' Lj (tk )
and σj,k ' σj (tk ) the approximate solution. We also set

∆j,k = ∆j (tk , Lk ),

Cj,k = Cj (tk , Lj,k ),

. . . .

(55)

We let δk = tk+1 − tk denote the k -th time step, and we let

∆Wj,k = Wj (tk+1)− Zj (tk ),

∆Zj,k = Zj (tk+1)− Zj (tk )
(56)

denote the increments of the Brownian motions.
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Discretizing SABR-LMM: the log-Euler scheme
To assure that the simulated values of the volatility parameters are positive, we
introduce the state variables ζ by

σj (t) = exp
(∫ t

0
αj (s) dζj (s)−

1
2

∫ t

0
αj (s)2 ds

)
. (57)

The dynamics of ζj reads:

dζj (t) = γj (t) dt + dZj (t) , (58)

where the drift terms γj (t) are given by

γj (t) =


−
∑

j+1≤i≤k
rjiδiσi (t) Li (t)βi

1 + δi Fi (t)
, if j < k ,

0, if j = k ,∑
k+1≤i≤j

rjiδiσi (t) Li (t)βi

1 + δi Fi (t)
, if j > k .

(59)

under Qk , and

γj (t) =
∑

γ(t)≤i≤j

rjiδiσi (t) Li (t)βi

1 + δi Fi (t)
, (60)

under the spot measure.
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Discretizing SABR-LMM: the log-Euler scheme

Discretization of the SDE for Lj is straightforward:

Lj,k+1 =
(
Lj,k + ∆j,kδk + σj,k L

βj
j,k ∆Wj,k

)+
,

Lj,0 = Lj0.
(61)

Equation (58) leads to the following discretization of (57):

σj,k+1 = σj,k exp
(
αj,k ∆Zj,k + (ζj,k − α2

j,k/2)δk
)

σj,0 = σj0.
(62)

We refer to the numerical scheme (61) - (62) as the log-Euler scheme for
SABR-LMM.
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Discretizing SABR-LMM: the quasi Milstein scheme

The structure of the SABR-LMM model is incompatible with the Milstein scheme:
second order (in Brownian motion increments) discretization contains Levy area
terms of the form

∫ t+δ
t dWj (s) dZj (s).

Remarkably, no Levy area terms

∫ t+δ

t
dWi (s) dWj (s) ,∫ t+δ

t
dZi (s) dZj (s) ,∫ t+δ

t
dWi (s) dZj (s) ,

(63)

for i 6= j , are present in the second order dicretization.
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Discretizing SABR-LMM: the quasi Milstein scheme

This observation leads to the following scheme:

Lj,k+1 =
(
Lj,k + ∆j,kδk + σj,k L

βj
j,k ∆Wj,k +

βj

2
σ2

j,k L
2βj−1
j,k (∆W 2

j,k − δk )
)+
,

σj,k+1 = σj,k exp
(
αj,k ∆Zj,k + (ζj,k − α2

j,k/2)δk
)
.

(64)

We refer to this discretization scemen as the quasi Milstein scheme for
SABR-LMM. It is more accurate than the Euler scheme.
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Efficient computation of drift coefficients

Note that these deceivingly simply looking recursions involve the drift terms ∆j,k
and γj,k , which get updated at each time step. Each of the drift terms is a sum of
a large number of terms, and their evaluation is computationally expensive.

Evaluating the drift terms along each Monte Carlo path accounts for well over
50% of total simulation time.

On the other hand, the drift term contributions are relatively small as compared
to the initial values of the LIBOR forwards and volatilities.

It is desirable to develop an efficient methodology for accurate approximate
evaluation of the drift terms.

We describe such an efficient methodology based on the mean field solution to
the model.
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Efficient computation of drift coefficients

The simplest and most computationally efficient approach is the frozen curve
approximation. We simply evaluate the drifts ∆j and γj at today’s values of Lj
and σj ,

∆j (t , L (t) , σ (t)) ≈ ∆j (t , L0, σ0),

γj (t , L (t) , σ (t)) ≈ γj (t , L0, σ0),
(65)

and store the result. This is a fixed overhead cost, as the same drifts can be
reused for all Monte Carlo paths.

The frozen curve approximation is insufficient for instruments with optionality
going beyond two years.
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Efficient drift calculation

A far superior methodology is based on the MFT solution Lj and σj to the
LMM-SABR model discussed in Presentation IV.

Specifically, we make the approximation:

∆j (t , L (t) , σ (t)) ≈ ∆j (t , L (t) , σ (t)) +
1
2

tr
(
C (t)∇2∆j (t , L (t) , σ (t))

)
,

γj (t , L (t) , σ (t)) ≈ γj (t , L (t), σ (t)) +
1
2

tr
(
C (t)∇2γj (t , L (t) , σ (t))

)
,

(66)

where the covariance matrix C (t) is given by equation (11).

This computation is a fixed overhead cost, and the drift values can be reused for
all Monte Carlo paths.

The accuracy of the MFT approximation for instruments of all maturities is
basically indistinguishable from simulations involving full evaluation of the drift
terms.
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