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Abstract. We extend the framework of entire cyclic cohomology to the equivariant context. 
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1. Introduction 

Entire cyclic cohomology was introduced by A. Connes [3] and studied further in 
[6, 5, 8, 4]. Its objective is to deal with aspects of noncommutative differential 
geometry [2] (see also [7]) of, somewhat loosely speaking, infinite-dimensional 
noncommutative spaces. Situations of this kind arise, for example, in studying 
global aspects of supersymmetric quantum field theory. Entire cyclic cohomology is 
believed to provide the right cohomological setup for studying topological invari- 
ants arising from models of supersymmetric quantum field theory, such as the index 
of the supercharge (which can be interpreted as a Dirac-like operator on loop 
space). 

In this paper, we are concerned with the equivariant version of entire cyclic 
cohomology. We consider a triple (~4, G, p), where sJ is a Banach algebra, where 
G is a group and where p : G ~ Aut(.#) is a G-action on sJ. Infinite-dimensional 
examples of such a structure are provided, for example, by quantum field theory 
models with 'additional symmetries'. We believe that the natural cohomological 
setup for Witten's elliptic genera computations [14] is provided by equivariant 
entire cyclic cohomology of a suitable algebra sJ of functions on loop space with 
the symmetry group G = U(1). In this paper, we define the equivariant cyclic 
cohomology of (sJ, G, p) and discuss its functorial properties. We construct a 
natural pairing of the even cohomology group with the equivariant K-theory group 
Kg(~) .  Finally, we discuss the connection between the equivariant entire cyclic 
cohomology and the ordinary cyclic cohomology of the Banach algebra L~(G, ~). 

* Sapported in part by the Department of Energy under Grant DE-FG02-88ER25065. 
** Permanent address: Department of Mathematics, Polish Academy of Sciences, Warsaw, Poland. 
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In the accompanying paper [9] we construct an equivariant entire cyclic cocycle, 
namely the equivariant Chern character. The framework of [9] is more differential 

geometric in spirit (rather than cohomological), and it assumes the existence of a 
G-invariant Dirac operator. 

For conceptual clairty and technical simplicity, we deal with the case of G finite. 
We will discuss the case of a compact G in a future publication. The assumption 
that d is a unital Banach algebra is the only relevant technical assumption. Our 

constructions can be also carried through in a functorial way, if sJ is a unital 
C*-algebra. In this case, the algebra L~(G, sJ) is replaced by the crossed product 
G x  aJ. p 

2. B-Dynamical Systems and the Algebra L~(G, ~4) 
In this section, we review the basic notions of the theory of Banach algebras with 
group actions (see [11] for details and references to the original literature). 

2.1. B-DYNAMICAL SYSTEMS 

Let ~4 be a unital Banach algebra. By A u t ( d )  we denote the group of continuous 

automorphisms of ~4. Let G be a finite group and let p : G ~ A u t ( d )  be a 
homomorphism of groups. Clearly, for all g 6 G and a e d ,  

Ilpg(a) I[ ~ cljall, (2.1) 

where C is a constant. The triple ( d ,  G, p) is called a B-dynamical system. 
It is straightforward to define functorial operations in the category of B-dynam- 

ical systems and we will not elaborate on this point. In the following, we will need 
one particular functor in this category which we now describe. Let U be a 
finite-dimensional vector space and let U : G ~ End(U) be a representation of G on 
U.  The algebra End(U) of endomorphisms of U has a natural G-action given by 

Ug(m) := UgmUg 1, m e End(U). (2.2) 

Then ( d  | End(U),  G, p | U) is a B-dynamical system. 

2.2. THE ALGEBRA L~(G, ~r 

We consider the space of all functions x" G ~ ~r For two such functions x and y 

we define 

:= fG x(h)ph(y(h -'g)) dh, (2.3) (x Y)(g) #: p 

where for x ' G ~ r  

x(h) dh ,= ~[ h~G x(h) (2.4) 
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is the ~ -va lued  Haar integral. Here [G[ denotes the order of G. The product (2.3) 
is associative. Let L ~ ( G ,  . s t )  denote the space of functions x :  G ~ sJ equipped with 

this product. This algebra is 

(~) unital, with the identity element 

1, i f g  =e ,  (2.5) 
6(g).'= 0, otherwise; 

(fl) Banach, with the norm 

IIx/I, -= ~ IIx(g)ll dg. (2.6) 
da  

3. Equivariant Entire Cyclic Cohomology of a Banach Algebra 

In this section, we introduce a cohomology framework generalizing the entire cyclic 
cohomology of [3] (see also [6, 4, 5, 8]) to the equivariant context. We consider a 

dynamical system (~r G, p). 

3.1. THE SPACE C~(d) 

Let ~ ( G )  be the space of functions f :  G - ~ C  and let ~ ( d , - Y ( G ) )  denote the 
linear space of n-linear mappings f :  d x �9 �9 �9 • ~r -~ Y(G) such that 

I l f l l '=max sup I f ( a ,  . . . . .  a.)(g)[ < oo. (3.1) 

We define a G-action on A~ Y(G)) by 

( p * f  ) ( a~ ,  . . . , a , ) ( g ) : = f  ( p h ( a ~ )  . . . . .  p t , ( a n ) ) ( g ) .  (3.2) 

Note that p*" ~ " ( ~ ,  -N(G)) --, A~ .Y(G)), as 

lip;ill ~ c"Hf/I. (3.3) 
A mapping f 6 ~q~"(d, ~ (G)) is called G-equivariant if for all h ~ G 

( p ' f )  ( a l ,  . . . , a , )  ( g )  = f ( a l ,  . . . , a , )  ( h - l g h ) .  (3.4) 

We define cg~(~,) to be the linear space of all G-equivariant f e  5f "+ ~(d, ~ (G) ) .  
We now define three basic complexes associated with cg~(sJ). 

3.2. THE STANDARD 7/,,-COMPLEX 

Let ~,  denote the cyclic group of n elements. We define for . f~ cg~(st) 

( T n f ) ( a o ,  a l  . . . .  , a n ) ( g ) , = (  - 1)nf(pg ~(an), a0 . . . . .  a ,_  1)(g)- 

Note that 

[Ir.f[I ~ c[Ifll 

(3.5) 

and ( p *  T , , f ) ( a o  . . . .  , a , , ) ( g )  = ( T , f ) ( a o  . . . . .  a , ) ( h  ~gh).  
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i.e. T n f  e C~ (~r The opera to r  T, defines a representat ion of  ~ ,  + ~ on the space 
cg~(sr In fact, all we need to check is 

T~ +1 = L (3.6) 

But, as a consequence of  (3.4), 

(T~ + l f  )(a o, a, . . . . .  a~)(g) 

= ( - 1) "(" + ' f ( p g - ~  ( a o ) , . . . ,  pg ~ (a~))(g) 

= f ( a 0 ,  a, . . . .  , a,,)(g), 

which proves  (3.6) 

We define the no rm opera to r  

Nrt .'= ~ T~, (3.7) 
j = 0 

and observe that,  as a consequence of  (3.6), 

U] = (n + 1)N, ,  (3.8) 

and 

( I  - -  T , , ) N ,  = N , ( I  - -  T n )  = 0.  ( 3 . 9 )  

Identities (3.9) lead natural ly to the following s tandard  7 / +  ~-complex 

N n 
~ ( ~ )  , ~eN(~4) 

'-~" T I '-T" (3.10) 
/7 n 

N n 

This complex is acyclic, as we have the following h o m o t o p y  equation: 

1 
Mn(1 - T~) q - ~  N n = / ,  (3.11) 

where 

1 n 
Mr, . . . .  S" j T ~ .  (3.12) 

n + l j =  

3.3. THE ACYCLIC HOCHSCHILD COMPLEX 

We define for f ~ c6+ (sO') 

(b' , , f)(ao . . . . .  an)(g) ,= ~ ( - 1) f (a0  . . . .  , a j a j ;  1 . . . . .  ar t  + ~)(g). (3.13) 
j = O  

Clearly, b ~ f  ~ ~ +  1(sr It  is wel l-known that  b~ + ibm, = 0. This leads to the complex 
b;, ~ b;, cg~+ 

. . .  , cs ' ( d )  - - ~  c g ~ ( d )  , ' ( d )  , . . - .  (3.14) 
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The complex is acyclic with the homotopy  opera tor  U, �9 c g ~ ( d )  __+cg~- l (~ ) ,  

( U J ) ( a o  . . . . .  a n _  i ) ( g ) " = ( -  1)" l f ( a o , . . . ,  a ,  l, 1)(g), (3.15) 

satisfying 

b~,_~ Un + U,+ ,b ;  = I. (3.16) 

3.4. THE HOCHSCHILD COMPLEX 

We set for f E  c g ~ ( d )  

( V J ) ( a o ,  . . . , a , +  1)(g) :=(  - 1) "+ I f ( P g - ~ ( G +  l)ao,  al . . . .  , G ) ( g ) ,  

and note that  

II vofll cl l f l l  
and 

(3.17) 

(P*  V n f  )(ao, . . . , an+ 1)(g) = ( V n f  )(ao . . . . .  an+ l ) (h  lgh) ,  

i.e. V , f ~  cg~+ ' ( d ) .  Consider the opera tor  b, : cg~(~4) - - + ~ +  1(~),  

b..'=b" + V.. (3.18) 

The opera tor  is the equivariant  version of  the Hochschild coboundary  operator .  In 
fact, we claim that  

b.+ lb. = 0. (3.19) 

To prove this we compute  

(bn+ , b J ) ( a  o . . . . .  an+ 2)(g)  

= (b~,+ 1V,, + V ~ + l b ~  + V n + l V n ) f ( a  o . . . . .  a ,+z) (g )  
n + l  

= ~ ,  ( - 1 ) J ( V n f ) ( a o  . . . . .  a s a j + i  . . . . .  G + 2 ) ( g )  + 
j - O  

+ ( - 1 ) " + 2 ( b f ) ( p g - , ( G + 2 ) a o ,  a,  . . . . .  a , +  , ) ( g )  + 

+ ( - 1 ) " + 2 ( V n f ) ( p g - ~ ( G +  2)ao, al ,  . . . ,  a,  + 1)(g) 

= ( - 1 ) ~ + l f ( p g  ~(G+z)ao ,al , a 2 , . . .  , G + l ) ( g ) +  

+ ( - 1 )  "+1 ~ ( - 1 ) J f ( p g  ~ ( a , + z ) a o ,  a ,  . . . . .  a j a j + a  . . . . .  a , + l ) ( g )  + 
j = l  

+ f ( p g _ ~ ( a , +  1G+2)ao,  a , ,  . . . , G ) ( g )  + 

+ ( - 1)" + 2f(pg l (G+z) (a  o, a , ,  a2 . . . .  , G +  ,)(g) + 

+ ( -- 1) "+2 ~, ( -- 1 ) J f ( p g - , ( G + 2 ) a o ,  a,  . . . . .  a j a j + l  . . . . .  G +  l ) ( g )  - -  
j = l  

- f ( p g  l(a,,+ 1G+z)a  o, a l , . . . ,  a , , ) (g)  = O. 
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This yields the complex 
bn - 1 bn 

. . .  , (Od~-- 1 ( ~ )  , (~7~(3~/) , ( ~ +  l ( ~ t )  ~ - * ' '  ( 3 . 2 0 )  

With the help of the above basic complexes we define the following cyclic 
complexes [10, 2]. 

3.5. THE EQUIVARIANT CYCLIC COMPLEX 

We first observe that the following relations hold 

b;,(1 - T~) = (1 - T n + l ) b  n 

and 

(3.21) 

The proof  of (3.21) and (3.22) is a standard consequence of the following identities 
[13]: 

and 

b'~ = i T~+'] + ~)V~ TJ. (3.23) 
j = O  

and 

n + l  

b,, = Z T,,(J~ + 1)VnTJ, �9 (3.24) 
j = 0  

Also, note that 

U, + ~ V, = - I (3.25) 

b n i U n ~ - U . + l b n = O .  ( 3 . 2 6 )  

To prove (3.25) we compute 

(Un+ ~ V n f  )(ao, . . . , a , ) ( g )  

= ( - 1 ) n ( V n f ) ( a o  . . . . .  a , ,  1)(g) 

= ( - 1) 2"+ I f ( p g - l ( 1 ) a o ,  a l , . . . ,  an)(g)  

= - f ( a o , . . .  , a , ) ( g ) .  

Equation (3.26) is a consequence of (3.16) and (3.25) 

b t n _ l U n  At- V n + l b  n : b / n _ l  U n + Un__lb;, -~- U n + I U  n = 1 - -  1 : 0 .  

We now consider the operator Bn" ~ ( d ) ~ c g ~  l ( d  ) given by 

B, :=N,, 1U,,(1 --  T~). (3.27) 

N o +  lb'n = b n X  n. (3.22) 
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We claim that  

B. lB.=0 

and 

b. I B . + B . + l b . = O .  

In fact, from (3.9) 

B. 1 B n = N . _ 2 U . _ ~ ( 1 - T . _ I ) N .  1 U , , ( 1 - T . ) = O ,  

which is (3.28). To prove (3.29) we use (3.16) 

bn_l B. + B . + l b .  

= b._ ~N,,_, Un(1 - T.) + N.U,,+ 1(1 - -  Tn+ 1)bn 

= N.b; ,_ lU.(1  - T,) + N .U .+ ib ; (1  - 7",) 

= N.(b'._~ U. + U.+ lb'.)(1 - 7'.) = O. 

This leads to the following complex: Set 

(" ./2 
~"~4  J jgo  ~g~(d), if n is even, 

~a ( ):= -~(~- , ) /2  L j--@o cg~+l(~,) ;  if h i S  odd, 

�9 cg a (sJ)--*cgG +~(s~') by and define an operator 0. ~<" 4.  

02~ (fo,f2 . . . . .  fzk) := (bofo + Bzf2, bzf2 + B4f4 . . . . .  b2kf2k), 

02k +1 (fl  ,f3, �9 �9 �9 ,f2x +1 ) :=  (Blf l ,  blfl  + B 3 f 3 , . . . ,  b2k + lf2k + 1  )" 

AS a consequence of  (3.28), (3.29) 

0.+ 10. = 0 

and, thus, 
On 

~<n ~ ~<(n + . . .  , ~  ( ~ )  , , ~  ~)(~r , . . .  

is a complex. It is the equivariant cyclic complex. 

207 

(3 .28)  

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

3.6. EQUIVALENT ENTIRE CYCLIC COMPLEX 

Let (gG(sJ) be the space of  sequences 

f = {f~ };,~ o, f .  ~ cg~ ( ~ )  

such that 

lim n'/2[[f~ I[ 1/, = O. (3.34) 
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We write 

egG(d) ~ cg~(d)  |  (3.35) 

where cd~(sr consists of the sequences {f2k+ 1}~= o obeying (3.34), whereas Z ~ ( d )  
is the space of all {f2k }~~ satisfying (3.34). 

The spaces ~gb(d),  cgb(d)  and ~r are Fr6chet space with the following set 
of norms. For r = 1, 2, 3 , . . .  we set 

]]fllr '= E (n!)I/2llf~ [1 r"" (3.36) 
n~>0 

F o r f e  (g~(d)  we set 

Oof:=(BIZ, blfl + B3f3 . . . . .  b2~ 1f2~-~ + B2k+ lf2k+ ~ . . . .  )- (3.37) 

It is easy to verify that 

II(aof)2, II (2k + l)][fzk-1 II + 4k 1172,+1 II, 

which implies that 0o' qf~(~r --+ ~ ( ~ r  is a continuous homomorphism. Likewise, 
f o r f e  ~ ( ~ r  we set 

O~f ;= (bofo + B 2 f 2 ,  b 2 f 2  + B 4 f 4 ,  . . . , b 2 k f 2 k  + B2k  + 2f2k + 2 . . . .  ). ( 3 .38 )  

Then 

II(a.f) .k § [I ~ 2(k + 1)Ilfll.~ + 2(2k + 1)][f2~+ 21], 

i.e., # ,  ~g~(d) ~ r 1 6 2  is a continuous homomorphism. We also note that 

aeao ~-- ao0e = 0. (3.39) 

The cohomology of the complex 

#o 

a. I I o" (3.40) 
go 

is called the equivariant entire cyclic cohomology of ( d ,  G, p). The corresponding 
cohomology groups are denoted by ~ ( d )  and ~ f ~ ( d ) .  

The operations T, N, M, U and V defined above can be naturally defined on 
egG(d). We set 

Tf.'= (T0f0, Tlf~ . . . . .  T,,f~ . . . .  ), (3.41) 

etc., and verify easily that the corresponding operations are continuous homomor- 
phisms of the entire complex. Also, to simplify the notation, we will suppress the 
subscripts in ~3 o and 0, and write simply 0. 
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3.7. NORMALIZED COCYCLES 

An equivariant entire cocycle f is normalized (in the sense of Connes [3])~ if 

B o f  = ABof ,  

where 

/9o := U(1 - T ) ,  

and where 

209 

(3.42) 

(3.43) 

Clearly, f ' e  cgG(d ). We claim that f '  is normalized. By the lemma, we have to 
show that (1 - T ) B o f '  = 0. But since (1 - T ) B  = (1 - T ) N B  o = 0, this is equivalent 
to showing that 

(1 - T ) B o f -  (1 - T ) B o b M B o f =  0 (3.48) 

(Note that (3.48) corresponds to the property V •  2 ) =  0 in Remark 1.8 of 
[8].) 

and 

f ' - ' = f  - ~?g. (3.47) 

1 
( A f ) ,  - N, f~.  (3.44) 

n + l  

We prove below that every equivariant entire cohomology class has a normal- 
ized representative. Our proof  is somewhat different from Connes' original 
proof. The referee of this paper called our attention to the fact that a very similar 
construction (in the context of 7/2 graded entire cyclic cohomology) appeared in 

[81. 

LEMMA. A cocycle f e cgG(~r ) is normalized i f  and only i f  

(1 - T ) B o f =  O. (3.45) 

Proof. Applying 1 - T to (3.42) and using (3.9) we obtain (3.45). Suppose now 
that f satisfies (3.45). Then using (3.11), 

(I  - A ) B o f  = M (  1 - T ) B o f  = O. [] 

THEOREM.  Every equivariant entire cohomology class has a normalized representa- 

tive. 

Proof. Let f be a cocycle. Set 

g := M U (  1 - T ) f  = M B o f  (3.46) 
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The second term on the left-hand side of  (3.48) can be written as 

- ( 1 - T )  U (  1 - T ) b M B o f  

= - (1 - T ) U b ' (  1 - T ) M B o f  

= - ( 1  - r ) u b ( 1  - T ) M B o f +  (1 - T ) U V ( 1  - T ) M B o f  

= - ( 1  - T ) U b ( 1  - A ) B o f -  (1 - T)(1 - A ) B o f  

= - -  ( 1 - T )  Ub(  1 - A ) B o f -  ( 1 - T ) B o f .  

The last term in this identity cancels the first term in (3.48) and thus (3.48) is 
reduced to showing that  

(1 - T ) U b ( l  - A ) B o f  = O. (3.49) 

But f is a cocycle, i.e. b f +  B f =  0 and, thus, 

A B o f '  = 0. (3.50) 

Moreover ,  

(1 - T ) U b B o f  

= (1 - T)UbU(1 - T ) f  

= ( 1 - T )  U b '  U(  1 - T ) f -  ( 1 - T )  U(  1 - -  T ) f  

= ( 1 - T )  U2b  ' ( 1 - T ) f  = ( 1 - T )  U2(  1 - T ) b f  

-- - ( 1 - T)  U2( 1 - T ) B f  -- 0, 

as (1 - T ) B f =  (1 - T ) N B o f =  O. This and (3.50) imply (3.49). [] 

4.  E x a m p l e s  and  C o m p u t a t i o n s  

This section contains a number  of  examples  of  equivariant  entire cyclic cohomolo-  
gies. Of  par t icular  impor tance  for the construct ions of  Section 5 is example  4.5 of  

this section. We show in this example that  there is a cochain h o m o m o r p h i s m  

between the equivar iant  entire cyclic complex of  ~ /  and the ordinary  entire cyclic 
complex of  L 1(st, G, p). In this section, R ( G )  denotes the space of  central functions 
on G. 

4.1. THE EQUIVARIANT ENTIRE CYCLIC COHOMOLOGY OF C 

Let  ~ = C and let G be any finite group.  Since Aut (C)  = {1}, any group act ion on 
C is trivial. F o r f ,  e c g ~ ( d )  we set 

) ~ , ( g ) : = f , ( 1 ,  1 . . . . .  1)(g). (4.1) 

By linearity, f ,  is completely specified by 2n. Equivar iance o f f ,  means  that  2, is a 
central function on G. Simple computa t ions  show that: 
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(~) Any sequence {22~ }~o= 0 of central functions on G satisfying 

lim nl/Z{max 12,(g)l} 1/" = o, (4.2) 
n~co G 

determines a cocycle. A sequence {22k }~~ determines a coboundary only if 

2ak(g) = #ek-l(g) + 2(2k + 1)#2k+ ~(g), (4.3) 

for some sequence {/~2k + ~}~-0 of central functions obeying (4.2). 

(/~) A sequence {22k+ 1}~-o of central functions on G satisfying (4.2) determines a 
cocycle if 

22k_ 1 (g) + 2(2k + 1)22k+ l(g) = 0. (4.4) 

Such a sequence determines a coboundary only if 22k +1 = 0,  k = 0,  1 . . . . .  
Solving (4.4) we find that 

k! 
22~+ l(g) = ( - 1) k - -  21(g), (4.5) 

(2k + 1)! 

i.e. 

lim (2k + 1) 1/2 {max [22k+ l ( g ) l }  1/2k+ 1 = ( e / 2 )  1/2. 
k~oo G 

Therefore, we are forced to take 21 ~-0 and thus J t ~ ( C )  = 0. 
Let us now determine 24~(C). As a consequence of (4.2) the functions 

( 2 k ) !  ~ , , k 
2g(z) ,= ~ ( - 1) k ~ "~2ktg)z 

k=0 

and 

(4.6) 

(4.7) 

1) k (2k + 2)! 
#g(Z) :=  k=0 ~ ( -  " ~ - ~ - ~ ' ~  #2k+l(g)zk (4.8) 

are entire. Equation (4.3) is equivalent to 

2g(Z) = (z - 1)#g(z), (4.9) 

which has a solution if and only if 2g(1) = 0. Consequently, JF~(G) =~ R(G), with 
the isomorphism 

-Jt~ (C) ~ {f2n } --+ 2g(1) e R(G). (4.10) 

We have thus proved the following theorem. 

THEOREM. Let  G be an arbitrary finite group. Then ~ ( C ) = 0  and 
~ (C) = R(G). 

4.2. G = {0}. If G is the trivial group, then Jg~(sr reduces to the entire cyclic 
cohomology of a trivially graded Banach algebra [3] which we denote here by 
~ * ( ~ ' ) .  
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4.3. G = 7/2. For G = 7/2, the equivariant entire cyclic cohomology defined above is 
related to the cohomology group defined in [6] as follows. If  2 2 = {0, 1}, then 

po(a) = a, Pl (a) = a v, (4.11) 

and 

d6~'2(~4) -~ dr162 ') | (.~), (4.12) 

where Yf*(.M) is the ordinary entire cyclic cohomology of ~r [3] (see also Appendix 
K of [7]), and where H *  (~r is the cohomology group defined in [6]. 

4.4. TRIVIAL GROUP ACTION 

If G acts trivially on d ,  i.e., pg(a) = a, for all g ~ G and a ~ d ,  then Yg*(~4) can 
be expressed in terms of ~vf,(~r 

THEOREM.  Let G act trivially on ~4. Then 

J f * ( d )  ~ ~ * ( G )  |  (4.13) 

Proof. Since Ph = 1, also p* = 1, and as a consequence of (4.4), 

G ~ g --*f~(ao, a l , . . . ,  an)(g) (4.14) 

is a central function on G. Let (7 denote the set of equivalence classes of irreducible 
representations of G. for a e G, let ;G denote the character of o-. Let a e G and let 
f = {f, } e cg*(d) be an entire cochain on (the trivially graded Banach algebra) ~r 
Then 

~ * ( ~ )  |  ~ f |  ~ {f~ | } E (g*(~') (4.15) 

extends to an isomorphism of c g * ( d ) |  and ~ * ( ~ ) .  This isomorphism is 
easily seen to be a cochain homomorphism which implies (4.13). [] 

4.5. CONNECTION WITH L~(G, ~r 

Let now (~4, G, p) be a B-dynamical system. Since LI(G, ~4) is a trivially graded 
unital Banach algebra, we can consider its entire cyclic cohomology ~r d) ) .  
Let (p ~ R(G). We define a mapping qb~o " <6"(~4) --*cg*(L~(G, d ) )  by 

( % n L ) ( X o ,  Xl . . . .  , X~) 

:= ] f n ( X o ( h o ) ,  Pho(Xl  (hi)) . . . .  , Phohl . . .  hn _ l (Xt l (hr t ) ) ) (hohl  . . .  hrt ) x 

• ~o(hoh," 'hn)  d n+ lh. (4.16) 

LEMMA. The above homomorphism has the following properties: 

(~) @T = T(I), (4.17) 

(fi) ~ u  = Uq~, (4.18) 

(7) (I) V = Vqb. (4.19) 
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Proo f .  (~) We have 

(~n  T~L)(Xo, x , , . . . ,  xn) 

= f ( T , L ) ( x o ( h o ) ,  pho(X, (h , ) )  . . . . .  Pho',,'"h~ _ , ( x , ( h , , ) ) ( h o h l " ' "  h,,) • 

x q~(hohl �9 �9 �9 h . )  & +  lh 

= r  1)o XoCho,..., Phoh, ho_2(X. 1r • 

• ( h o h l  �9 . �9 h n ) ~ 9 ( h o h l . . . h n )  d n-- lh .  

Using the fact that  f .  is equivariant  and that  ~p is central  we can write this as 

fL(xn(h,,), ph,,(Xo(ho)) . . . .  P~o~o~ 2(x,,_ ,(h~_ ( 1)" 1 ) ) )  X 

• ( h ,h  o . . . h .  l)q~(h~ho . . . h , _  l)  & +  lh 

= ( T  n (~q~nfn)(Xo, X 1 . . . .  , Xn) .  

which is our  claim. 

(/3) We have 

( ~ n U ,  L ) (Xo ,  x ,  . . . .  , x ,  1) 

f (Unfn) (xo(ho) ,  Pho(Xl (h l ) )  . . . . .  Phoha...h . _2(Xn  l(hn 1))) • 

x (hohl . . . .  h ,  1)cp(hohl . . .  h~_ 1) d"h 

f s  . . . . .  p~o~, .~. ~(x,,_l(h,,  ~)), 1)(hohl ' " h , _ l )  • ( _ l ) - - I  

x ~p(hoh l " " " h .  1) & h  

f f,, (Xo (ho) . . . . .  Pho,,,-..,,o _~(x,-1 (hn-1)), Phoh,...h,,_, (6(h,))) • ( 1)" 1 

x ( h o h ~ ' " h , ) q ~ ( h o h , ' " h ~ )  d " + l h  

= ( u ~ ' ~ , , f n ) ( X o , X l  . . . . .  x~ 1), 

as claimed. 
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Using equivariance off , ,  and cyclicity o f  ~o we have 

(%,, v~L)(Xo, Xl . . . . .  x~+ 1) 

f(v~L)(xo(ho), pho(X,(hl)) . . . . .  p~o~,..~o(x,,+ l)))(hohl � 9  h , +  l) x 

x ~o(hoh 1 �9 �9 �9 h, + 1) & + 2h 

f f~ (Ph;2 ,  (x, +1 (h, +1 ))Xo (ho), pho(Xl (hi)), �9 � 9  Pho. �9 �9 h. _~ x ( 1) ~' +1 

X (xn(hn)))(hoh I . . .  hn+ 1)(p(h0hl  . - .  hn+ 1) d " + 2 h  

f fn(xn+ l(hrl-r-1)Phn -I-I (x0(h0))' Phn -F ,ho (xl(hl)) . . . .  ' ( -  1) n + l  

" " ,  Ph,, +,hoh,  ,(x~(h~)))(h~+ lho" " h~)q)(h,+ lho " " h~) dn+ 2h. 

Substituting ho~h,~+ lho we find that this is equal to 

( - 1) "+1 f f , ( x ~ + l  *p xo(ho), pho(Xl(hl)),..., Phoh,---h. l(xn(hn))) x 

x (hohl " h,)q~(hohl " '" h,)  & + l h  

= ( v , % , L ) ( X o ,  x l , . . . ,  x ,+ , ) ,  

as claimed. [] 

T H E O R E M .  For each (o e R(G), ~ " c g * ( d )  ~ cE*(L~(G, d ) )  is a continuous chain 
homomorphism which maps normalized cocycles into normalized cocycles. Conse- 
quently, �9 ~ defines a homomorphism 

0# ~ ' ~ *  ( ~ )  ~ ~f~*(L l (G, d ) ) .  

Proof. F r o m  (4.16), (2.3) and (2.7)~ 

(4.20) 

]~enfn)(Xo, Xl,- . - ,  Xn)[ ~< Hfn Nmax]~~ f i  ]lxj 111, 
j=O  

which implies that  ~ �9 ~*(~4)  ~ cg*(LI(G, sJ)) is continuous.  As a consequence of  

the lemma, 

~ = ~c3 ,  (4.21) 

i.e. ~ is a chain homomorphism.  This means that  q)~ projects to a homomorph i sm  

of  J f * ( d )  into ~t '*(L ~(G, .sue)). [] 

Remark. We conjecture that the induced hom o morph i sm  �9 �9 J { ' * ( d )  | R(G) 
oct~ d ) )  is in fact an isomorphism. 
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4.6. TENSORING sO' WITH End(U) 

Le t  ( • ,  U) be a f i n i t e -d imens iona l  r e p r e s e n t a t i o n  o f  G. W e  will  n o w  c o n s t r u c t  a 

cha in  h o m o m o r p h i s m  

L �9 ~ g ~ ( d )  ~ cg*(~4) | E n d ( ~ ) ) .  (4.22) 

F o r f n  e ( g ~ ( ~ )  we set 

(LJ , ) (ao  |  . . . .  , an | mn)(g) 

: = f ~ ( a 0 , .  �9 �9 an)(g) t r ( m o " " "  ml  U(g)). (4.23) 

Clear ly ,  Ln m a p s  c ~ ( . ~ )  in to  Z ~ ( s r  @ E n d ( Y / ) ) ,  as 

(Lnf~)(ph(ao) | Uh(mo), . . . , ph(an) | Uh(m,))(g) 

= f ,(ph(ao),  . . . , ph(an))(g) tr(Uhmom, . . . m,, Uh ~ Ug) 

= f ~ ( a o  . . . . .  an)(h lgh) t r ( m o ' ' ' m ~ U h  lgl,) 

= ( L J ~ ) ( a o |  a,, |  lgh). 

I t  is also c lear  t ha t  L : cg 6 ( d )  ~ c~ G ( .~  | End(~U)) is c o n t i n u o u s .  

L E M M A .  The above homomorphism satisfies 

(~) L T  = TL, (4.24) 

(fi) L U  = UL, (4.25) 

(7) L V =  VL. (4.26) 

Proof. W e  c o m p u t e  

(~) (L~Tnf . ) (ao |  . . . . .  an @mn)(g)  

= ( - 1 ) n f n ( p g  l(an), ao, . . . ,  a n - 1 ) ( g )  t r ( m o m t " ' m n U g )  

= ( - 1 ) ' f . ( pg  ,(a.) ,  ao . . . . .  a n _ l ) ( g )  t r (Ug_~mn Ugmoml" ' "  m.  1Ug) 

= ( - 1 ) n ( L . f . ) ( p g _ , ( a . )  | Ug ,(mn), a o |  . . . . .  an l |  l ) (g)  

= (T, ,L. f . )(ao | mo . . . . .  a. | m . ) ( g ) ;  

(fl) ( L . U . f . ) ( a o |  o . . . . .  a. l |  

= ( - 1 ) " -  l f .(a o . . . . .  a . _ , ,  1)(g) tr(mo �9 " �9 m. 1Ug) 

= ( - 1)n - l (Lnf~)(a ~ |  . . . .  , a .  _~ |  _ ~, 1 | 1)(g) 

= ( U n L J . ) ( a o |  l |  1)(g); 

(7) (L .  V J . ) ( a o |  . . . . .  a.+~ |  

= ( --  1) "+  Z,(Pg ~(an+ ~)ao, a~ . . . . .  a,,)(g) tr(mo �9 �9 ' mn+ 1 Ug) 

= ( - 1)" + xf.(pg_, (a., +~)ao, a~ . . . . .  an)(g) tr(Ug_~ m.  + ,  U g m o " "  m. Ug) 

= ( --  l )  n+ l(Lnf~)(pg 1(an+ 1)ao |  Ug-~(mn+ 1)mo, 

al |  �9 �9 �9 , a ,  | rn~)(g) 

= (V~Lnf~)(a o | t o o , . . .  , a, +1 | m,, +,)(g).  [] 



216 SLAWOMIR KLIMEK ET AL. 

An immediate consequence of this lemma is the following theorem. 

THEOREM. The mapping L : cd*(.~r --,cg~(d | is a continuous chain 
homomorphism of equivariant complexes which maps normalized cocycles into nor- 
malized cocyles. Consequently, L defines a homomorphism 

L '  ~ * ( d )  --, 2 # * ( d  | End(~U)). (4.27) 

5. Pairing with KoC(N) 

Let K ~ ( d )  be the equivariant Grothendieck group of the B-dynamical system 
( d ,  G, p). Recall that to define K0C(d) one considers algebras of the form 
d | End(~V), where (~V, U) is a finite-dimensional representation of G. We define 
K ~ ( d )  to be the set of suitable equivalence classes of G-invariant idempotents 
e e d | End(U) (i.e., (p | U)g(e) = e), see [12] for details. Our aim is to construct 
a pairing 

K g ( d )  • 2 / f~(d)  --* R(G), (5.1) 

generalizing the pairing constructed by Connes in [3]. 

5.1. DIRECT CONSTRUCTION 

Let L" r  | End('~')) be the chain homomorphism constructed in 
Section 4.6. For e E d | a G-invariant idempotent, and a normalized 
cocycle f e  cg~(~r we set 

{ e , f ) ( g )  .'= ~ ( - 1)* ~ (L2kf:k)(e, e , . . . ,  e)(g). (5.2) 
k = 0  

As a consequence of (3.34), this series converges absolutely. Furthermore, since e is 
G-invariant, 

{ e , f ) ( h  ~gh) = ( e , f ) (g ) ,  (5.3) 

i.e. 

{ e , f )  ~ R(G). (5.4) 

THEOREM. Formula (5.2) defines a map 

(., .) " K~(~')  • ~ a ( ~ )  ~ R(G) (5.5) 

such that e ~ ( e , f )  is additive and f - *  ( e , f )  is linear. 

To prove this theorem one has to show that {e , f } (g )  is independent of the choice 
of e representing a class in KoG(S]) and of the choice a normalized cocycle f 
representing a cohomology class in ~ ( s J ) .  [By Section 3.7 each cohomology class 
has a normalized representative.] The proof is a repetition of the proofs of Lemma 
7 and Theorem 8 in [3] and we do not reproduce it here. 
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Observe that if G = {0}, then (5.2) reduces to the pairing defined by Connes in 

[31. 

5.2. CONSTRUCTION USING JULG'S THEOREM 

The celebrated theorem of Julg's (see, e.g., [12, 1]) states that there is an isomor- 

phism 

j"  K g ( d )  ~- Ko(L ~(G, d)) .  (5.6) 

The i somorphism is defined as follows. If e is a G-invariant idempotent in 
sur174 End(~U), then j(e) 1 e Lp| u(G, ~r | End(V)) ~ L~(G, d )  | End(~U) defined 
by 

j(e)(g) :=e, g e G, (5.7) 

is an idempotent. [In fact j(e) %| j(e) = S e(p | u)h(e) dh = S e 2 dh = e =j(e) . ]  

I,et (-, .)* be the pairing 

( . ,  . ) ' K o ( L ~ ( G  , .~r x ~,~e(L~(a, d ) )  --+C. (5.8) 

THEOREM. With the above definitions 

(j(e), ~ f ) *  = fc (e,f)(g)~o(g) dg, (5.9) 

for f E cg~(d)  and ~o e R(G). 
Proof  By functoriality (Section 4.6) we can replace d | End(~)  by ~r Then 

(2k)' 
(j(e), @~of)* = L ( - 1) k ~ (~ f2k ) ( j ( e ) , j ( e )  . . . .  ,j(e)) 

k = 0  

=k=0 ~ ( - - 1 ) k ~ ; f 2 k ( e ' e  . . . . .  e) x 

x (hohl �9 "" hn)~o(hohl �9 "" h,) d" + lh 

= k=o ~ ( - 1 ) k ~  ff2k(e,e,...,e)(g)cp(g)dg 
= f (e,f)(g)~p(g) dg. [] 

jG 

A c k n o w l e d g e m e n t  
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