QUANTUM MAPS
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ABSTRACT. We describe some results on quantization of discrete time dynam-
ical systems (“quantum maps”). We focus our attention on a number of ex-
amples including the cat, Kronecker, and standard maps. Our main interest
lies in studying the ergodic properties of these quantum dynamical systems.

1. WHY QUANTUM MAPS?

In classical dynamics, systems with a discrete time variable are referred to as
maps. In this talk, we will describe some mathematical results concerning quantum
maps (this term was coined in [2]), i.e. discrete time quantum systems. Their
time evolution is not governed by the Schrédinger equation; rather it is given by a
discrete unitary group acting on a Hilbert space.

There are several reasons for studying maps in classical and quantum dynamics:
They arise as Poincaré section maps of flows;

Often they are easier to study analytically;

They serve as paradigms of various phenomena in ergodic theory;

They are easier to simulate on a computer than flows;

Interesting maps arise in applications, e.g. in statistical mechanics, the theory
of quantum computation and quantum information theory, etc.

We will work within the operator algebra framework, as this is the natural setup
for addressing the structural issues of quantum dynamics. Other approaches abound
in the physics and mathematics literature, see e.g. [2], [5], [7], [11], and references
therein. We shall focus on a somewhat restricted class of quantum dynamical
systems, namely those which arise as quantizations of classical maps.

2. CLASSICAL DYNAMICS

Classical mechanics is formulated in terms of a phase space M which is usually
assumed to be a symplectic manifold. Points z = (¢,p) on M describe the state
of the system. Their coordinates are canonical positions ¢ and canonical momenta
p. Functions f on M represent classical observables. The algebra C*° (M) of
smooth functions on M is equipped with a Lie structure given by the Poisson
bracket {-,-}. There is a measure du (z) on M which describes the distribution of
states throughout M. It is used to define the ensemble average of an observable

fec=(M):
(1) r(f) = /Mf(m) dy ().
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We will consider systems for which the total volume of the phase space is finite,
7 (M) =1, so that p has the meaning of a probability distribution.
A map T of the phase space M to itself which
e is one to one,
e preserves the phase space volume pu (T'A) = p (A)

generates a discrete time dynamics. We think of T as the evolution of the system
over one time unit. Powers of T\, T" (n integer), describe the evolution of the
system over n time units.

Examples. We take M to be a torus. The volume element is simply given by
du(x) = dgdp, and the observables are Fourier series in ¢ and p. The ensemble
average of f is then equal to the term fyo in the Fourier expansion of f.

1. Baker’s map:
rf 2q if ¢<1/2;
¢ — q_{Qq—l it q>1/2,
[ p/2 it ¢<1/2;
P p_{ (p+1)/2 if ¢>1/2.

Clearly, this map satisfies our requirements.
2. Cat map:

¢ — q =aq+bp,
p — p’ =cq +dp.
Here a,b, c,d are integers satisfying ad — bc = 1. This condition guarantees

that the map preserves the phase space volume (and is one to one). We also
require that |a + d| > 2. This means that the matrix

(¢ )

has two different real eigenvalues |ui| > 1, and |u2| < 1. The cat map is
expanding along the direction of the eigenvector corresponding to u;, and
contracting along the direction of the eigenvector corresponding to us.

3. Kronecker’s map:
This one is simply given by

g — ¢ =q+a,
p — p=p+p0,

where a and [ are real numbers such that 1,«, 3, are linearly independent
over Z. This dynamics does not have periodic orbits.

4. Kicked maps:
These are maps of the following form:

p — p=p+yfle) (modl),
g — ¢ =q+p (mod 1),

where f(q) = Y 1z fre®™*4 is a continuous periodic function satisfying the
condition Y, , k®|fx| < oo. The choice f(¢q) = sin2nq gives the standard
map.
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5. Harper’s maps:
They are similar to kicked maps except that the “kinetic part” is periodic:

p — p=p+mnflq), mod 1,
¢ — q¢ =q+7nvp), mod 1,

where both f,v are periodic and satisfy suitable regularity conditions.

3. CLASSICAL ERGODICITY

The ergodic problem in classical mechanics consists in the following: What can be
learned about the (statistical) behavior of an ensemble of mechanical (deterministic)
systems from the long time behavior of an individual system? Integrable systems
do not exhibit any stochastic behavior as the motion takes place along periodic
trajectories. Hence, ergodicity is intimately connected to classical non-integrability.
We list below some fundamental concepts and results of classical ergodic theory.

1. Recurrence theorem (Poincaré) If U C M has positive measure, then there is
a subset Uy of measure zero such that for each z € U \ Uy there is k with the
property that TFz € U

2. Ergodic theorem (Boltzmann, Birkhoff, von Neumann) states that for each
observable f

time average of f = ensemble average of f,

or, for almost all initial conditions,

) 1 n—1 .

i 37 (4a0) = | r@anw
(f is an observable). This theorem holds for systems which have the following
property: No non-trivial subset of the phase space is invariant under the
dynamics. Baker’s maps, Kronecker’s map, and the cat map are all ergodic.
The ergodicity of the kicked and Harper’s maps is a more complicated issue.
For small values of the parameter ~, they are not ergodic (a consequence of the
KAM theorem). For large values of v, the “islands of ergodicity” are getting
smaller and smaller. No theorems are known, and the numerical evidence is
inconclusive.

3. Stronger than ergodicity is the mizing property: A system is mixing if

lim p(ANT"B) = u(A) u(B).

This property means that the dynamics spreads the set of initial states uni-
formly throughout the phase space. Not all ergodic systems are mixing. For
instance, Kronecker’s map is ergodic but not mixing. The mixing property is
equivalent to the following fact about the long time behavior of the ensemble
average of a product of observables:

ti [ 1) g (@) du(e) = [ 1@ dn(@) [ 9@ du ).

n—oo

4. Kolmogorov-Sinai (KS) entropy measures how strongly mixing is the system.
It is constructed as follows. Cover the phase space M with a measurable
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covering A = {A;,...,Ar}. With this partition we associate its Shannon
entropy:

)
S(A) == n(4;)logp (4;).

Let us now see what happens to this covering if we wait one time unit. A new
partition of M arises, this time given by TA = {T' Ay, ... ,TA}. To measure
the resulted mixing of the phase space we compute the Shannon entropy of
the partition A V T'A obtained by intersecting the elements of the original
partition with the elements of the new partition. Keep on doing it. The limit
S(T,A) = lim ls (AVTAV...vT"'4)
n—oo N,

exists, and its supremum over all choices of the initial partition

S(T) = Slj‘p S(T,A)

is called the KS entropy. The KS entropy is a measure of chaos in a system
as

e it is zero for periodic systems;
e it is zero for ergodic but not mixing systems (e.g. Kronecker’s dynamics);
e it is related to the Lyapunov exponents (Pesin’s theorem).

For Kronecker’s map the KS entropy is zero, for bakers map,
S (Thar) = log2,
while for the cat map,

S (Teat) = log |p] -

For kicked and Harper’s maps, the KS entropy is unknown.

4. QUANTUM MECHANICS

4.1. Quantization. In quantum mechanics, the commutative world of classical
mechanics is replaced by the non-commutative world of operators on Hilbert spaces
(Heisenberg, Born, Jordan, Schrédinger, Dirac, von Neumann,...). The quantum
phase space is no longer a set of points. Rather, it is a non-commutative space
defined in terms of a non-commutative algebra of observables. In the simplest case
of the quantized flat space, this algebra is generated by the canonical position and
momentum operators.

Quantization of a dynamical system has two components: kinematic and dy-
namic. The kinematic component involves the construction of a suitable quantized
phase space of the system. This quantized phase space is given in terms of a
non-commutative algebra 5 of observables. In the language of non-commutative
geometry, Ay is an algebra of functions on the quantized phase space. Specific
choices of the structure of 2z can be made: a C*-algebra, a von Neumann algebra,
or some suitably defined locally convex algebra. Throughout this talk, we will as-
sume that 2 is a von Neumann algebra with a countable predual. In other words,
A5 acts on a separable Hilbert space, an assumption usual made in physics. A
classical observable f is mapped onto a quantum observable Q(f) € .

The “suitability” of the choices made, namely that of the algebra A and of the
time evolution, is settled by the correspondence principle. This amounts to showing
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that limits of the quantized objects, as h — 0, yield the corresponding classical
objects. Quantization is a highly non-unique procedure, and the correspondence
principle is the only physical principle allowing one to decide whether a particular
procedure is correct. A natural mathematical framework for quantization is “strict
deformation quantization” proposed by Rieffel [17]. The key requirement is that

- [0, Qn0)] ~ @n({f. )

lim
h—0
where f,g € C® (M).
The dynamic component of quantization consists in defining a time evolution
on the quantized phase space. A natural way of doing this is to find a suitable
one parameter group of automorphisms a; of Ay, where the parameter (discrete
or continuous) has the meaning of time. For maps, a,, = a™. In examples, « is
often implemented by a unitary operator F, a (0) = F~'OF. The correspondence
principle takes the form of the requirement

lim [|[F"Qu(f)F" = Qn(f o ™), = 0.

Statements of this kind are similar to Egoroff’s theorem in the theory of pseudo-
differential operators.

The ensemble average of a quantum system is given by a state 7 over the algebra
5. For technical reasons, we will assume that this state is faithful and normal.
Physically, this means that an ensemble average is given by a density matrix whose
pure components form a separating set for 2.

=0,
h

Definition 4.1. A quantum map is a triple (Ap, a, ) arising as a quantization of
a discrete time dynamical system in the sense described above.

This definition is somewhat tentative, and we make it here merely for the sake
of convenience. We leave out, for example, the issue of whether each meaningful
quantum system arises as a quantization of a classical system.

4.2. Flat space. In the case of a flat space, we choose to work with the Bargmann
representation of the Hilbert space of states, i.e. the space of analytic functions
v (z),1 (z), with an inner product

(o) = /C 2% (2) dun (2),

where duy, (2) = %e"z|2/hd2z. We denote this Hilbert space by H? (C) . It carries
a projective unitary representation of the group of translations z — U (z):

U (2) o (w) = e 12120530/ 0y (4 — 2y

For concreteness, the quantization map @)y is taken to be the Toeplitz quantization.
As a suitable class of symbols for the Toeplitz operators one may take almost
periodic functions on the plane [3], [4].

4.3. Quantum torus. We study quantized discrete time systems whose classical
phase space is a torus. A toroidal phase space can be quantized by replacing
classical functions by unitary operators U = ™ = U (—iv/27h) and V = ™ =
U (\/iwh) acting on the Hilbert space 2 (C) defined above. They satisfy the
following commutation relation

UV = et iy,
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Since the torus is compact, Planck’s constant must obey an integrality condition
h =1/2xN, N positive integer. The algebra of observables 2 is defined as the
von Neumann algebra generated by U,V. For a summary of results concerning
this algebra (with and without the integrality condition), see [18]. The ensemble
average of an observable O is given by the following state on Aj:

n(0)= [ (pUE 0V @)z,

where ¢ is an arbitrary normalized element of 72 (C). It is well known that 7, is,
in fact, a faithful normal trace on 25. As i — 0, this trace reproduces the classical
ensemble average given by (1). It is characterized by the property that

Th (UmV") = 6m06n0-

Theorem 4.1. [17], [18] This algebra satisfies the conditions of strict deformation
quantization.

We introduce the following notation:
x=0(-i/v2), v=U(1/v2),
and observe that
[X, Y]=0.

The operators X and Y generate an action of the group Z2 on H2 (C,dus). We
also verify easily that,

X, Y] = 0, [X,V]=0,

[Y) U] = 0, [Ya V] =0,

and so X and Y are in the commutant of 2. Also,
xX=uV, vy=vV
We shall call a holomorphic function ¢ on C a Z?2-automorphic form if

Xo(z) = mhg(z),
Yo(z) = ¢ (z),

where = (61, 6,) € T2 In other words, Z2automorphic forms are simulta-
neous generalized eigenvectors of X and Y. Let Hjy (f) denote the space of all
Z*-automorphic forms with fixed §. Clearly, ¢ € Hp () is uniquely determined
once defined on the fundamental domain D = [0, 1] x [0, 1] C R. The space Hp, ()
has a natural inner product defined as an integral over this domain:

(61, 9} = /D B2 (2) dun (2)

(Note a similar integral over the entire complex plane does not converge, hence
the Z2-automorphic forms are not in 2 (C).) This inner product is a Z? version
of the Petersson inner product. In the following theorem we construct a natural
orthonormal basis for the space H ().
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Theorem 4.2. (1) The following functions are elements of Hy (6):
¢£r9L) (2) = Cp (6) eme2+2\/57r(91+m)z
Z efNﬁkQ727r(91+i02+m)k+2\/§N7rkz,
kEZ
where

Con (0) — (Q/N)1/46—7r(91+m)2/N—2m'92m/N_

They are periodic in m,

0 _ 0
m+N — Ym>
and furthermore,
0 %
¢07 st ¢N—1

are orthonormal vectors in Hp, (6).
(2) The space Hp (0) has dimension N. Consequently, the functions (;52, n =
0,...,N —1, form an orthonormal basis for Hy (6).
(3) There is an isomorphism
®
k:H(C) — Hy (0) db,

'H‘Z
such that
IiUliil(f)m (9,2) — e27ri(91+m)/N¢m (9,2) ’
kVE Lom 0,2) = 62”92/N¢m 0,z2).

This is the kinematic part of quantization of the torus.

4.4. More complicated geometries. Phase spaces of more complicated geome-
try can be quantized in an analogous way. Various techniques have been developed
(geometric quantization, deformation quantization, Toeplitz quantization, ...). Ex-
plicit constructions are known, for example, for compact and non-compact Hermit-
ian symmetric spaces, Riemann surfaces, compact Kahler manifolds, a large class
of Hermitian symmetric supermanifolds, etc. An approach based on a holomorphic
representation was initiated in [1] and has been developed by a number of authors.

4.5. Quantization of maps. Now, we quantize some of the the toroidal maps
introduced before.

(1) The cat map is quantized by means of a single time unit evolution operator
F on Bargmann space such that

U — U' — F*lUF — eaniathavb’
V — V = F\'WF = e2ricdhyrey/d.

This defines an automorphism of ;. The evolution operator F' can be written
down explicitly in terms of Gauss sums.

Theorem 4.3. [15] The matriz elements of the operator F,

(88, Fo0) = / o) () Fo (2) dpun (2),
D
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where 0* = T—10 — (Nbd/2, Nac/2), is given by
(07, Folf)) = (Nb)™'/2 eiv/2g2milmbamnt) IN

|b]—1 B
Z p—2mirz yim®(m+01,n+Nr+61)
)

r=0
where e = —ia/|a|, and where
® (z,9) = ax® — 2zy + dy’.
(2) Kronecker’s map is easy to quantize [15]:
U — U =F'UF=é*°U
V. — V =FWF =Py

One can write down explicit expressions for F' in the representation given by
9 .
<¢7(n~> ) F¢£lo)> = eQﬂZB(ol_Na/Q)(smn-

(3) Quantum kicked maps are given by the following automorphism of A, [16]:
U — U' — F*lUF — 6727r2iabhvl U,
V. — V =FWF =Vl

where

(4) Quantization of Harper’s maps is similar, and I will skip the details.
The quantum dynamics defined above obey the correspondence principle.

Theorem 4.4. For the quantum cat, Kronecker, kicked, and Harper’s maps,

lim [[F"Qu(f)F" = Qn(f o ™), = 0.

5. QUANTUM ERGODICITY

5.1. Quantum recurrence. Much of classical ergodic theory can be extended
to the quantum mechanical context. The first fundamental result is the Poincaré
recurrence theorem. The classical recurrence theorem states that the state of a
system returns arbitrarily close to the initial point if one waits sufficiently long.
There is a simple quantum analog of this theorem. Let 1,12 ..., be a sequence
of normalized vectors in the Hilbert space of states, and let

pP=> Dupn

be the corresponding density matrix. Here p,, = Py, is the projection operator
onto the vector v,. It is easiest to state the quantum recurrence theorem for the
case of flows rather than maps.

Theorem 5.1. Let p be a density matriz, and let F' have a purely discrete spectrum.
Then for any € > 0 there is T = T (¢) > 0 such that every interval of length T
contains at least one T with the property that ||p (t) — pll gg < €.
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This theorem merely states that the function t — tr (p (¢) p) is almost periodic.
It is a slight extension of a theorem proved in the fifties by Bocchieri and Loigner
[6] for the case of pure states.

5.2. Ergodicity and mixing. We define the Hilbert space K =L? (2, 7) associ-
ated with the algebra 2 as the completion of 2 in the norm given by the inner
product (4, B) = 7 (ATB). It is natural to regard this space as the quantum ver-
sion of the Koopman Hilbert space, as it reduces to the latter in the classical case.
We would like to emphasize that the analogy often drawn in the literature between
the classical Koopman space and the quantum mechanical Hilbert space of states
‘H is misleading: it is the space K that is a natural scene for quantum ergodic
theory. As a consequence of the time invariance of 7, a defines a unitary operator
on ) which we will continue to denote by the same symbol. This operator is the
quantum version of the classical Koopman operator.
A quantum map (A, a, 1) is called:
mizing, if for all A, B € %,

lim 7(a" (A)B)=71(A4)7(B);

N—o0

weak mizing, if for all A, B € %,

strongly on K.

For quantum maps, we have the usual hierarchy: mixing = weak mixing =
ergodicity.

Ergodic, weakly mixing and mixing systems can be characterized in terms of
the properties of the spectrum of the automorphism a. We will say that a has
continuous spectrum if 1 is its only eigenvalue and the corresponding eigenvectors
are the multiples of the identity operator.

Theorem 5.2. (i) A quantum map is ergodic if and only if 1 is an eigenvalue
of a and the corresponding eigenvectors are multiples of I ;
(ii) A quantum map is weakly mizing if and only if the spectrum of a is continu-
ous;
(iii) A weakly mizing quantum map is mizing if the spectrum of a is absolutely
continuous.

Hence, quantum maps for which « has pure point spectrum cannot be mixing.

Theorem 5.3. (i) Quantum Kronecker’s dynamic is ergodic but not mizing;
(ii) Quantum cat dynamics is mizing.

In fact, quantum Kronecker’s maps are uniformly ergodic [15].
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5.3. Connes-Stormer entropy (quantum KS entropy). Given an algebra of
observables 2, a faithful normal trace 7, and an automorphism «, there is a con-
struction of an entropy associated with mixing of the quantum phase space resulting
from the time evolution. This entropy, denoted here by H(«), is called the Connes-
Stormer (CS) entropy. The construction of the CS entropy is, roughly, parallel to
the construction of the KS entropy. The CS entropy is a measure of chaos in a
quantum dynamical system, very much like the KS entropy is a measure of chaos
in a classical system.

For simple dynamics, like the cat, Kronecker, and baker’s dynamics, the CS
entropy can be calculated explicitly. The result is that the quantum entropy equals
the classical entropy [13].

Theorem 5.4. The CS entropies of the quantized cat, Kronecker’s and baker’s
maps are equal to the KS entropies of the corresponding classical dynamics.

This means that, in these systems, chaotic behavior persists quantization.
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