On Convergence of Inverse Functions of Operators*

ARTHUR JAFFE, ANDRZEJ LESNIEWSKI, AND KONRAD OSTERWALDER

Harvard University, Cambridge, Massachusetts 02138

Communicated by L. Gross

Received September 25, 1987

We study sequences \(\{A_n\} \) of self-adjoint operators on a Hilbert space \(\mathcal{H} \). We give a sufficient condition on a function \(f \) and on the \(\{A_n\} \) such that \(f(|A_n|) \to f(|A|) \) ensures \(A_n \to A \).

Let \(\{A_n\}_{n=1}^{\infty} \) denote a sequence of self-adjoint operators on a Hilbert space \(\mathcal{H} \) and let \(F \) be a real-valued function on \(\mathbb{R} \). We study here the question of whether \(T_n = F(A_n) \) converging to a self-adjoint limit \(T \) ensures that \(A_n \) converges to a self-adjoint limit \(A \). We are especially interested in the case for which \(F \) is not injective. In that case, we also require some additional condition on the convergence of \(\{A_n\} \) in some weak sense, from which we conclude the convergence of \(\{A_n\} \) in a stronger sense. More specifically, we introduce the notion of heat kernel regularization: this is obtained by regularizing the bilinear form \(A_n \) with a heat kernel \(K_n = \exp(-T_n) \). The regularized operator is \(K_n A_n K_n \). A norm convergent heat kernel regularization leads to a norm convergence of the resolvents of \(A_n \).

Let us start with a simple, motivating example. Let \(\mathcal{X} = \mathcal{X} \oplus \mathcal{X} \) be a direct sum of isomorphic subspaces, and let \(A_k \) have the off-diagonal form

\[
A_k = \begin{pmatrix}
0 & Q^* \\
Q_k & 0
\end{pmatrix}
\]

with respect to this decomposition. The function \(F(t) = t^2 \) gives rise to the positive operator

\[
A_n^2 = \begin{pmatrix}
Q_n^* Q_n & 0 \\
0 & Q_n Q_n^*
\end{pmatrix}.
\]

It is clear that while \(A_n \) is a square root of \(A_n^2 \), it is not a square root defined by the spectral theorem, which is diagonal with respect to \(\mathcal{H} = \mathcal{X} \oplus \mathcal{X} \).

* Supported in part by the National Science Foundation under Grant DMS/PHY 86-45122.

Permanent address: Mathematics Department, ETH Zentrum, Zürich.
The convergence $A_n^2 \to A^2$ does not in general yield $A_n \to A$, even if \mathcal{H} is finite-dimensional. This concrete example [2] led us to the more general question.

We are concerned here with norm-resolvent convergence. Let $R_n(z) = (A_n - z)^{-1}$ be the resolvent of A_n.

Definition 1. The sequence of self-adjoint operators $\{A_n\}_{n=1}^\infty$ has a norm-resolvent limit A if for all z with $\text{Im } z \neq 0$, the operators $R_n(z)$ converge in norm to the resolvent $R(z)$ of a self-adjoint operator A.

Let us denote the norm-resolvent limit A of A_n by $\lim_{n \to \infty} A_n$. The two following results are well known.

Proposition 2. [1] If $R_{n}(\pm t)$ converge in norm to operators R_{\pm} with densely defined inverses, then R_{\pm} is the resolvent of a self-adjoint operator A and $\lim A_n = A$.

Proposition 3. (Theorem VIII.20 of [3]). Let g be a continuous function which vanishes at ∞. Then $\lim A_n = A$ ensures that as $n \to \infty$,

$$\|g(A_n) - g(A)\| = o(1).$$

In this note we look for a partial converse to Proposition 3. We study functions $g(t) = f(t)$, where f is well behaved:

Definition 4. A continuous function $f: \mathbb{R}_+ \to \mathbb{R}_+$ is well behaved if f is monotonic and $\ln t \leq f(t)$ for t sufficiently large.

For any well-behaved f we define a function from self-adjoint operator A to "heat kernel" contraction semigroups K^β on \mathcal{H} by the map

$$A \mapsto K(A)^\beta = \exp(-\beta f(|A|)), \quad \beta \geq 0.$$

Let $K_n = K(A_n)$ be the semigroup for A_n. Since f increases monotonically to ∞, f has a continuous inverse. Also $A_n K_n$ is a bounded operator, with $\|A_n K_n\|$ bounded uniformly in n. In particular, if $\delta A_{nm} = (A_n - A_m)^{-1}$ is the closure of $A_n - A_m$, then $K_n \delta A_{nm} K_m$ is bounded for all n, m. Note that with our assumptions on f, the sequence $\{K_n A_n K_n\}$ is norm convergent if and only if $\|K_n K_m\| = o(1)$ as $n, m \to \infty$.

Definition 5. The sequence $\{A_n\}$ has a convergent heat kernel regularization with respect to f if

$$\|K_n \delta A_{nm} K_m\| = o(1),$$

as $n, m \to \infty$.

Our main result is the following:

Theorem 6. Let f be well behaved and let $\{A_n\}$ be a sequence of operators with a convergent heat kernel regularization with respect to f. Let $f(|A_n|)$ have a norm-resolvent limit. Then there exists a self-adjoint operator A such that

$$T = \text{n.r. lim } f(|A_n|) = f(|A|),$$

and

$$\text{n.r. lim } A_n = A.$$

Lemma 7. Let $S_n = (A_n + i)^{-1}$. Let $\hat{\partial}_n = \partial(|A_n|)$, where $\partial: [0, \infty) \to [1, \infty)$ is a monotonic, continuous function tending to ∞, and satisfying $\partial(\lambda) = O(\lambda)$. Then $\hat{\partial}_n S_n$ is bounded uniformly in n.

Proof. By the spectral theorem, $|A_n|$ commutes with S_n, so the magnitude of the spectrum of $\hat{\partial}_n S_n$ is

$$|\lambda + i| \partial(|\lambda|)$$

for $\lambda \in \text{spectum } A_n$. Since $\partial(|\lambda|) = O(|\lambda|)$, it follows that (1) is bounded. The bound is independent of n, and ensures $\|\hat{\partial}_n S_n\| \leq \text{const}$.

Proof of the Theorem. The resolvent identity on the range of K_n is

$$\delta S = S_n - S_m = -S_m \delta A_{nm} S_n.$$

Let $E_n(\lambda)$ denote the spectral projection of $f(|A_n|)$ onto the subspace $f(|A_n|) \leq \lambda$. We study

$$\delta S = \delta S E_n + \delta S(I - E_n).$$

Using the lemma, as $\lambda \to \infty$, and letting $\hat{\partial}_n^{-1}$ denote the operator inverse of $\hat{\partial}_n$ (rather than the inverse function),

$$\|S_n(I - E_n)\| = \|S_n \hat{\partial}_n \hat{\partial}_n^{-1}(I - E_n)\| = O(1) \|\hat{\partial}_n^{-1}(I - E_n)\| = o(1).$$

uniformly in n. Also

$$S_m(I - E_n) = S_m \hat{\partial}_m \hat{\partial}_m^{-1}(I - E_n)$$

$$= S_m \hat{\partial}_m (\hat{\partial}_m^{-1} - \hat{\partial}_m^{-1})(I - E_n) + S_m \hat{\partial}_m \hat{\partial}_m^{-1}(I - E_n).$$

Since $f(|A_n|)$ converges in the norm resolvent sense by hypothesis, it
follows that \(h(|A_n|) \) is norm-convergent where \(h \) is any bounded function which vanishes at \(\infty \). In particular, \(\|\partial_n^{-1} - \partial_m^{-1}\| = o(1) \) as \(n, m \to \infty \). Thus
\[
\|S_n(I - E_n)\| = o(1) + O(1) \|\partial_n^{-1}(I - E_n)\|
\]
\[
= o(1) + o(1).
\]
(3)

From (2) to (3) we infer that given \(\varepsilon > 0 \), we can choose \(\lambda_0, N \) such that for \(i > \lambda_0 \) and \(n, m > N \),
\[
\|\delta(I - E_n)\| \leq \varepsilon.
\]
(4)

Likewise, taking the adjoint, and exchanging \(n, m \),
\[
\|(I - E_m)\delta S\| \leq \varepsilon.
\]
(5)

We have
\[
\delta S E_n = E_m \delta S E_n + (I - E_m) \delta S E_n,
\]
so from (4) to (5) we conclude
\[
\|\delta S\| \leq 2\varepsilon + \|E_m \delta S E_n\|.
\]
(6)

Now
\[
E_m \delta S E_n = -S_m E_m \delta A_{nm} E_n S_n
\]
\[
= -S_m K_m E_m K_m \delta A_{nm} K_n E_n K_n^{-1} S_n
\]
and
\[
\|E_m \delta S E_n\| \leq e^{2\varepsilon} \|K_m \delta A_{nm} K_n\|.
\]

Using the hypothesis, we choose \(n, m \) sufficiently large that
\[
\|E_m \delta S E_n\| \leq \varepsilon,
\]
(7)

By (6) and (7)
\[
\|\delta S\| \leq 3\varepsilon.
\]

and hence there exists \(S \) such that \(\|S_n - S\| \to 0 \). We can repeat the same estimates with \(S_n^* \) to conclude that \(S_n^* \to S^* \).

We wish to conclude that \(S \) is the resolvent of a self-adjoint operator \(A \). It is sufficient to show that \(S \) and \(S^* \) have densely defined inverses, and to use Proposition 2. Let \(g(\cdot) = (f^{-1}(\cdot)^2 + 1)^{-1} \). Since \(f \not\to \infty \) and \(f \) is invertible, we infer that \(f^{-1} \not\to \infty \). Thus \(g(\cdot) \not\to 0 \) at infinity. By
Proposition 3. \(g(f(|A_n|)) = (A_n^2 + I)^{-1} \) has a limit \((f^{-1}(T^2 + I))^{-1} \), where \(T = \text{n.r. lim } f(|A_n|) \). But \(S_n^* S_n = (A_n^2 + I)^{-1} = S_n S_n^* \). Thus

\[
\lim_{n \to \infty} S_n^* S_n = \lim_{n \to \infty} S_n S_n^* = (f^{-1}(T^2 + I))^{-1} = S^* S = SS^*
\]

has a dense range and a densely defined inverse (with domain \(D(f^{-1}(T^2)) \)). Hence \(\text{Range}(S) = \text{Domain}(S^{-1}) \) and \(\text{Domain}(S^*-1) \) are dense. This completes the proof of the theorem.

REFERENCES