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Abstract. We extend the framework of entire cyclic cohomology to the equivariant context.
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1. Introduction

Entire cyclic cohomology was introduced by A. Connes [3] and studied further in
[6,5,8,4]. Its objective is to deal with aspects of noncommutative differential
geometry [2] (see also [7]) of, somewhat loosely speaking, infinite-dimensional
noncommutative spaces. Situations of this kind arise, for example, in studying
global aspects of supersymmetric quantum field theory. Entire cyclic cohomology is
believed to provide the right cohomological setup for studying topological invari-
ants arising from models of supersymmetric quantum field theory, such as the index
of the supercharge (which can be interpreted as a Dirac-like operator on loop
space).

In this paper, we are concerned with the equivariant version of entire cyclic
cohomology. We consider a triple (<7, G, p), where o/ is a Banach algebra, where
G is a group and where p: G — Aut(%/) is a G-action on .. Infinite-dimensional
examples of such a structure are provided, for example, by quantum field theory
models with ‘additional symmetries’. We believe that the natural cohomological
sctup for Witten’s elliptic genera computations [14] is provided by equivariant
entire cyclic cohomology of a suitable algebra 7 of functions on loop space with
the symmetry group G =U(1). In this paper, we define the equivariant cyclic
cohomology of (<7, G, p) and discuss its functorial properties. We construct a
natural pairing of the even cohomology group with the equivariant K-theory group
K§ (/). Finally, we discuss the connection between the equivariant entire cyclic
cohomology and the ordinary cyclic cohomology of the Banach algebra L)(G, o).

* Supported in part by the Department of Energy under Grant DE-FG02-88ER25065.
** Permanent address: Department of Mathematics, Polish Academy of Sciences, Warsaw, Poland.
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In the accompanying paper [9] we construct an equivariant entire cyclic cocycle,
namely the equivariant Chern character. The framework of [9] is more differential
geometric in spirit (rather than cohomological), and it assumes the existence of a
G-invariant Dirac operator.

For conceptual clairty and technical simplicity, we deal with the case of G finite.
We will discuss the case of a compact G in a future publication. The assumption
that o7 is a unital Banach algebra is the only relevant technical assumption. Our
constructions can be also carried through in a functorial way, if <7 is a unital
C*-algebra. In this case, the algebra L}(G, &) is replaced by the crossed product
G x,d.

2. B-Dynamical Systems and the Algebra L,(G, 2/)

In this section, we review the basic notions of the theory of Banach algebras with
group actions (see [11] for details and references to the original literature).

2.1. B-DYNAMICAL SYSTEMS

Let o/ be a unital Banach algebra. By Aut(s/) we denote the group of continuous
automorphisms of /. Let G be a finite group and let p: G —Aut(«/) be a
homomorphism of groups. Clearly, for all g € G and ¢ € «,

, (2.1)

where C is a constant. The triple (., G, p) is called a B-dynamical system.

It is straightforward to define functorial operations in the category of B-dynam-
ical systems and we will not elaborate on this point. In the following, we will need
one particular functor in this category which we now describe. Let ¥ be a
finite-dimensional vector space and let U: G — End(#") be a representation of G on
4. The algebra End(¥") of endomorphisms of ¥~ has a natural G-action given by

lp.(@] < Clla

U,(m):=U,mU, -, m € End(¥"). (2.2)
Then (o ® End(¥"), G, p ® U) is a B-dynamical system.

2.2. THE ALGEBRA L}(G, &)

We consider the space of all functions x: G — /. For two such functions x and y
we define

(x =, ¥)(g) =:J x(h)p,(y(h~'g)) dh, (2.3)
G
where for x: G - o/

J x(h) dh _ S x(h) (2.4)
G |G|hEG
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is the .«7-valued Haar integral. Here IG| denotes the order of G. The product (2.3)
is associative. Let L} (G, o) denote the space of functions x : G — &/ equipped with
this product. This algebra is

(o) unital, with the identity element

3(g) =={1’ e =e (2.5)

0, otherwise;

(f) Banach, with the norm

belhe= | 1o e 09

3. Equivariant Entire Cyclic Cohomology of a Banach Algebra

In this section, we introduce a cohomology framework generalizing the entire cyclic
cohomology of [3] (see also [6, 4, 5, 8]) to the equivariant context. We consider a
dynamical system (<, G, p).

3.1. THE SPACE Cu(«)

Let #(G) be the space of functions /: G —C and let £"(</, #(G)) denote the
linear space of n-linear mappings f: o/ X -+ x & > % (G) such that
|f]|=max sup |f(a,,...,a,)g|< 0. 3.1

geG o<1

We define a G-action on &"(</, #(G)) by

wif Nay, . ... a)(@)=f(pi(@). ..., pu(a,))g). (3.2)
Note that p} : L, F(G)) > LA, F(G)), as

loitf] < clf]- (3.3)
A mapping fe ", F(G)) is called G-equivariant if for all 1 e G

(if)a,...,a) (@ =f(a,...,a,) " 'gh). (3.4)

We define €% (/) to be the linear space of all G-equivariant /e Z"* Yo, F (G)).
We now define three basic complexes associated with €% (7).

3.2. THE STANDARD Z,-COMPLEX
Let Z, denote the cyclic group of # elements. We define for f e €% (/)

(Tnf)(aos Ay ey an)(g) ::(—l)nf(pgfl(an)s Ao, -« -y an—l)(g)~ (35)
Note that

IT.AI<Clf| and (0} T.f)ao, - - -, a,)(8) = (T.f Nao, - - -, a,)(h~'gh).
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ie. T,f e Cg (). The operator T, defines a representation of Z, ., on the space

& (o). In fact, all we need to check is
T+l =1
But, as a consequence of (3.4),

(TZ+ 1f)(a0’ aps -y an)(g)
= (=" (p,-1(ap), - - ., pg-1(a,))(g)
:f(am aps -+, Cln)(g),

which proves (3.6)
We define the norm operator

Y T
=0

i=

Nn =

and observe that, as a consequence of (3.6),
No =@+ 1DN,,

and
(I—-T)N,=N,I—-T,) =0.

Identities (3.9) lead naturally to the following standard Z, , ,-complex

Cut) — G2

I—T,.T l’-Tn

b(S) —— G(A)
This complex is acyclic, as we have the following homotopy equation:

1
Mn(l_Tn)_‘_“‘Nn:I)

n+1
where
M. = ! zn: 'T./'
n' n+1j:()J n*

3.3. THE ACYCLIC HOCHSCHILD COMPLEX

We define for f e €% ()

G Mo @)@ = T (D G20 1O

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Clearly, b, f € €27 (). It is well-known that b/, _ | b;, = 0. This leads to the complex

—1

o &
G G ) T G A) o G l)

(3.14)
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The complex is acyclic with the homotopy operator U, : €%(sf) > 6% (),

(Unf)(aO’ sy 1)(g) ::(_1)"7 1f(a0’ SRR (P 1)(g)9
satisfying
by U, +U,pib,=1

3.4. THE HOCHSCHILD COMPLEX
We set for fe €%4()
(an)(ao, e an+l)(g) :Z(*l)n+]f(pg—1(an+ 1)a05 Ay ey an)(g)s
and note that
\w.rl<clfl
and
XV Nags - -5 @y 1 X&) = (Vf Wag, - - -5 @y ) gh),
ie. V. fe €% (/). Consider the operator b, : €%(#) > 5+ (),
b,=b,+V,.

(3.15)

(3.16)

(3.17)

(3.18)

The operator is the equivariant version of the Hochschild coboundary operator. In

fact, we claim that
bn + lbn = O
To prove this we compute

(bn+lbnf)(a05 LR an+2)(g)
:(b;z+1Vn + Vn+1bl/1 + Vn+11/n)f(a07 e ,an+2)(g)

n+1

=Y (=), Nag, ... Sy, G, 0)(8) F

j=0

+(_1)n+2(b/f)(pg*l(an+2)a07 Ays vy an+1)(g) +
+ (_1)n+2(an)(pg‘1(an+2)a0: aps - e an+l)(g)
= (_1)n+1f(pg*1(an+2)a07 ay, a5 - s an+1)(g) +

(3.19)

+(=pr*! Z (—l)jf(pgfl(an+2)a()aa1, BRI T/ P 2, N8+

=1
+f(pg—1(an+ lan+2)a03 (LTI an)(g) +
+(_ 1)n+2f(pg*1(an+2)(a0! Ay, dyy .0y, an+l)(g) +

(=12 Y (1 Pyt (@ Yo s e s s 1o e s NE) —

Jj=1

_f(pgfl(an+ lan+2)a05 Ay, - - vy an)(g) =0.
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This yields the complex
by 1 by
o G () (A —— G N (A) — (3.20)

With the help of the above basic complexes we define the following cyclic
complexes [10, 2].

3.5. THE EQUIVARIANT CYCLIC COMPLEX
We first observe that the following relations hold

b (1-T,)=(1-T,,)b, (3.21)
and

N, 1b,=0b,N,. (3.22)

The proof of (3.21) and (3.22) is a standard consequence of the following identities
[13]:

b= Y T, 97V, T, (3.23)
j=0
and
n+1
b,=Y T, YOV, T, (3.24)
j=0

Also, note that
U, V,=—-1 (3.25)
and
b, U, +U,, b,=0. (3.26)
To prove (3.25) we compute
(U1 Vaf Nag, - - - a,)(8)
=(=D"V.f Nao, - . ., a,, 1)(g)
= (=D (o1 (Dag, ay, - .., a,)8)
= —f(a9, - -, a,)8).
Equation (3.26) is a consequence of (3.16) and (3.25)
b, U, +U, b, =b, U, +U, b, +U,,  U,=1-1=0.
We now consider the operator B,: €% () — €. (/) given by
B,:=N, ,U,(1—-T,). (3.27)
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We claim that

B, B,=0 (3.28)
and

b, B,+B,,,b,=0. (3.29)
In fact, from (3.9)

B,_,B,=N,

n

-ZUnAI(l - Tn—l)anlUn(l - Tn) =0’
which is (3.28). To prove (3.29) we use (3.16)

bn—an +Bn+1bn
:bn~1Nn—lUn(1 - ’Tn) +NnUn+l(l - ]111+1)bn
:Nnb;z—IUn(l - Tn) +NnUn+lbr/1(1 - Tn)

=N, (b, U, + U, 1)1 = T,) = 0.

This leads to the following complex: Set
nf2
D ®4UA), if n is even,
CE(A) =% (e (3.30)
@ %' («); if nis odd,
j=0

and define an operator 8, : €5"(#) > € 5" () by
O (fos fos -+ s Ja) = (bofo + Bafa, bafo+ Bafas - - boifarc)s

O s s Sor oo fows )= Bufis bufi 4 Bafar by S O
As a consequence of (3.28), (3.29)
8,..0,=0 (3.32)
and, thus,
..____,(gén(&/)i(gcs(n+l)(£{)_,... (3.33)

is a complex. It is the equivariant cyclic complex.

3.6. EQUIVALENT ENTIRE CYCLIC COMPLEX

Let ¥;(2/) be the space of sequences
f={}ie0 [,€66(H)

such that

lim n'2|f, |V =0. (3.34)
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We write
CalA) =CL(A) DECG(A), (3.35)

where ¢ (/) consists of the sequences {f5, , |}, obeying (3.34), whereas €% (/)
is the space of all {f5, }*_, satisfying (3.34).

The spaces €% (), €5 () and ¥ () are Fréchet space with the following set
of norms. Forr =1,2,3,... we set

|f Hr==n§0 mD2[ 1, . (3.36)

For fe €%(sf) we set
aof::(Bl.fl: bifi+ Byfs, .o by far—1 +sz+1f2k+1= co) (3.37)
It is easy to verify that

1@of Vot | < 2k + D[l fose || + 4k | foic 1|

which implies that 8, : €% () — €% () is a continuous homomorphism. Likewise,
for fe €% (), we set

Ouf=(bofo + Baofa, brfs+ Bafas - - - s bowfok + Bog w2 for s 25 - - 2)- (3.38)
Then

1@ef Yore 1 | <20k + 1)[|f |6 + 202k + D) fae 4 2

1e., 0,: €5(HA) > €% () is a continuous homomorphism. We also note that

il

3

0,0, =0,0, =0. (3.39)
The cohomology of the complex

@o(st) s G ()

b T ] l & (3.40)
§(f) —— €5(A)

is called the equivariant entire cyclic cohomology of («, G, p). The corresponding
cohomology groups are denoted by # % () and # 5 ().

The operations 7, N, M, U and V defined above can be naturally defined on
(). We set

Tf=Tofo. T f1s - s Tpfur oo s (3.41)

etc., and verify easily that the corresponding operations are continuous homomor-
phisms of the entire complex. Also, to simplify the notation, we will suppress the
subscripts in d, and 0, and write simply ¢.
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3.7. NORMALIZED COCYCLES

An equivariant entire cocycle f is normalized (in the sense of Connes [3]), if

Bof = AB,f, (3.42)
where
By:=U(1—-T), (3.43)
and where
)y = N (3.44)
n+1

We prove below that every equivariant entire cohomology class has a normal-
ized representative. Our proof is somewhat different from Connes’ original
proof. The referee of this paper called our attention to the fact that a very similar
construction (in the context of Z, graded entire cyclic cohomology) appeared in

[8].
LEMMA. A cocycle f €€ ; () is normalized if and only if
(1 —=T)YB,f=0. (3.45)

Proof. Applying 1 — T to (3.42) and using (3.9) we obtain (3.45). Suppose now
that f satisfies (3.45). Then using (3.11),

(I — A)Bof = M(1 — T)B,f = 0. 0l

THEOREM. Every equivariant entire cohomology class has a normalized representa-
tive.
Proof. Let f be a cocycle. Set

g:=MU( —-T)f=MB,f (3.46)
and

fr=f — 0g. (3.47)
Clearly, /"€ €;(/). We claim that f” is normalized. By the lemma, we have to

show that (1 — T)B,f’" =0. But since (1 — T)B =(1 — T)NB, =0, this is equivalent
to showing that

(1 = T)Byf — (1 — T)BobMByf =0 (3.48)

(Note that (3.48) corresponds to the property v:B,(1 —A) =0 in Remark 1.8 of
[8].)
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The second term on the left-hand side of (3.48) can be written as

~(1=T)U(1 — T)bMB,f

= —(1 = T)Ub'(1 — T)MB,f
—(1=T)Ub(1 — T)MB,f + (1 — T)UV(1 — T)MB, f
= —(1=T1)Ub(1 = A)Bof — (1 = T)(1 — A)B,f
—(I=T)Ub(1 — A)Byf — (1 - T)B,.

Il

Il

The last term in this identity cancels the first term in (3.48) and thus (3.48) is
reduced to showing that

(1 =T)UB(1 — A)Byf = 0. (3.49)
But f'is a cocycle, i.e. bf + Bf =0 and, thus,

AByf =0. (3.50)
Moreover,

(1 - TYUbB,f

= (1= T)UbU(1 — T)f

=(1=T)UV'U(1 = T)f — (1 — T)U(1 — T)f
(1= T)U%' (1= T)f = (1 — T)UX1 — T)bf
= —(1—T)U¥1 - T)Bf =0,

as (1 — T)Bf = (1 — T)NB,f =0. This and (3.50) imply (3.49). 0

4. Examples and Computations

This section contains a number of examples of equivariant entire cyclic cohomolo-
gies. Of particular importance for the constructions of Section 5 is example 4.5 of
this section. We show in this example that there is a cochain homomorphism
between the equivariant entire cyclic complex of ./ and the ordinary entire cyclic
complex of L'(<7, G, p). In this section, R(G) denotes the space of central functions
on G.

4.1. THE EQUIVARIANT ENTIRE CYCLIC COHOMOLOGY OF C

Let o/ = C and let G be any finite group. Since Aut(C) = {1}, any group action on
C is trivial. For f, € ¥% (/) we set

A(Q) =L (1, 1, ., 1)(9) (4.1)

By linearity, f, is completely specified by 4,. Equivariance of f, means that A, is a
central function on G. Simple computations show that:
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(«) Any sequence {iy }i°-, of central functions on G satisfying
)m;wﬂm%qu@nW=o, (4.2)
determines a cocycle. A sequence {/,; }_, determines a coboundary only if
Aoie(8) = Mok — 1 () + 22k + Dty 1(2), (4.3)
for some sequence {{, . }7-o of central functions obeying (4.2).

(B) A sequence {A . }7_o of central functions on G satisfying (4.2) determines a
cocycle if

Aog—1(8) + 22k + DAy, 1(g) =0. (4.4

Such a sequence determines a coboundary only if A, ., =0, k=0,1,....
Solving (4.4) we find that

. k!
Ao+ 1(8) =(—1) mll(g), (4.5)
1.e.
klim (2k + 1) {max Mzm 1(g)|}”2"+1 =(e/2)'". (4.6)

Therefore, we are forced to take 4, =0 and thus #%(C) =
Let us now determine s#%(C). As a consequence of (4.2) the functions

- 2k
o= ¥ (-1 O (47)
and
(2K +2
K@= 3 (~D S (02 (49)

are entire. Equation (4.3) is equivalent to

Ae(2) = (z = Dy, (2), (4.9)

which has a solution if and only if 4,(1) = 0. Consequently, # &(G) = R(G), with
the isomorphism

HG(C) 2 {2} = A1) € R(G). (4.10)
We have thus proved the following theorem.

THEOREM. Let G be an arbitrary finite group. Then HL(C)=0 and
H ¢(C) = R(G).

4.2. G ={0}. If G is the trivial group, then # %(</) reduces to the entire cyclic
cohomology of a trivially graded Banach algebra [3] which we denote here by
HHA).
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43. G =Z,. For G = Z,, the equivariant entire cyclic cohomology defined above is
related to the cohomology group defined in [6] as follows. If Z, = {0, 1}, then

pol@) =a,  pi(a)=4d", (4.11)
and
HL(A) = A A) D HYE (A), (4.12)

where #”*(o/) is the ordinary entire cyclic cohomology of <7 [3] (see also Appendix
K of [7]), and where H% (o) is the cohomology group defined in [6)].

4.4. TRIVIAL GROUP ACTION

If G acts trivially on 7, i.e., p,(a) =a, for all g € G and a € o/, then # %(s/) can
be expressed in terms of # *(</).

THEOREM. Let G act trivially on of. Then
HE(A) = A *G) ® R(G). (4.13)
Proof. Since p, =1, also py =1, and as a consequence of (4.4),

G ENY _>f;1(a0= Aiy v vy an)(g) (414)

is a central function on G. Let G denote the set of equivalence classes of irreducible
representations of G. for ¢ € G, let y, denote the character of 0. Let ¢ € G and let
f={f,} € €*(</) be an entire cochain on (the trivially graded Banach algebra) .«¢.
Then

CHA)ORG)3f Yy = {f, B, } € CE(H) (4.15)
extends to an isomorphism of ¥*(«/) ® R(G) and €%(o/). This isomorphism is
easily seen to be a cochain homomorphism which implies (4.13). 0

4.5. CONNECTION WITH L1(G, o)

Let now («, G, p) be a B-dynamical system. Since L)(G, /) is a trivially graded
unital Banach algebra, we can consider its entire cyclic cohomology # *(L}(G, <7)).
Let ¢ € R(G). We define a mapping @, : 6% () - € *(L,(G, «)) by

(‘qufn)(xm X1s e ens xn)
= fﬂ(xo(ho)a pho(xl ((29) R Phoh| -~ h, _l(xn(hn)))(hohl k) X

x @(hohy - - hy,) A" h. (4.16)

LEMMA. The above homomorphism has the following properties:
() T =TO, (4.17)
) oU=UO, (4.18)

(G) OV =Va. (4.19)
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Proof. (¢) We have
((I)qm Tnf;z)(xo’ Xy e v xn)

= J‘(Tn.fn)(x()(ho)v pho(xl(hl))e v Phghyh, _,(xn(hn))(hohl o hy) X

x o(hohy - -+ h,) d"* h

=(-1)" an(Phnl(xn(hn))o Xolhos -« s Pughy-n, #Z(anl(hnA 1)) x

X (hohy + - - h)olhohy - - - h,) &7 1.

Using the fact that £, is equivariant and that ¢ is central we can write this as

(=D~ jfn(xn(hn), P, X0 (Bo))s - - Py ony o (Xn 1y 1)) X

X (huho -~ by (oo - - by 1) A" R
= (Tn (I)q)nf;1)(x07 Xisenns xn)'

which is our claim.

(B) We have
(@4 Uy fi) (%01 X1 - 3 X 1)

= J(Unfn)(xo(ho), ProX1(h1))s - s Pigi oy X 1 (B 1)) X
x (hohy, - - by Dplhohy - by ) dh

=(=-1"! jfn(xo(ho), s Phghyny w1ty 1)), Dhohy -+ - by 1) X
< @(hohy -+~ h, 1) d"h

=(=D"! ffn(xf)(ho), s Paghyty 5 n (e 200y Py, _ (0(h,))) X
x (hohy - hy)p(hoh, -+ ) &'+ 1h

= (Unq)(pllj;l)(XO’ xlo sy xnf 1)7

as claimed.
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(y) Using equivariance of f, and cyclicity of ¢ we have

(q)(pn ann)(xm Xiseeos xn+l)

= j(ann)(xo(ho), Pro X1 (h))s s Pigh oty (X ONohy + = By 1) X
x @lhohy -+ h, ) d"+?h

=(-n~! an(ph;gl(xnﬂ(hw NXoo)s Pro( Xy (1)) - oy Phg o,y X
X (X (B )Nhohy =+ by Dp(hohy - -~ hy 4 ) A" 2h

=(=D"! ffn(xw 1 Dn, o o(ho))s ps, i (1)), -

s Phy gt Con BBy ho - b)), o ho - By) AT 2R

Substituting 4, — h, ! h, we find that this is equal to

(=Dt fﬂ(xn+l *p xo(ho)s pho(xl(hl))v - oo Phohyhy, ,l(xn(hn))) X
X (hohy - -~ hy)plhohy - - - b,) A" 'h
= (an)wnfn)(xm xla sy xn+ 1)9
as claimed. O

THEOREM. For each ¢ € R(G), ®,,: €& (/) - C*(L (G, A)) is a continuous chain
homomorphism which maps normalized cocycles into normalized cocycles. Conse-
quently, @, defines a homomorphism

O, : H () > HHLNG, o). (4.20)
Proof. From (4.16), (2.3) and (2.7),

Danfi)otos 12 %) < 1y Imaxlo(@)] TT I -

which implies that @, : €% (/) - €*(L,(G, &) is continuous. As a consequence of
the lemma,

20, = ®,0, (4.21)

i.e. @, is a chain homomorphism. This means that ®, projects to a homomorphism
of #E(4) into H*(LL(G, «)). O

Remark. We conjecture that the induced homomorphism @ : # (/) ® R(G) —
A *(LL(G, o)) is in fact an isomorphism.
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4.6. TENSORING  WITH End(7")

Let (77, U) be a finite-dimensional representation of G. We will now construct a
chain homomorphism

L:BE() - CE(A) ®End(¥). (4.22)
For f, e €% (/) we set
(Lnf;t)(ao ®m0’ sty ®mn)(g)
=fuldg, - . ., a,)(8) tr(mg - - - m U(g)). (4.23)
Clearly, L, maps €% (=) into €%(«/ @ End(¥")), as
(Ltzfn)(ph(ao) ® Uh(mo)a L] ph(an) ® Uh(mn))(g)
=f;1(p/1(a0)’ IR ph(an))(g) tr((]hn/lornl T, Uh*l Ug)
:fn(aO: v an)(hilgh) tr(’,nO Tooomy, Uh*lgh)
= (Lnf;z)(aO ®m05 -y ay ®mn)(h71gh)'
It is also clear that L : € (of) > € (/ ® End(?")) is continuous.
LEMMA. The above homomorphism satisfies

(x) LT =TL, (4.24)
(B) LU =UL, (4.25)
() LV =VL. (4.26)

Proof. We compute

(0 (LaT, Sl ao®@my, ..., a, @m,)(g)
=(=D"ulpg-a,), a0, . - -, 4, 1 )(g) tr(mgm, -+~ m,U)
=(—D"(pg—a,)s ao, - - - ay -1 Ng) tt(Ug—-im, Ugmom, - - - m, _U,)
=(—D"L.S ) —1(a,) ® U, (m,), ag®mg, . .., a, @ m, _)(g)
=(T,L.f.)a®my, ..., a,&m,)g);

B (LU.f)a®my, ... a6, 1 @m,_)g)
=(=D""flao, - - -, au_ 1, D(g) tr(mg -~ -, U,y)
= (=" (LS ®mg, ..., 4,1 ®m,, 1, 1®1)(g)
=U, L./ )a®mg, ..., a, @m, )(8);
W LV SN ao®@mg, ... 4, @M, 1))
=(=D"* Ifn(ngl(an+1)a0’ ay, ..., a,)g) te(mg - mn+lUg)
=(_l)n+lf;z(pg'1(an+l)a07 a,...,a,)g tr(Ug~1mn+1Ugmo T ang)
= (= D" YL fu )Py 1(@s 1) ® U, —1(m,, 1 Jmg,
a@my,...,a, dm,)Ng)
=V, L. ae®@mq, ..., a, @M, )8 0
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An immediate consequence of this lemma is the following theorem.

THEOREM. The mapping L:€¥%(/) > €E(f Q End(¥")) is a continuous chain
homomorphism of equivariant complexes which maps normalized cocycles into nor-
malized cocyles. Consequently, L defines a homomorphism

L:#E(A) > HE(S QEnd(¥)). (4.27)

5. Pairing with K§ (/)

Let K§(</) be the equivariant Grothendieck group of the B-dynamical system
(#, G, p). Recall that to define K{(o/) one considers algebras of the form
o @ End(¥"), where (7", U) is a finite-dimensional representation of G. We define
K§(s7) to be the set of suitable equivalence classes of G-invariant idempotents
e€of @End(7") (ie., (p ® U),(e) = e), see [12] for details. Our aim is to construct
a pairing

K§ (o) x # () — R(G), (5.1

generalizing the pairing constructed by Connes in [3].

5.1. DIRECT CONSTRUCTION

Let L:6¢(&)— %% («/ @ End(?")) be the chain homomorphism constructed in
Section 4.6. For ¢ € o/ ® End(7"), a G-invariant idempotent, and a normalized
cocycle fe €5 () we set

& i)
=3 (-0 S  Taee. o) (52

As a consequence of (3.34), this series converges absolutely. Furthermore, since e is
G-invariant,

e, fH(h~'gh) =<e, /() (5.3)
ie.

le.f> € R(G). (5.4)
THEOREM. Formula (5.2) defines a map

() KG () x HG(A) - R(G) (5.5)

such that e —<e, [ is additive and f— {e, f) is linear.

To prove this theorem one has to show that e, f >(g) is independent of the choice
of e representing a class in K§(o/) and of the choice a normalized cocycle f
representing a cohomology class in # % (7). [By Section 3.7 each cohomology class
has a normalized representative.] The proof is a repetition of the proofs of Lemma
7 and Theorem 8 in [3] and we do not reproduce it here.
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Observe that if G = {0}, then (5.2) reduces to the pairing defined by Connes in
[3].

5.2. CONSTRUCTION USING JULG’S THEOREM

The celebrated theorem of Julg’s (see, e.g., [12, 1]) states that there is an isomor-
phism

JK§() = Ko (L (G, ). (5.6)
The isomorphism is defined as follows. If e is a G-invariant idempotent in
o ®End(¥"), then j(e) € L} g (G, o ®End(¥")) = L)(G, &) @ End(¥") defined
by

Jje)g)=e, gegaG, (5.7)

is an idempotent. [In fact j(e) *,5, j(e) = [ e(p @u),(e) dh = e’ dh=e =j(e) ]
Let <-, - >* be the pairing

o0t Ko(L (G, ) x AL, (G, o)) > C. (5.8)

THEOREM. With the above definitions

(@), @, f 5% = L e, f)(&o(g) dg. (5.9)

for fe €% () and ¢ € R(G).
Proof. By functoriality (Section 4.6) we can replace .« ® End(¥") by /. Then

2k)!
O @, 5000, @, - j0)

GO0, = 3 (=1

=kio(—l)k (zkl?!Jka(e, e,...,e) x

X (hohy - - - h)p(hohy - -+ h,) d" " 'h

&, 2k)!
= kgo ( - l)k (_k—')_ J‘ka(e: €, ..., e)(g)q)(g) dg

= f (e, /X(@)e(g) dg. -
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