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Abstract� We describe some results on quantization of discrete time dynam�
ical systems ��quantum maps�	� We focus our attention on a number of ex�
amples including the cat
 Kronecker
 and standard maps� Our main interest
lies in studying the ergodic properties of these quantum dynamical systems�

�� Why Quantum Maps�

In classical dynamics� systems with a discrete time variable are referred to as
maps� In this talk� we will describe some mathematical results concerning quantum
maps �this term was coined in ����� i�e� discrete time quantum systems� Their
time evolution is not governed by the Schr	odinger equation
 rather it is given by a
discrete unitary group acting on a Hilbert space�

There are several reasons for studying maps in classical and quantum dynamics�

� They arise as Poincar�e section maps of 
ows

� Often they are easier to study analytically

� They serve as paradigms of various phenomena in ergodic theory

� They are easier to simulate on a computer than 
ows

� Interesting maps arise in applications� e�g� in statistical mechanics� the theory
of quantum computation and quantum information theory� etc�

We will work within the operator algebra framework� as this is the natural setup
for addressing the structural issues of quantum dynamics� Other approaches abound
in the physics and mathematics literature� see e�g� ���� ���� ���� ����� and references
therein� We shall focus on a somewhat restricted class of quantum dynamical
systems� namely those which arise as quantizations of classical maps�

�� Classical dynamics

Classical mechanics is formulated in terms of a phase space M which is usually
assumed to be a symplectic manifold� Points x � �q� p� on M describe the state
of the system� Their coordinates are canonical positions q and canonical momenta
p� Functions f on M represent classical observables� The algebra C� �M� of
smooth functions on M is equipped with a Lie structure given by the Poisson
bracket f�� �g� There is a measure d� �x� on M which describes the distribution of
states throughout M � It is used to de�ne the ensemble average of an observable
f � C� �M��

� �f� �

Z
M

f �x� d� �x� ����
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We will consider systems for which the total volume of the phase space is �nite�
� �M� � �� so that � has the meaning of a probability distribution�

A map T of the phase space M to itself which
� is one to one�
� preserves the phase space volume � �TA� � � �A�

generates a discrete time dynamics� We think of T as the evolution of the system
over one time unit� Powers of T � Tn �n integer�� describe the evolution of the
system over n time units�
Examples� We take M to be a torus� The volume element is simply given by
d��x� � dqdp� and the observables are Fourier series in q and p� The ensemble
average of f is then equal to the term f�� in the Fourier expansion of f �

�� Baker�s map�

q �� q
�

�

�
�q if q � ���

�q � � if q � ����

p �� p
�

�

�
p�� if q � ���

�p� ���� if q � ����

Clearly� this map satis�es our requirements�
�� Cat map�

q �� q
�

� aq � bp�

p �� p
�

� cq � dp�

Here a� b� c� d are integers satisfying ad � bc � �� This condition guarantees
that the map preserves the phase space volume �and is one to one�� We also
require that ja� dj � �� This means that the matrix�

a b
c d

�

has two di�erent real eigenvalues j��j � �� and j��j � �� The cat map is
expanding along the direction of the eigenvector corresponding to ��� and
contracting along the direction of the eigenvector corresponding to ���

�� Kronecker�s map�

This one is simply given by

q �� q
�

� q � 	�

p �� p
�

� p� 
�

where 	 and 
 are real numbers such that �� 	� 
� are linearly independent
over Z� This dynamics does not have periodic orbits�

�� Kicked maps�

These are maps of the following form�

p �� p
�

� p� �f �q� �mod �� �

q �� q
�

� q � p
�

�mod �� �

where f�q� �
P

k�Zfke
��ikq is a continuous periodic function satisfying the

condition
P

k�Zk
�jfkj � �� The choice f�q� � sin ��q gives the standard

map�
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�� Harper�s maps�

They are similar to kicked maps except that the �kinetic part� is periodic�

p �� p
�

� p� ��f �q� � mod ��

q �� q
�

� q � ��v�p
�

�� mod ��

where both f� v are periodic and satisfy suitable regularity conditions�

�� Classical ergodicity

The ergodic problem in classical mechanics consists in the following� What can be
learned about the �statistical� behavior of an ensemble of mechanical �deterministic�
systems from the long time behavior of an individual system� Integrable systems
do not exhibit any stochastic behavior as the motion takes place along periodic
trajectories� Hence� ergodicity is intimately connected to classical non�integrability�
We list below some fundamental concepts and results of classical ergodic theory�

�� Recurrence theorem �Poincar�e� If U �M has positive measure� then there is
a subset U� of measure zero such that for each x � U nU� there is k with the
property that T kx � U

�� Ergodic theorem �Boltzmann� Birkho�� von Neumann� states that for each
observable f

time average of f � ensemble average of f �

or� for almost all initial conditions�

lim
n��

�

n

n��X
k��

f
�
T kx�

�
�

Z
M

f �x� d� �x�

�f is an observable�� This theorem holds for systems which have the following
property� No non�trivial subset of the phase space is invariant under the
dynamics� Baker�s maps� Kronecker�s map� and the cat map are all ergodic�
The ergodicity of the kicked and Harper�s maps is a more complicated issue�
For small values of the parameter �� they are not ergodic �a consequence of the
KAM theorem�� For large values of �� the �islands of ergodicity� are getting
smaller and smaller� No theorems are known� and the numerical evidence is
inconclusive�

�� Stronger than ergodicity is the mixing property � A system is mixing if

lim
n��

� �A 	 TnB� � � �A�� �B� �

This property means that the dynamics spreads the set of initial states uni�
formly throughout the phase space� Not all ergodic systems are mixing� For
instance� Kronecker�s map is ergodic but not mixing� The mixing property is
equivalent to the following fact about the long time behavior of the ensemble
average of a product of observables�

lim
n��

Z
f �x� g �Tnx� d� �x� �

Z
f �x� d� �x�

Z
g �x� d� �x� �

�� Kolmogorov�Sinai �KS� entropy measures how strongly mixing is the system�
It is constructed as follows� Cover the phase space M with a measurable
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covering A � fA�� � � � � Akg� With this partition we associate its Shannon
entropy�

S �A� � �
kX

j��

� �Aj� log� �Aj� �

Let us now see what happens to this covering if we wait one time unit� A new
partition of M arises� this time given by TA � fTA�� � � � � TAkg� To measure
the resulted mixing of the phase space we compute the Shannon entropy of
the partition A 
 TA obtained by intersecting the elements of the original
partition with the elements of the new partition� Keep on doing it� The limit

S �T�A� � lim
n��

�

n
S
�A
 TA
 � � � 
 Tn��A�

exists� and its supremum over all choices of the initial partition

S �T � � sup
A

S �T�A�

is called the KS entropy� The KS entropy is a measure of chaos in a system
as

� it is zero for periodic systems

� it is zero for ergodic but not mixing systems �e�g� Kronecker�s dynamics�

� it is related to the Lyapunov exponents �Pesin�s theorem��

For Kronecker�s map the KS entropy is zero� for bakers map�

S �Tbak� � log ��

while for the cat map�

S �Tcat� � log j��j �
For kicked and Harper�s maps� the KS entropy is unknown�

�� Quantum mechanics

���� Quantization� In quantum mechanics� the commutative world of classical
mechanics is replaced by the non�commutative world of operators on Hilbert spaces
�Heisenberg� Born� Jordan� Schr	odinger� Dirac� von Neumann������ The quantum
phase space is no longer a set of points� Rather� it is a non�commutative space
de�ned in terms of a non�commutative algebra of observables� In the simplest case
of the quantized 
at space� this algebra is generated by the canonical position and
momentum operators�

Quantization of a dynamical system has two components� kinematic and dy�
namic� The kinematic component involves the construction of a suitable quantized
phase space of the system� This quantized phase space is given in terms of a
non�commutative algebra A� of observables� In the language of non�commutative
geometry� A� is an algebra of functions on the quantized phase space� Speci�c
choices of the structure of A� can be made� a C � �algebra� a von Neumann algebra�
or some suitably de�ned locally convex algebra� Throughout this talk� we will as�
sume that A� is a von Neumann algebra with a countable predual� In other words�
A� acts on a separable Hilbert space� an assumption usual made in physics� A
classical observable f is mapped onto a quantum observable Q��f� � A��

The �suitability� of the choices made� namely that of the algebra A� and of the
time evolution� is settled by the correspondence principle� This amounts to showing
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that limits of the quantized objects� as � � �� yield the corresponding classical
objects� Quantization is a highly non�unique procedure� and the correspondence
principle is the only physical principle allowing one to decide whether a particular
procedure is correct� A natural mathematical framework for quantization is �strict
deformation quantization� proposed by Rie�el ����� The key requirement is that

lim
���

���� �

i�
�Q��f�� Q��g���Q��ff� gg�

����
�

� ��

where f� g � C� �M��
The dynamic component of quantization consists in de�ning a time evolution

on the quantized phase space� A natural way of doing this is to �nd a suitable
one parameter group of automorphisms 	t of A�� where the parameter �discrete
or continuous� has the meaning of time� For maps� 	n � 	n� In examples� 	 is
often implemented by a unitary operator F � 	 �O� � F��OF � The correspondence
principle takes the form of the requirement

lim
���

��F�nQ��f�F
n �Q��f � Tn�

��
�
� ��

Statements of this kind are similar to Egoro��s theorem in the theory of pseudo�
di�erential operators�

The ensemble average of a quantum system is given by a state �� over the algebra
A�� For technical reasons� we will assume that this state is faithful and normal�
Physically� this means that an ensemble average is given by a density matrix whose
pure components form a separating set for A��

De�nition ���� A quantum map is a triple �A�� 	� ��� arising as a quantization of

a discrete time dynamical system in the sense described above�

This de�nition is somewhat tentative� and we make it here merely for the sake
of convenience� We leave out� for example� the issue of whether each meaningful
quantum system arises as a quantization of a classical system�

���� Flat space� In the case of a 
at space� we choose to work with the Bargmann
representation of the Hilbert space of states� i�e� the space of analytic functions

 �z� � � �z�� with an inner product

h
� �i �
Z
C


 �z�� �z� d�� �z� �

where d�� �z� �
�

� e
�jzj���d�z� We denote this Hilbert space by H� �C � � It carries

a projective unitary representation of the group of translations z � U �z��

U �z�
 �w� � e�jzj
����
zw��
 �w � z� �

For concreteness� the quantization map Q� is taken to be the Toeplitz quantization�
As a suitable class of symbols for the Toeplitz operators one may take almost
periodic functions on the plane ���� ����

���� Quantum torus� We study quantized discrete time systems whose classical
phase space is a torus� A toroidal phase space can be quantized by replacing
classical functions by unitary operators U � e��iq � U

��ip���� and V � e��ip �

U
�p

���
�
acting on the Hilbert space H� �C � de�ned above� They satisfy the

following commutation relation

UV � e��
�
�iV U�
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Since the torus is compact� Planck�s constant must obey an integrality condition
� � ����N � N positive integer� The algebra of observables A� is de�ned as the
von Neumann algebra generated by U� V � For a summary of results concerning
this algebra �with and without the integrality condition�� see ����� The ensemble
average of an observable O is given by the following state on A��

�� �O� �

Z
T�

D

�U �z�

y
OU �z�


E
d�z�

where 
 is an arbitrary normalized element of H� �C �� It is well known that �� is�
in fact� a faithful normal trace on A�� As �� �� this trace reproduces the classical
ensemble average given by ���� It is characterized by the property that

�� �U
mV n� � �m��n��

Theorem ���� ����� ���� This algebra satis�es the conditions of strict deformation

quantization�

We introduce the following notation�

X � U
�
�i�

p
�
	
� Y � U

�
��
p
�
	
�

and observe that

�X� Y � � ��

The operators X and Y generate an action of the group Z� on H� �C � d�� �� We
also verify easily that�

�X� Y � � �� �X� V � � ��

�Y� U � � �� �Y� V � � ��

and so X and Y are in the commutant of A�� Also�

X � UN � Y � V N

We shall call a holomorphic function � on C a Z��automorphic form if

X� �z� � e��i��� �z� �

Y � �z� � e��i��� �z� �

where � � ���� ��� � T
�� In other words� Z��automorphic forms are simulta�

neous generalized eigenvectors of X and Y � Let H� ��� denote the space of all
Z��automorphic forms with �xed �� Clearly� � � H� ��� is uniquely determined
once de�ned on the fundamental domain D � ��� ��� ��� �� � R� The space H� ���
has a natural inner product de�ned as an integral over this domain�

h��� ��i �
Z
D

���z��� �z� d�� �z� �

�Note a similar integral over the entire complex plane does not converge� hence
the Z��automorphic forms are not in H� �C ��� This inner product is a Z� version
of the Petersson inner product� In the following theorem we construct a natural
orthonormal basis for the space H� ����
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Theorem ���� ��� The following functions are elements of H� ����

�
��m �z� � Cm ��� e�N�z�
�
p
��
��
m�zX

k�Z
e�N�k����
��
i��
m�k
�

p
�N�kz �

where

Cm��� � ���N����e��
��
m�
��N���i��m�N �

They are periodic in m�

��m
N � ��m�

and furthermore�

���� � � � � �
�
N��

are orthonormal vectors in H� ����
��� The space H� ��� has dimension N � Consequently� the functions ��n� n �
�� � � � � N � �� form an orthonormal basis for H� ����
��� There is an isomorphism

� � H �C � ��
Z �

T�

H� ��� d��

such that

�U����m ��� z� � e��i
��
m��N�m ��� z� �

�V ����m ��� z� � e��i���N�m ��� z� �

This is the kinematic part of quantization of the torus�

���� More complicated geometries� Phase spaces of more complicated geome�
try can be quantized in an analogous way� Various techniques have been developed
�geometric quantization� deformation quantization� Toeplitz quantization� ����� Ex�
plicit constructions are known� for example� for compact and non�compact Hermit�
ian symmetric spaces� Riemann surfaces� compact Kahler manifolds� a large class
of Hermitian symmetric supermanifolds� etc� An approach based on a holomorphic
representation was initiated in ��� and has been developed by a number of authors�

���� Quantization of maps� Now� we quantize some of the the toroidal maps
introduced before�

��� The cat map is quantized by means of a single time unit evolution operator
F on Bargmann space such that

U �� U
�

� F��UF � e��
�iab�UaV b�

V �� V
�

� F��V F � e��
�icd�UcV d�

This de�nes an automorphism of A�� The evolution operator F can be written
down explicitly in terms of Gauss sums�

Theorem ���� ����The matrix elements of the operator F �D
�
�

��
m � F�
��n

E
�

Z
D

�

���
m �z�F�
��n �z� d�� �z� �
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where �� � T��� � �Nbd��� Nac���� is given byD
�
�

��
m � F�
��n

E
� �Nb�

����
ei���e��i�m

e���n����N

jbj��X
r��

e���ir��ei���m

e���n
Nr
����

where ei� � �i	�j	j� and where

� �x� y� � ax� � �xy � dy��

��� Kronecker�s map is easy to quantize �����

U �� U
�

� F��UF � e��i�U

V �� V
�

� F��V F � e��i�V

One can write down explicit expressions for F in the representation given by

�
�e��
m � F�
��n

�
� e��i�
���N�����mn�

��� Quantum kicked maps are given by the following automorphism of A� �����

U �� U
�

� F��UF � e���
�iab�V

�

U�

V �� V
�

� F��V F � V e��i	
ef
U��

where

ef �U� �X �� e���
�
�ik

����ki
fkU

k�

��� Quantization of Harper�s maps is similar� and I will skip the details�
The quantum dynamics de�ned above obey the correspondence principle�

Theorem ���� For the quantum cat� Kronecker� kicked� and Harper�s maps�

lim
���

��F�nQ��f�F
n �Q��f � Tn�

��
�
� ��

�� Quantum ergodicity

���� Quantum recurrence� Much of classical ergodic theory can be extended
to the quantum mechanical context� The �rst fundamental result is the Poincar�e
recurrence theorem� The classical recurrence theorem states that the state of a
system returns arbitrarily close to the initial point if one waits su�ciently long�
There is a simple quantum analog of this theorem� Let ��� �� � � � � be a sequence
of normalized vectors in the Hilbert space of states� and let

� �
X
n

pn�n

be the corresponding density matrix� Here �n � P
n is the projection operator
onto the vector �n� It is easiest to state the quantum recurrence theorem for the
case of 
ows rather than maps�

Theorem ���� Let � be a density matrix� and let F have a purely discrete spectrum�

Then for any � � � there is T � T ��� � � such that every interval of length T
contains at least one � with the property that k� �t�� �kHS 
 ��
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This theorem merely states that the function t �� tr �� �t� �� is almost periodic�
It is a slight extension of a theorem proved in the �fties by Bocchieri and Loigner
��� for the case of pure states�

���� Ergodicity and mixing� We de�ne the Hilbert space K �L� �A� �� associ�
ated with the algebra A as the completion of A in the norm given by the inner
product �A�B� � �

�
AyB

�
� It is natural to regard this space as the quantum ver�

sion of the Koopman Hilbert space� as it reduces to the latter in the classical case�
We would like to emphasize that the analogy often drawn in the literature between
the classical Koopman space and the quantum mechanical Hilbert space of states
H is misleading� it is the space K that is a natural scene for quantum ergodic
theory� As a consequence of the time invariance of � � 	 de�nes a unitary operator
on K which we will continue to denote by the same symbol� This operator is the
quantum version of the classical Koopman operator�

A quantum map �A� 	� �� is called�
mixing� if for all A�B � A�

lim
N��

� �	n �A�B� � � �A� � �B� 


weak mixing� if for all A�B � A�

lim
N��

�

N

X
��n�N��

j� �	n �A�B�� � �A� � �B�j� � �


ergodic� if for all A � A�

lim
N��

�

N

X
��n�N��

	n �A� � � �A� I�

strongly on K�
For quantum maps� we have the usual hierarchy� mixing � weak mixing �

ergodicity�
Ergodic� weakly mixing and mixing systems can be characterized in terms of

the properties of the spectrum of the automorphism 	� We will say that 	 has
continuous spectrum if � is its only eigenvalue and the corresponding eigenvectors
are the multiples of the identity operator�

Theorem ���� �i� A quantum map is ergodic if and only if � is an eigenvalue

of 	 and the corresponding eigenvectors are multiples of I�
�ii� A quantum map is weakly mixing if and only if the spectrum of 	 is continu�

ous�

�iii� A weakly mixing quantum map is mixing if the spectrum of 	 is absolutely

continuous�

Hence� quantum maps for which 	 has pure point spectrum cannot be mixing�

Theorem ���� �i� Quantum Kronecker�s dynamic is ergodic but not mixing�

�ii� Quantum cat dynamics is mixing�

In fact� quantum Kronecker�s maps are uniformly ergodic �����
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���� Connes	Stormer entropy 
quantum KS entropy�� Given an algebra of
observables A� a faithful normal trace � � and an automorphism 	� there is a con�
struction of an entropy associated with mixing of the quantum phase space resulting
from the time evolution� This entropy� denoted here by H�	�� is called the Connes�
Stormer �CS� entropy� The construction of the CS entropy is� roughly� parallel to
the construction of the KS entropy� The CS entropy is a measure of chaos in a
quantum dynamical system� very much like the KS entropy is a measure of chaos
in a classical system�

For simple dynamics� like the cat� Kronecker� and baker�s dynamics� the CS
entropy can be calculated explicitly� The result is that the quantum entropy equals
the classical entropy �����

Theorem ���� The CS entropies of the quantized cat� Kronecker�s and baker�s

maps are equal to the KS entropies of the corresponding classical dynamics�

This means that� in these systems� chaotic behavior persists quantization�
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