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I. INTRODUCTION

In 1956, A. Grothendieck used the methods and ideas of his theory of
tensor products of topological vector spaces to develop a theory of
Fredholm determinants on Banach spaces. This work [G] attracted little
attention, even though it is by far the most profound study in the subject
of functional determinants. The theory of Fredholm determinants on
Hilbert spaces is conceptually and technically easier than the Banach space
theory, but it is also less natural and often insufficient for applications, see,
e.g. [RS].

In this paper we are concerned with the theory of Pfaffians on Banach
spaces. This extends the theory of infinite dimensional Pfaffians, previously
developed in the context of Hilbert spaces [PS,JLW]. Recall that if
A={A4,} is a skew symmetric n x n matrix, then its Pfaffian is defined by

(2kk!)71 Z (~1)”An(l)n(Z)...An(Zkfl)n(Zk)v if n=72k,
Pf(A)= ne Su (I.1)
0, if n=2k+1,

where S, is the group of permutations of 2k elements. From the point of
view of infinite dimensional analysis, the relative Pfaffian [JLW, PS] is a
more appropriate object to study. Let 4 and B be two skew symmetric
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PFAFFIANS ON BANACH SPACES 315

2k x 2k matrices with A4 invertible. Then the relative Pfaffian Pf(A, B) can
be represented as

Pf(4~'—B)
By =———— 1.2
PI(A, B)i=—pr (12)
The relative Pfaffian has the property that
Pf(A4, B)? = det(I — AB). (1.3)

Definition (1.2) motivates our general definition of the relative Pfaffian.
As a typical example [JLW ], we consider an unbounded, skew symmetric
operator Q on a Hilbert space s which can be written as Q=Q,— V.
Here Q, is unbounded and invertible, and V is a suitable bounded pertur-
bation. The domain E := D(|Q,|"?¢), 0 <& < 1/2, can be given the topol-
ogy of a Banach space. Then (Q,) ! can be viewed as a bounded operator
from E’ to E, where E’ is the topological dual of E. Assume now that
(Qy) “E - E and V:E— E' are nuclear mappings. Then the relative
Pfaffian Pf(Q, ', V') is defined.

The paper is organized as follows. In Section II we defined the relative
Pfaffian and study its basic properties. Section III contains a number of
useful algebraic identities. In Section IV we define and study the properties
of the relative Pfaffian minor. In Section V we relate the present theory to
the Hilbert space theory.

II. RELATIVE PFAFFIAN

Let E be a complex Banach space, and let E’ be its topological dual
equipped with the usual structure of a Banach space. By (-, - >, we denote
the canonical pairing between E’ and E. Let A\"(E) denote the nth exterior
power of E equipped with the projective norm [G, S]. Explicitly, for
w e N\"(E), the projective norm is defined by

ol :=inf{z 2 ---||x,'-'||}, (IL1)

Jj=1

where the infimum is taken over all possible representations of w of the
form

X AXTA o AX] x*eE. (I1.2)

w= J? J

I8

ji=1

580/102/2-5
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Likewise, we define A"(E’), the nth projective exterior power of E’. We
observe that the pairing {-,->: E'x F— C induces a natural continuous

pairing -, - >: A"(E')x A"(E) — C given by
ey n - Aey Xy A - Ax,y i=det{<e;, x>} (I1.3)

As a consequence of Hadamard’s inequality,

[<ey A - Ay Xy A Ax DK"Y el lxgl (IL.4)

j=1

and thus, for arbitrary ne A"(E’), w € A"(E),

[<m, @] <n™|inll; el - (IL5)

DerinNtTioN 111, Let Ae A%E’), Be AXE). The relative Pfaffian,
Pf(A, B), is a function A*(E’)x A*(E)— C given by

0

Pi(4, B):= ¥ ‘)2 (A4, N'B)D. (IL6)

n=0

THEOREM I1.2. The above series converges absolutely and

o

() N4, N"B>| <exp{2e|Al.|B,}. (IL7)
n=0 '

|Pf(4, B)| <

Proof. From (IL5),

s 1

Y o KA, N'BY| < Z RTOE (2n)"(Il A1l 1 BI )"

n=0 )

Using the inequality

(IL8)

we can bound the above sum by

i ni 2e|All,11Bl,)" = exp{2e | Al 1B} 1

Next we establish Holder continuity of the relative Pfaffian.
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TueoreM 11.3. For A,, A,e N*E’, B,, Be N*E,
|Pf(A4, B,) — Pf(4,, B,)|

<2{||4; — A[1L (1Bl + 1B2lly)

)

+11By = Ball (441l + 142010}
xexp{2e( 4]+ I4:[ ) B, [l + 1B2ll 1 }- (IL9)

Proof. Define A(s):=sA4,+(1—s)A4,, and B(s):=sB,+(1—s)B,.
Observe that for 4;e ANHEY, A, A --- A A, is symmetric under permuta-
tion of 4,, ..., A,. Thus by the fundamental theorem of calculus,

Pf(4,, B,) - Pf(4,, B,)

=jl 4 o A(s), Bls)) ds
0 dS

= 1 ! -1 n
:n;(n—!)znjo [{(4,— 4,) A N Als), N"B(s))
+ (A"A(s), (By— By) A N7 'B(s)) } ds.

Using (IL.5) and (11.8),
|Pf(A,, B,)—Pf(4,, B,)|

aAC

1
< W(zn)n{“/ll_AZHI(“BIHI+”BZHI)
n=1 *

+ 1By = Bally (14l + 140 DA+ 14200 By + 1B )"
<2{14, — A1 UIBy I+ 1 Boll ) + 1By — Bl (144l + 144011

oo

1
Xngl n—1)! 2e( AN+ 1400)" "B+ IBal )Y,

which is (I1.9). §

Let AL (E) denote the algebraic exterior power of the Banach space E.
The projective exterior power A\"(E) is the completion of AJ,(E) in the
norm | -], of (IL1).

COROLLARY 114, Let Ae AN(E’) and Be NYE). There exists sequences
A, e Nl E and B,e N}, E such that |A—A,|}, -0, |B—B,|l, —>0, and

alg

Pf(4, B)= lim Pf(4,, B,). (IL10)

n— oo
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Let G, E, and H be Banach spaces. There is a natural continuous pairing

(GRE)X(EQ H)»G®H, (IL11)

where G® E’, E®Q H, and G® H are equipped with the projective topol-
ogy, such that

(g®e) (x®h)=<e,x)g®h, (1L12)

for ge G, ee E', xe E, and he H. As a consequence of (I1.12),

IX- Yl < IXI YT, (IL13)

for Xe G® E’ and Ye E® H. The pairing - is associative in the sense that
(X-Y)-Z=X-(Y-Z),for XeGRFE', YeEQF', ZeF® H.

We will use (II.11) to define various pairings between exterior powers of
Banach spaces. For example, since A*(E) can be identified as a closed
subspace of EQ E via x A y > x® y— y® x, we have a pairing A*(E’) x
A%(E)—> E'® E such that

(enf)-(xny)={fix>e®@y—{f,yre®@x
+<{e, > f®x—<e, x> f® y, (IL.14)

for e, feE', x,yeE Clearly, |4 -B|,<4|A4]|,IIB|,, for Ae A*E),
Be AX(E). Since E’'® E is naturally identified with the space of nuclear
operators on FE, this shows that 4 - B can be regarded as an operator on E.

The last pairing can also be interpreted as follows. We denote by
I{(E, E’) the space of skew symmetric nuclear operators from the Banach
space E to E’, and by I{(E’, E) the space of skew symmetric nuclear
operators from FE’ to E. We have natural isomorphisms ¢: A*(E)—
I%(E', E) and ¢": A*(E') - I{(E, E') given by

e, $(B)f>=<f re B), e,feE"

(IL15)
(P (A)x, y)=CA,x A y>, x, ye E.

Then A-B=¢(B) ¢'(A).

For T nuclear, we let det(/— T') denote the Fredholm determinant as
defined by Grothendieck [G].

THEOREM I1.S. For Ae NX(E'), Be AHE),

Pf(A4, B)>=det(I— A - B). (I1.16)
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Proof. Because of the continuity of both sides of (I11.16), we may

assume that Be /\i,g(E ). Then, there are finitely many linearly independent

vectors Xx,, ..., X, € E such that
B=3 ) Buxax,,  By=-B (IL.17)
1<jk<n

Let Fc E be the vector subspace of E spanned by x,, .., x,,. Clearly, 4-B
is a finite rank operator whose image is contained in F. We let

Ay = (A, x; A X, 1<j, k<n, (11.18)
and observe that

det(I— A4 - B) = det {5,k—zAjpB,,k}. (I1.19)
P

We claim that the left-hand side of (I1.16) can also be written in this form.
We let F':={eeE': (e, F)=0}, and F°:=E'/F*. Then F°is dual to F
with the duality given by {(m(e), x> := (e, x), where n: E'—» F° is the
canonical projection. Let n(4)e A*(F°) be the projection of 4; explicitly,
if A=3 e, A f, then

n(4)=Y n(e,) A n(f). (11.20)

Then
Pf(A, B) = Pf(n(4), B). (I1.21)

Now let x/ e F° 1<j<n, be the basis for F°, dual to x;, 1 <j<n Then

d)=1 ¥ Auxiaxi, A= —A,, (11.22)

l<jk<n

with A, given by (I1.18). But now,
Pf(A4, B)> =Pf({A}, {Bu})” =det (5_,k -y Ajpok>, (11.23)
P

by (1.3), and the proof is complete. |

III. ALGEBRAIC IDENTITIES

In this section we prove a number of algebraic identities involving the
pairing (-, -) defined in Section II. The most interesting among them is
(IIL.6), which will be used in the next section to compute Fréchet derivatives
of the relative Pfaffian.
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To formulate our first identity, we replace the dual pair (E, E’) by
(E', E”), and notice that an element Be A*(E) can be naturally identified

as an element of A(E”), as Eg E”. Hence, if Be A*(E), and Ae A\*(E'),
then Pf(B, A) is defined. An immediate consequence of (I1.6) is:

TueoreM IIL1. For (A, B)e A*(E'Yx A*(E),
Pf(A4, B)=Pf(B, A). (I11.1)
Let #(E) denote the space of bounded linear operators on E. There is
a natural action of Z(F) on AZ%*E), namely for Ve #(E) and

B=Y,x; A y;e NYE) we set

(VAV)B:=)Y Vx; A Vy,. (111.2)

J

Likewise, for A€ Y e; A fje N*(E') we set

(V' AV)A:=Y Ve A VS, (111.3)

J

where V’ denotes the adjoint of V.

THEOREM 111.2. Let A,,..,A, e N*(E'), B,, ..., B,e N*(E), and Ve L(E).
Then

</\ VA VYA, N 3,.> </\ 4, /\ VAV B,>. (111.4)

Jj=1 Jj=1 Jj=1

Proof. The identity is clear for 4,=¢; A f;and B,=x; A y;, j=1,.
The general case follows by linearity and continuity. |

CorOLLARY III.3. For (A, BYe AM(E')x ANXE), Ve L(E),
PI((V' A V')A, B)=Pf(A, (V A V)B). (IIL5)

Our next identity relates {ATY 4, AJZ B)Y to (AT, A, AJ-y B

=1
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TueOREM 1114, For Ay, A,, .., A,e N2(E"), By, B,, ... B,e N*(E),

(A4 As,)
j=0 =0

= g <A,,,Bo>< /\ A /"\ B./>

p=0 O<j<n J=1
1 j#p "

+3 Y ((A, By-A,+A, By-A)A N\ A4, N Bj>. (111.6)
O pgsn j#*Ep J=1

PEy

Proof. For a Banach space X, we set A°X)=C, and let
NX) =@ ,.0 A" (X), where @ denotes the algebraic direct sum. Let
o2 AEY X A(E) — C denote the natural pairing induced by the pairing
between E' and E. For ecE’', we let b*: A"(E')—> AN"T"(E') be the
operator defined by

bX(e, A - Ane)i=ene A - Ae,. (I11.7)

In the same manner we define the operator c*: A"(E) —» A"*YE), for
x€ E. These operators define the corresponding operators on A(E’)
and A(E), which we denote also by b* and c¢¥* respectively.
Let b A"*YE')—> A"(E') denote the adjoint of c* and let
c.: N""(E)— N\"(E) denote the adjoint of b*. These operators obey the
algebra

{bX b,y =C(e, x>, {b¥ br}=0, (111.8)
{co,c¥}=<e,xDI,  {c¥ c*}=0. (111.9)

Here {b*, b,} :=b*b +b b}, etc. Each A=Y, e, A f;€ A’(E’) determines
a linear operator (denoted by the same symbol) 4 on A (E’), namely

A=Y b¥b}. (111.10)
j
Likewise, to each B=3, x; A y;€ A*(E) we assign the operator
B=Y crek (IT1.11)
i

on A(E). Let " :=(1,0,0,..)e A(E") and w:=(1,0,0, ..)e A(E). Then,
for 4,, .., 4,e N\(E"), By, ..., B, e A\(E),

</”\ 4, /"\ B/> =<ﬁ A0, ﬁ B_,-w>. (111.12)

Jji=1
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Now, since both sides of (II1.6) are linear and continuous in the A4’s and
the B’s, it is sufficient to take A,=e; A f;, B;=x; A y,. Then, since
b,w' =0,

</n\"f”3,/n\x,-/\y,->

Jj=0 Jj=0

~($: nongo i et
<vo ’col—[ sbla’, ch Cy >

=1

j#pr j=1

Z < w bEOET ] 20}, 1 c*c*a)>
Z < w LBy, 65071} T 620}, [1 Cii"»’?“’>

j*p j=1

n
- Y <[be,b*b 1[b,,, bxbx] [] brbrw, Hcfjcj‘;w>.
osigsn j#*pq j=1
P#q

Using (II1.8) we find that

(b, bXb}1=Ce, x> b} —{f,x) bk (I11.13)
and

{b,, [b., bXbF1} = e, x>{fiy>—Lfixd{e, y>=Lenx,[ A y).
(1IL.14)

This gives the first term on the right-hand side of (I11.6). Furthermore,
comparing the identity

[b., bEbXI[b,, bEbE]+ [b,, bEbEL[D,, bEbD}
={e, ney, x AYYbEbE—Ley A o, x A YD) bEDY
—{finen, x Ay>bEBE+ LI A fo, x A Yy bEDE
with the identity
(ex A f1)-(x A p)-(ean o)+ (e n fo) (x A y)-(er A f))
=—XKe rne , XAV ALl AL xAY) fine,
+{firnenxnydenfa—=Lfinfo, xAnyde Ae,

yields the second term on the right-hand side of (II1.6). |



PFAFFIANS ON BANACH SPACES 323

CoroLLARY IILS. For Ae AXE’), By, By, ..., B,e NE),

1 / n \ / n \
(N A\ By )= <) (N4, N\ B)
n+ =0

j=1

+n<A-BO~A ANTIA,

A Bj>.(111.15)

J=

IV. RELATIVE PFAFFIAN MINOR

In this section we define and study the properties of the relative Pfaffian
minor. Its significance in the theory of Pfaffians is similar to the significance
of Fredholm minors in the theory of Fredholm determinants [G].

Let V denote Fréchet derivative on A*(E). As a consequence of (11.7),
the function

Coz—Pf(4, B+2X)eC (IV.1)
is entire and thus V” Pf(A4, B) exists for n > 0.
DerINITION IV.1. The nth relative Pfaffian minor of (4, B)e A*(E’) x
AUE) is
P{"(A4, B) := n! V" Pi(4, B). (IV.2)
THEOREM IV.2. For (A, B), (V, X)e AX(E')x AN*(E), the function

Coz— P4 +zV, B+ zX)e (AP(E)Y,

is entire. Furthermore,
IP{(A, B)||, <exp{2ell4],(I|B],+n)}. (IV.3)

Proof. The first statement is a consequence of the definition and (I1.7).
To prove (1V.3), write for X, .., X, e A*(E)

an n
(Pf"™(A4, B), X, A --- /\X">:mPf<A,B+ Z szj) ]

j=1
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Using (I1.7) and Cauchy’s bound on an n-disc of radii | X /|| ', 1 <j<n, we
obtain

[<PE™(4, B), Xy A - A X, )| <exp{2e Al (1Bl +m)} [T 11X,

j=1
This implies that
[<(Pf"(4, B), w)| <expi2ell Al (1Bl +n)}ll,,

for arbitrary we A*(E) and (I1V.3) follows. |}

Our next result shows that the Pfaffian minor is Holder continuous as a
map

NUE')x N*(E)3 (4, B) > PI'")(4, B)e (A*(E)). (IV.5)

THEOREM IV.3. For (A,, B)), (4., B,)e AX(E')x ANXE),

IPf™(4,, B,)—PI"(4,, B,)|l,
< (4, — A + 1B, —Bzill)exp{2€(liAzlll + A, — Ayl + 1)
x(|Bally + 1By — By, +n+ 1)} (IV.6)

Proof. As in the proof of Theorem I1.3,

1
Pf"(A,, B,)— Pf")(A4,, B,) =j ;d; PI"(A(s), B(s))ds. (IV.7)
0

By Theorem IV.2, the function Csz - Pf™(4 +zV, B+ :zX)e A*™(E’) is
entire. Therefore, Cauchy’s bound on a circle of radius (| V], + (X)) "'
yields

H%Pf‘"’(A + sV, B+sX)“
<V + 1X1 ) exp{2e((l Al + [TV +1)
x (1Bl + 1 X1, +n+ 1)}, (IV.8)
and (IV.6) follows. |J

Remark. Estimate (IV.6) with n=0 is weaker than Theorem II.13,
because the method of proof using Cauchy’s bound is cruder than the
method used to prove (IL.9).
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THEOREM 1V.4.  Assume that (I—A-B) '€ L(E). Then
Pf") (A4, B)=Pf(4, BYAN"(I—A-B)"'Ae N*(E"), (IV.9)
where (I—A-B) 'Ae NXE') is defined by {((I—A-B) 'A,x A y) =
CA,(I—A-B) " 'xAy>={A, xn(I—A-B)"'y>, for x, ye E.

Proof. We use induction on n. Let Ros— B(s)e AYE) be a con-
tinuously differentiable function. Then with B(s) := dB(s)/ds,

% det(I— A -B(s))= —tr((I— A - B(s)) 'A-B(s))det(I— A4 - B(s)),
(IV.10)

where the trace of 3, e,®@x;€ E'®@E is defined by tr(32, e,®x;) :=
22 e x;>. From (IL16) and (IV.10) we infer that

% Pf(A, B(s)) = — % tr((I— A - B(s)) ‘A - B(s)) Pf(4, B(s))
=((I—A-B(s)) ‘A4, B(s)> Pi(A4, B(s)). (IV.11)

Choosing B(s)= B+ sX we obtain
Pf)(4, B)=Pf(4, B)(I—A4-B) ' A4, (IV.12)

which proves (IV.9) for n=1.
We claim that for any n> 1,

an n
A B X,
P Pf(A, +3 s,X,)

j=1

(e §on) o)

fo(A, B+Y s,X,). (IV.13)
j=1

Indeed, we compute

an+l n
————Pf{ A, B X,
05y --- 05, ( +-Zl K l)

J=

a 1 n+1 —1 n
= — n —A4.-1 B X .
o m (N (1o (2+ 2 ) 4 Ax)

n+1
fo(A, B+ ) S_/-X,)}

j=1
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1 n+1 -1
=’?{n <<I——A~<B+ Y s,-X,)) A-X,,
: i=1
n+1 -1
~<I—A-<B+ » s,X,-)) 4
j=1

A /\nfl (I—A .<B+ni1 S}»X,)) ; A’ /"\ Xl>

j=1 =1

e((1-a(mT 0x)) Tan)

x </\" <I—A -<B+Hil st,>>1, A X,.> Pf(A, B4y s,x,)}.

/'=] /=l j:]

Using (II1.15) we can rewrite this as

(e (e (3 ) R )
(n+1) PR A

n+1
X Pf<A, B+ Y s,x,>,

j=1

which completes the inductive step of the proof of (IV.3). Evaluating
(IV.13) at s=0 yields (IV.9). |

CoRrOLLARY IV.5. For all (A, BYe A*(E')x N*(E),

Pf"(4, Bye A\¥(E'). (IV.14)

Our last theorem relates the Pfaffian minor to the Fredholm minor [G].
Let M"(T):=n!V"det(I— T) be the nth Fredholm minor of Te E'® E.

THEOREM IV.6. For (A, B)e AXE'Yx ANXE) and x,, ..., x,,€ E,

2n 2 2n 2n
<Pf(")(A, B), A\ xf> =< ¢'(A) x;, M@(4-B) N\ x},>, (IV.15)

j=1 Jj=1 j=1

where ¢’ is the naural isomorphism N\*(E')=I(E, E’).

Proof. 1t is sufficient to prove (IV.15) for I— A4 -B invertible (the
general case follows by a perturbation argument). In this case

M"(T)=detU—-T)N"I-T) " (Iv.16)
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But then from (IV.9),
2n 2
<Pf("’(A, B), N\ x,>
i=1

2n 2
= Pf(4, B)? </\"(1—A B) A, A\ xj>

=det(/—A-B)PI{{(I—A-B)"'4, x, A x; > })?
—det(I—A-B)det({{(I—A-B) "4, x, A x;))})>.

Furthermore, from (I1.15)},

{I—=A-B) 'A,x; A x0={A, x; A (I—A-B) ‘x>
=<{¢'(4) x;, (I—A4-B) " 'x;),

and the claim follows. |

V. PFAFFIANS ON HILBERT SPACES

In this section we assume that E= s is a separable Hilbert space, and
let {x;}, be an orthonormal basis for #. By {x/);2, we denote the basis
for s’ which is dual to {x;} <.

For Ae N*(#'), Be \*(H#) we set

Ay = A XA X0, By = {x] A xi., B). (V.1)

Clearly,
Ap= Ay, Byp= —By. (V.2)

For each finite SN, let 45 and B denote the restrictions of 4 and B to
the subspaces spanned by x; and x;, j€ S, respectively. Then A and Bg are
finite dimensional, skew symmetric matrices. In the theorem below, we give
an expression for Pf(4, B) in terms of Pf(4) and Pf(By). This expression
coincides with the formula used in [JLW, PS] to define the relative
Pfaffian on a Hilbert space.

THEOREM V.1. Let Ae AN*(H'), Be N*(#). Then

Pf(4, B)= ¥ Pf(Ay) Pi(Bj). (V.3)

SaN
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Proof. We will show that

” )2 (N4, \"BY =Y, Pf(Ag) PI(By). (V4)
SN

IS =2n

In fact,

1
) KA, N'BS

~wy L

wiim ki, kon

’ !
XAlljz"'A‘ J Bklkz'”Bkzn-lkzn<xi| A s AX

Jan =1 J2n on Xhey N /\xk2n>'

1

Fix a set SN of 2n elements: S= {s,, .., 5,,} and sum over all j’s such
that {j,, .., j2,} = S. The only nonvanishing contributions come from those
k’s for which also {k, .., k,,} = S. Therefore, denoting by S,, the group of
permutations of 2n elements, we can write the above expression as

(2nn|)2 Z Z

nES], pe Sy

X Asnmwzy o Asn(2n~ 1)57!12")85/1(1)50(2) e Bspu,._ 1)5p(2n)
x <x‘nm A A xwzn)’ Xsp N0 A xip12n1>
1 1)
= 21,1 Z (—- ) AsnmSn(z;'"sz"‘»l)smzn)
S e Sy

1
x {Znn’ Z (_ 1 ) B-Vn(n»\‘n(zy T Bsn(val)Sn(Zn'}

S ne S

= Pf(45) Pf(Bs). 1

In fact, on a Hilbert space, it is possible to extend the definition of the
relative Pfaffian to a larger class of operators [JLW, JKL]. Let Afy,(5¢)
and AZ,,(#') denote the exterior powers of # and #’, respectively,
equipped with the usual topology of a Hilbert space, see, e.g., [RS]. Then
formulas (IL.15) define isomorphisms of Hilbert spaces ¢': Aju(#') —
18(#, #') and ¢: Ajw(H#) = IS(H', K'), where I5(#, #') denotes the
space of all skew symmetric, Hilbert-Schmidt operators from 3# to .

THEOREM V.2. For AcAiw(¥#'), BeAfuw(HK), the series (IL6)
converges absolutely. Furthermore, formula (V.3) holds and
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|Pf(4, B)| < Z O ,)2|</\( ), AN"(B) )|
<exp {Z (4 (ADI3 + |l¢(B)|l§)}- (V.5)

Finally, let us remark that choosing a complex structure on #, we have
the isomorphisms [4(A#, #' Y= I5(H', H#)=I5(A). We thus recover the
original structure of [JLW]. In fact, much sharper estimates on Pf(4, B)
are obtained in [JKL].

As a specific example, we consider # = L*(X,dx), where X is a
separable, locally compact space, and where dx is a Borel measure on X.
Note that L*(X, dx) carries a natural complex structure given by complex
conjugation and thus we can identify #' with #. Clearly, Aj;p(9¢)=
LUX*, ®)_,dx;), the space of square-integrable, skew symmetric
functions on X*.

LemMa V.3. Let A, Be ALyo(LA(X, dx)). Then

' 2 2n
(N4, N'B >_§2n)) j Pf(A(xj,xk))Pf(B(x,,xk))/(?l dx,. (V.6)

Proof. Let f;(x), j=1,2,.., be an orthonormal basis for L*(X, dx).
Then f; A fi(x, y), j<k, is an orthonormal basis for A’(L*(X, dx)) and

2214 /\fk (X J’) (V7)

with A4, = sz A(x, Y)(f; A filx, ¥) dx ® dy. Inserting this into the integral
on the right-hand side of (V.6), we obtain

jz Pf(A(x;, x,)) P(B(x;, x ® dx,

J=1

-3 3

Kioookan Nt

X Z (_1)7!(_1)0 Ak,r“,k,,(z) -..Akn[anllkanrl)

. pE S

o B/pm/pm T Blp(Zn

~lpam

X LG Sr(Xey) - ‘fn(zn(xn(zn))

2n
X, ml)(xpm)"'fp(zn)(xp(zn)) ® dx,-. (V.8)

j=1



330 KLIMEK AND LESNIEWSKI

The integral on the right-hand side of (V.8) vanishes unless & ;) =/,,, for
J=1,2, .., 2n. Therefore, (V.8) can be written as
(2n)! Y Pi(As) P(By).
SeN
181 =2n
Comparing this with (V.4) yields (V.6). |
An immediate consequence of this lemma is:
THEOREM V.4. For Ae Aji(LA(X, dx)) we let
Pl(A(x;, xi)),  if n=2m,
A = ! A\AY)
n(xl’ axn) {O, lf- n=2m+1 ( )

Then:
(i) The Pfaffian Pi(A, B), A, B€ Ajy,(#), has the expansion

O 1 n
Pi(4, B)= ¥ ;f A(X1s o X)) By(X1s a x,) @ dx,. (V.10)
n=0 "t X"

J=1

(i) Let PE™(A, BY( ¥y, s Vo) denote the integral kernel of the mth
Pfaffian minor of (A, B). Then

PIN A, B)(¥1s e Yam)

© n
= Z _J. An+2m(yl""9 Yoms X150y xn) Bn(xl’“" xn) ® dxj'
¥

!
=o' j=1

(V.11)
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