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1. Introduction 

In recent years, there has been a growing interest in the theory of quantization. 
Rieffell's paper [17] contains a recent review of this subject and an extensive list of 
references. Among other developments, the present authors initiated in [13] and [14] 
a systematic study of Toeplitz quantization of Hermitian manifolds. This approach 
is building up on Berezin's ideas contained in [1] and its essence consists in the 
following. 

We consider a K/~hler manifold (or supermanifold) M with Kfihler form a~. Locally 
we can write 

a~ = i~jJkgb dzj A dik, 

with some K/ihler potential ~b. We then construct the following measures d#r on M, 

d#r(z) = e-r~<z) det(a~Skq5 ) dz d~ 

and consider the subspace H2(M, d#,) of L2(M, d#~) spanned by holomorphic func- 
tions. Let P denote the orthogonal projection onto H2(M, d#,). For a continuous 
function f on M, let M(f) denote the operator of pointwise multiplication by f. The 
corresponding Toeplitz operator T,(f) is the compression PM(f)P of M(f) to 
H2(M, d#,). This construction can be made global if one uses sections of Hermitian 
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line bundles instead of functions. Furthermore, topological obstructions to the 
existence of ~b may impose restrictions on the values of the parameter r. This will be 
discussed in more detail in Section 4. 

The key fact is now that the correspondence f ~ T,( f )  is a quantization map. 
This means that for f continuous and bounded we have the norm limit 

lim 11T,(f)II = II f [I ~, 
y--* oO 

where II • II denotes the operator norm and where I1"11~ denotes the sup-norm. If, 
moreover, f, g are smooth and at least one of them is compactly supported, then 

lim [Ir[T,(f), T,(g)] + Tr(i{ f,g})ll = O, 
r--* oo 

where {f, g} is the Poisson bracket defined by co. 
Substantial progress in implementing this program has been made recently. 

Deformation estimates were proven for C" by Coburn in [8]. The Cartan domains 
were studied by Borthwick, Legniewski and Upmeier in [7]. In a series of papers 
[4-6], Borthwick, Rinaldi, and the present authors further extended these results to 
include an infinite family of supermanifolds. 

Compact K/ihler manifolds present additional topological complications men- 
tioned above. In [14], we described the Toeplitz quantization scheme for compact 
Riemann surfaces. This construction was recently extended to arbitrary compact 
K~ihler manifolds by Bordemann, Meinrenken and Schlichenmeier, [-3]. 

In this Letter we are concerned with the following equivariant version of 
Toeplitz quantization. Suppose M is a K/ihler manifold and let F be a discrete 
group acting holomorphically and without fix points on M. Let us also assume 
that the K/ihler form c0 is F-invariant. We may then consider the quotient manifold 
M1 = M / F  and the pushed down K/ihler form col = re, co, where n is the canonical 
projection re: M ~ m l .  Let f ~ Tr(f) and f ~ T¢( f )  be Toeplitz quantizations of 
M and M1, respectively, and let s t , (M) and ~¢,(M~) denote the corresponding 
C*-algebras generated by the Toeplitz operators. We say that d r (M)  is a quantum 
covering of ~r(M1) if there is an isomorphism U of the corresponding Hilbert 
spaces such that 

UTr(fo ~r)U- i = T I ( f ) ,  

for all continuous functions f on M 1. In this Letter, we study uniformization theory 
for quantum Riemann surfaces. The question we address is whether the classical 
covering spaces become, upon quantization, quantum covering spaces for the corres- 
ponding quantum Riemann surfaces. 

Let Mi  be an arbitrary Riemann surface (except a sphere) and let M be its 
universal covering space. Then M is either the unit disk or the complex plane. 
Toeplitz quantizations of these spaces were discussed [13] and [8]. The following 
theorem is proven in [15]. 



QUANTUM RIEMANN SURFACES III 47 

THEOREM 1.1. With the above definitions, the correspondence 

f ~ T,(fo ~) 

is a quantization of M1. 

In this Letter, we assume additionally that M1 is an exceptional Riemann 
surface, i.e. the fundamental group zcl(M1) of M1 is commutative. This is a 
substantial technical simplification as it allows us to effectively use Fourier 
analysis on that group. The main result of this Letter is summarized in the following 
theorem. 

THEOREM 1.2. With the above definitions, the quantum Riemann surfaces dr(M) 
are quantum coverings of d~(M1). 

The Letter is organized as follows. In Sections 2 and 3 we study elliptic and 
hyperbolic Riemann surfaces, respectively. In Section 4, we compare these results 
with the direct approach based on geometric quantization. 

2. Uniformization of Elliptic Quantum Riemann Surfaces 

Elliptic Riemann surfaces are precisely those surfaces which have the complex plane 
C as the universal covering space. It is well known (see, e.g., [12]) that there are three 
types of elliptic Riemann surfaces: the plane C, the punctured plane C*, and the 
tori = C/Z 2. 

In this section, we study Toeplitz quantizations of these Riemann surfaces. In 
particular, we discuss quantization maps and the structure of the C*-algebras 
they generate. Deformation quantization of C is a classical subject going back to 
Heisenberg, Born and Jordan. For a recent discussion from the point of view close to 
ours see [8] and references therein. There is also substantial literature on the 
noncommutative tori, see, e.g., [9], [16]. We should also emphasize that some results 
described in this section had previously been obtained in [2]. 

Let d/t, be the following probabilistic measure on C, 

d/t, = _r e-rr;12 d2~. (2.1) 

Here r > 0, and d2~ is the Lebesgue measure on C. Let H2(C, d#r) denote the closed 
subspace of LZ(C,d#,) consisting of holomorphic functions. Let K'(~,q) be the 
integral kernel of the orthogonal projection P: L2(C, d#r) ~ Hz(c ,  d/t,), i.e. K'(ff, t/) is 
the Bergrnan kernel for C associated with d/t,. Explicitly, 

Kr(~,/I) = e '~. (2.2) 

For a e C we set 

U'(a)¢(() = e'~a-~'/2)l"12qS(( - a). (2.3) 
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Then the operator U'(a) is unitary in H2(C,d#,). Moreover, a ~ U'(a) defines a 
projective unitary representation of the additive group C. In fact, for a, b ~ C we 
have 

U'(a)U'(b) = eirlmtab)Ur(a + b). (2.4) 

For a bounded, continuous function f on C we define an operator T,(f): 
H2(C, d/z,) ~ H2(C, d/z,) by 

T,(f)q~ = PM(f)qb, (2.5) 

where M ( f )  is the pointwise multiplication by f. 
The operator T,(f) is called a Toeplitz operator with symbol f.  Explicitly, 

T~(f)~b(0 = f K.(¢, t/)f(t/)~b(t/) d/z,(q). (2.6) 

It was shown in [8] that the map f--* T,(f) is a quantum deformation of C in 
the sense discussed in [13]. The C*-algebra d , (C)  generated by T,(f) with f vanish- 
ing at infinity is isomorphic to the C*-algebra .¢f of compact operators in H2(C, d/z,). 

Let now F be the additive group of complex numbers {2rein In ~ 7/}. The group F 
acts on C by translations and C/F  ~ C* = C - {0}. The covering map p is given by 

p: C ~ ~ ~ e; e C*. (2.7) 

We will identify functions on C* with F invariant functions on C. Consequently, 
a bounded continuous function f on C* defines the Toeplitz operator T,(f) in 
H2(C, d/z,). 

THEOREM 2.1 With the above definitions, the correspondence 

f ~ T,(f) 

is a quantum deformation of C*. 

This theorem is a special case of the general result of [15]. Our next main result, 
which will be proven in Section 4 is the following theorem. 

THEOREM 2.2. Let d , (C*)  be the C*-algebra generated by the Toeplitz operators 
T,(f) where the symbols f are continuous, compactly supported functions on C*. Then 

d, (c*)  ~ c(s 1) ® ~.  

Now, we present a preliminary discussion of the structure of Toeplitz operators 
with F-invariant symbols. Set U = U'(2rci). Observe that if f is a F-invariant func- 
tion on C, then we have 

UTr(f) = T,(f)U. (2.8) 

This relation implies that T,(f) is diagonal with respect to the spectral decompo- 
sition of U. 



QUANTUM RIEMANN SURFACES III 49 

D E F I N I T I O N  2.3. A holomorphic function ~b on C is called an automorphic 
function with respect to F and with multiplier e i°, if 

U~b(O = ei°qS(0. 

One can easily verify that automorphic functions exist. In fact, the space of auto- 
morphic functions with a given multiplier is infinite dimensional (see Section 4). We 
denote by H0z(C *) the Hilbert space of automorphic functions with respect to F and 
with multiplier e ~° which satisfy 

o [~b(012 d#,(0 < oo. (2.9) 

Here D is a fundamental domain for the action of F on C. The above expression, 
defining the norm in H2(C*), is independent on the choice of D. 

P R O P O S I T I O N  2.4. The map P: H2(C, d / # ) ~  SselH2(C *) dO given by 

PO((, O) = ~ e-i"°U"d?(O 
n ~ 7 /  

is an isomorphism. Furthermore, for O ~ SfflH0Z(C*) dO, 

PUP- 1~(~, O) = e'°O(~, 0). (2.10) 

Proof. We first verify that P is an isometry: 

IIP¢5 II 2 =  [P~b((', 0)12 d#~(( " 

= 2 U"qS(0 U " 4 ( 0  el("- r,)0 d#, 2re 
- ~ r  n , m  

-- Z ;0+2., 1 (012 

= fc I q~(012 d/~,(0. 

Similar calculations show that the inverse of P is given by 

P -  xO(~) = ~k((, O) dO. 
- T r  

Verification of (2.10) is straightforward. 

(2.11) 

[]  
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shows that there are nowhere vanishing automorphic functions. Any other auto- 
morphic function differs from ~b0 by a periodic factor, that is by a holomorphic 
function on C*. We can thus identify H2(C *) with the space of holomorphic func- 
tions on C* which are square integrable with respect to an appropriate measure d# °. 
This point is further discussed in Section 4. 

Remark. Notice that the F-invariant functions e ;, e ( generate the ring of con- 
tinuous functions on C* which have limits at the boundary. The corresponding 
(unbounded) Toeplitz operators satisfy the relation 

Tr(e~)T,(e ~) = el/'T,(e~)Tr(e~). 

This relation, written in the form xy  = qyx, is often referred to as a relation defining 
'the quantum plane'. 

We will now discuss the quantum tori. Consider the additive group of complex 
numbers Ft = {n + Train, m ~ 7/} where z ~ C, Im(z) > 0. The group Ft acts on C, and 
the quotient space C/F, is a torus. Functions on C/Ft can be identified with Ft- 
invariant functions on C. The following theorem was proven in [-15] (it also follows 
from the results of [2]). 

THEOREM 2.5. Let  f be a continuous function on C/Ft. The correspondence 

f--+ T , ( f )  

is a quantum deformation of  C/Ft. 

Below we study the structure of the C*-algebra d , ( C / F  0 generated by the Toeplitz 
operators T , ( f )  where the symbols f are continuous functions on C/Ft. Observe that 
for a e Ft and a F~-invariant function f on C, we have 

U'(a)T~(f)  = T,( f)Ur(a).  (2.12) 

As a consequence, the algebra d,(C/F~) is a subalgebra of the fix point algebra of the 
projective representation Ft ~ a ~ Ur(a) of Ft. 

Set V = U~(I) and W = U'(z). Obviously, V and W generate U'(Ft). A simple 
calculation using 

U'(a) U'(b) = e 2irlm(ab) U ~(b) O ~(a) (2.13) 

shows that 

V W  = eZirIm(~)WV. (2.14) 
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Consider now the following operators: 

Using the commutation relation (2.13), we verify that both M and N commute with 
V and W. Furthermore, they satisfy the relation 

M N  = e 2~211rlm(~)NM. (2.15) 

P R O P O S I T I O N  2.6. The operators M and N are Toeplitz operators with F~- 
invariant symbols. Furthermore, the C*-algebra d , ( C / F 0  is generated by M and N. 

Proof. Consider 

7~ 2 7~ 

n(0 - exp t 2 r ~ - m ~ ) i  / 

We verify directly that M = T,(m) and N = T,(m). It is also clear that m and n are 
F~-invariant. 

Since II r.(f)II ~ II f [I o~ and since, by the Stone-Weierstrass theorem, the functions 
m and n generate the algebra of continuous functions on C/F,, we can conclude that 
d , ( C / F  d is generated by M and N. [] 

We claim that the relation (2.15) is the only relation between M and N and that 
d , ( C / F d  is universal with respect to this relation. More precisely, we have the fol- 
lowing theorem. 

T H E O R E M  2.7. Let ~ be the universal C*-algebra generated by two unitary ope- 
rators M, N obeying the relation 

Then 

M N  = ei~NM. 

Remark. The algebras ~ are called quantum tort and were studied in detail in 
[-9], [2] and [-15]. Theorem 2.7 can be viewed as a uniformization theorem for 
quantum tort. 

Proof. Since V commutes with both M and N, we can perform spectral decompo- 
sition of V to obtain invariant subspaces for M and N. Proceeding as in the proof of 
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Proposition 2.4, we obtain the decomposition 

f; H2(C, d ~ r )  - Hi dO, 
1 

where H 2 is now the Hilbert space of holomorphic functions q~ on C such that 

V~b(() = e~°¢(() and I1¢11~ = ;DI¢(01Zd~,(0 < o(3. 

For  definiteness, we choose D = {(:0 ~< Re ( <  1}. The operators M and N are 

diagonal with respect to the above decomposition, and they are again given by the 
same formulas as the corresponding formulas on H2(C, d/#). 

Consider now ¢0 e H 2 given by 

q~o(() = e t r /2g2- i ( °Co ,  (2.16) 

where the constant Co is chosen so that II ¢0 II 2 = 1. Since ¢0 is nowhere vanishing, 
any other element of H 2 is of the form O(()~b0(() where ~ is periodic, 

0(( - 1 )  = ~(~). 

Observe that: 

--~ + ~ - - -  

= ex 0 • 

rIm / 
(2.17) 

We claim that e k = Nkc~o ,  k ~ Z, is an orthonormal basis for H 2. In fact, a com- 
putation similar to the one in (2.17) shows that 

NkOo(() = c o n s t  e-2ik~(90((), (2.18) 

where const denotes a factor which is independent of (. The collection {Nk¢o((); k e_ 7/} 
forms a total set in H 2, since the functions e -2ik~ span the space of holomorphic 
periodic functions on C. Furthermore, 

(N"¢o, U %  ) = (~o, Ni-"¢o) 

cons t  f D e 2 i ( k - l ) ~  e(r/2)(;-()2 - iO(~-() d2(.  (2.19) 

The integral over Re(() in (2.19) vanishes unless k = l, in which case the above scalar 
product is equal to 1. We have 

N e  k = e k + l ,  
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[" 2rcZik \ k 
Mek = MNk(oo = exPt r  i - i -m~)N M(oo 

[" iOrc 2rcZik \Nk [" iO~ 2rcZik 
= exPt, ri-i-m777 + = exPt  + ~ , . ) e k .  
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(2.20) 

We can therefore identify HE ----- L2(S 1) in such a way that the operators M and N 
become 

Nf(c 0 = ei'f(oO, 

Mf(ct) = exp ~ f c~ + r I - ] ~ J "  (2.21) 

Ss,Ho dO contains every irreducible This concludes the proof since the direct integral • 2 
representation of ~(2g2/rlm(r)) (see [16] and references therein). []  

3. Uniformization of Exceptional Hyperbolic Quantum Riemann Surfaces 

A Riemann surface M is called hyperbolic if its holomorphic universal covering 
space is the unit disk U. If, additionally, 7~1(M) is commutative then M is isomor- 
phic to either U or the punctured unit disk U * = U \{0} or the annulus Up = 
{( ~ C: p < I~[ < 1} 0 < p < 1 [-12]. Such Riemann surfaces are called exceptional 
hyperbolic Riemann surfaces. 

In this section, we study Toeplitz quantization of these Riemann surfaces. We 
begin by recalling the Toeplitz quantization of. U [13]. Then we study Toeptitz 
operators on U with rq(M)-invariant symbols. As it is explained in Section IV, this 
approach turns out to be related to geometric quantization. Thus, our theorems 
describing quantum U* and Up can be viewed as uniformization theorems. 

Let d#, be the following probabilistic measure on U: 

r - 1  
d # , -  (1 --1~12)r-2 d2~. (3.1) 

7t 

Let H2(U, d#r) be the closed subspace of L2(IJ, d#r) consisting of holomorphic func- 
tions. For a continuous bounded function f on U, we define the operator T~(f) in 
Ha(U, d#r) by 

r~(f)c~(¢) = fu K'((' tl)f(~)q~(tl) d#~(q), (3.2) 

l 

where K'((,  t/) is the integral kernel of the orthogonal projection 

P: L2(I_/, d#,) ~ H2(U,  d#,), 

so that T,,(f) is the multiplication by f followed by the projection P. Explicitly, 

g~((, t/) = (1 - ((/)-'. (3.3) 
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The group of biholomorphisms of U can be projectively and unitarily represented 
in H z ( u ,  d/~,) by 

U'(7)q~(O = ((7-1) ' (~)) ' /2~(7-10,  7 e SU(1, 1). (3.4) 

It was shown in [13] that the mapping f ~  T , ( f )  is a quantum deformation of EJ. 
Moreover, the C*-algebra d , (U)  generated by the Toeplitz operators T , ( f )  with 
symbols f vanishing at S 1 = OU was shown to be isomorphic to • ,  the C*-algebra 
of compact operators on a separable infinite-dimensional Hilbert space. The C*- 
algebra d,(E]) generated by Toeplitz operators with symbols continuous on the 
closed unit disk 0 is an extension of J[ :  

0 --, ~ --, d , ( U )  --, C(S ~) --, O. (3.5) 

To discuss the uniformization, it is convenient to identify ~3 with the upper half 
plane H via the biholomorphic map 

1 + ~  
u ~ ~ - , J ( O  = iT~?_  r ~ H, 

(3.6) 
j _ l ( r / )  _ ~ --  i 

~ / + i "  

We set 

TC 
dr, _ ~) , -2  dZ~ (3.7) 4 , - 1 ( r _  1) (Im 

and consider the space H2(H, dv,) of holomorphic functions on H square integrable 
with respect to dv,. The corresponding Bergman kernel is given by 

1 ,3=  g~((, r/) = (( - q)" 

For a bounded continuous function f on H we denote by T ~ ( f )  the Toeplitz 
operator in H 2 ( ~ ,  dr,) with symbol f. 

PROPOSITION 3.1. The map J: H2(U, d#,) ~ H2(H, dr,) 9iven by: 

is an isomorphism. Furthermore, 

j - 1 r ~ ( f ) J  = T , ( fo j ) .  

Proof. The claim follows by simple calculations which we do not reproduce 
here. [] 

The advantage of working with the upper half plane rather than with the unit 
disk is that the uniformizing groups are easier to write down explicitly on the former. 
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The group SL(2, ~) of biholomorphisms of H acts projectively and unitarily on 
H2(H, dye) by a formula analogous to (3.4). 

Consider the following subgroup F of SL(2, ~) 

U ( n ) 4 J ( O  = 4~(~ - n). 
(3.9) 

The quotient H /F  is isomorphic with U*. The covering map s is given by 

s: H ~ ~ ~ e 2~  ~ U* (3.10) 

Toeplitz quantization of k/* is, by definition, the correspondence f ~  T~(f) 
where f ' s  are bounded, continuous and F-invariant functions on H. The de- 
formation estimates were established in [15]. Here we want to study the structure 
of the C*-algebra generated by such Toeplitz operators. To this end, we observe 
that UT~( f )=  T~(f)U where U.'= U(1) (see formula 3.9) and perform the 
spectral decomposition of the unitary operator U. Following the method of 
Section 2, we consider the Hilbert space H02(H) of holomorphic functions q~ on H 
such that 

U ~ b ( ~ )  = ~b(~ - 1)  = e~°qS(~) ,  

fo  [qb(~)12 dv~(~) < ~ ,  

(3.11) 

where D is a fundamental domain for the action of F on H. Reasoning as in the proof 
of Proposition 2.4, we obtain the isomorphism 

H2(H, dvr) ~ Ho2(H) dO. 
1 

Observe next that the function ~ ~ e -i°* is a nowhere vanishing element of Hz(H). 
Finally, let H 2(U *, d/~0) be the Hilbert space of holomorphic functions on U * square 
integrable with respect to the measure 

dkt0 = (r - 1)(16~) r-1 log 1(] -(°/=)-2 d2~. 

As a consequence of the above discussion we obtain the following result. 

P R O P O S I T I O N  3.2. The map S: Hz(~J *, d#0) --* Hz(H) given by 

SO(() = e-i°~a(e z~i~) 
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is an isomorphism of Hilbert spaces. Furthermore, if f is a continuous function on U*, 
then 

L S-1 r ~ ( f ) S  = r'o(fo s) dO, 
! 

where T~o(fo s) is the roeplitz operator in HI(H) with symbol fo s (see 2.10). 
Proof. The claims follow by straightforward computations which we omit. [] 

This discussion enables us to describe the structure of C*-algebras generated by 
Toeplitz operators on U*. In what follows, we identify functions on U* with 
F-invariant functions on H. Let d,(~J*) be the C*-algebra generated by the 
Toeplitz operators with symbols f :  U* --* {2, vanishing at the boundary of U* and 
let d , (G*)  be the C*-algebra generated by Toeplitz.operators on ~*, the closure 
of U* in C. 

THEOREM 3.3, "We have the exact sequence 

o ~ ~ , ( u * )  ~ ~ , ( 0 . )  ~ c ( s  1) ¢ c -~ o. 

Furthermore, 

d , ( ~ * )  -- C(S1) ® Y. 

Proof. The C*-algebra generated by T~(f) in H2(•*,d#0), with symbols f 
continuous on 0% is generated by a single operator T~(O. This follows from the 
Stone-Weierstrass theorem and the estimate 

II T'o(f) IJ ~ I1 f II ~. 

The operator T~(() is a bilateral shift and so we have the exact sequence [10]: 

0-~ f i - o  d 0 - ~  c ( s , )  ¢ c ~ 0. 

Furthermore, T'o(f) is compact if and only if f(0) = 0 and f ( 0  = 0 for every ( such 
that Iq - 1. In fact, such Toeplitz operators generate all of fiE. These statements 
follow from considerations analogous to those in [13]. As a consequence, we have 
the following short exact sequence 

o --, ~ . ( ~ * )  ~ d . ( O * )  ~ c ( s  ~) ¢ c --, o. 

Observe now that according to Proposition 3.2, d , (U*)  can be identified with a 
subalgebra of C(S 1, f i )  ~- C(S ~) ® ~ .  Since C(S 1, fig) is type I, and ~',(U*) is rich, 
we conclude [11] that 

d . ( u * )  ~- c ( s  ~ ) ® x .  [] 

Consider now the Abelian subgroup Fz of SL(2, ~) generated by the following 
biholomorphism of H: ~ ~ 2~, 2 > 1. The quotient H/Fz is isomorphic to Up, where 
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p = exp(-  2r~Z/log 2). The covering map H ~ Up is given by [12] 
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-~ exp(2rci l°g ~ ~ j .  (3.12) 

Let sir(Up) be the C*-algebra generated by the Toeplitz operators with symbols 
f: Up--* C, vanishing at the boundary of Up and let dr(0p) be the C*-algebra 
generated by Toeplitz operators on ~]p, the closure of U o in C. We proved in [15] 
that the correspondence f ~  T~( f )  ~ dr(q]p) is a deformation quantization of ~]p. 
Arguments similar to those used in the proof of Theorem 3.3 lead now to the 
following statement. 

THEOREM 3.4. We have the exact sequence 

0 --, dr(Up) ~ ~r(Sp) ~ C(S 1) e C(S ~) ~ O. 

Furthermore, we have the isomorphism 

~¢'r([[-Jp) ~ C(S 1 ) (~) 

4. Geometric Quantization 

It is well known that the quantum deformations of C and U used in Sections 2 and 
3 are closely related to the geometric quantization prescription with holomorphic 
polarization, see, e.g., [2]. The purpose of this section is to compare the definitions 
of exceptional quantum Riemann surfaces given in the previous sections with those 
of geometric quantization. The statement that the two approaches lead to the same 
Hilbert space (of physical states) can be viewed as a uniformization principle. In 
what follows we prove that such uniformization theorems are indeed true, with 
obvious restrictions that we will now discuss. 

The situation is more subtle if M is compact. For one thing, the structure of 
dr(M) strongly depends on r. Geometric quantization is meaningful only for a 
discrete sequence of values of r, namely those dictated by the quantization condi- 
tion. In those cases dr(M) is a direct integral of finite dimensional full matrix 
algebras and, as we will see, both quantization methods coincide (at least for the 
tori). Unitbrmization method is, at least in principle, more general as it does not 
require any topological condition on r in ~¢r(M). 

In this section, we will concentrate on two representative examples: C* and tori. 
The detai~s of the other examples discussed in this Letter, namely ~J* and Up are 
essentially identical to those of C* and we leave them out. 

We begin with a brief discussion of geometric quantization of a complex 
manifold M in the direction of a symplectic form co [18]. First, one considers 
hermitian holomorphic line bundles L, ( , )  such that 

curv(V) = re), (4.1) 
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where V is the canonical complex connection associated to ( , ) ,  and where curv(V) 
is the curvature of V. 

Such bundles exist only if 

i 
Cl(L ) = ~ rgo e H 2(M, ~-), (4.2) 

and are classified by the characters X of the fundamental group of M. The choice of 
holomorphic polarization amounts to the following choice of a Hilbert space: 

= f ;  H2(Lx, ( , )zog")dz.  (4.3) 

Here H2(Lz, (,)zog") is the Hilbert space of holomorphic sections s of L x such that 

f ( s ,  s)~(0o~=(() < oo, 

where n is the complex dimension of M. The quantization map is simply the 
correspondence: 

f ~ fT~(f) dz, (4.4) 

where TZ,(f) are Toeplitz operators on the space H2(Lz, ( , )za~  n) with symbols 

f e  C(M). 
We will now discuss the geometric quantization procedure for C* viewed as the 

quotient C/{2zin, n e Z}. Since we deform C in the direction of the invariant sym- 
plectic form 

c0 = i d( A d~-, (4.5) 

we choose the following form on C*: 

i 
~01 = I - ~  d( A d(. (4.6) 

Every holomorphic line bundle on C* is trivial, and so the quantization condition 
is void. However, ~1(C*) = 71, and different Hermitian structures are classified by 
S 1. Denoting (s, t)(() = 7(()g(~)t((), we obtain the equation 

/, 
0J  log 7(0 - I (I 2. 

Solving the above equation yields, up to equivalence, the following expression for 7: 

(r ) 
70(() = const exp - ~ log2lt/I 2 Iffl -<°/~. 
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Furthermore, 7o is equivalent to 7o' iff 0 - 0' ~ 2zc7/. As a consequence, the Hilbert 
space of geometric quantization is 

9ff = Hz(C *, d/t °) dO, 
1 

where 

( r ' )  
d# ° = c o n s t e x p  - ~ l o g  It/I 2 I(I - ( 0 / r 0 -  2 d2(.  

We then construct Toeplitz operators T'o(f) in the usual fashion. 
Recall now that we constructed in Proposition 2.4 an isomorphism 

P: H2(C, d#~) - HE(C *) dO. 
1 

P R O P O S I T I O N  4.1. The map 

R: H2(C *, du o ) ~/-/0~(C * ) 

given by 

R~b(~) = e x p ( - - 2 ~ 2 -  0(~b(e~)2zU 

is an isomorphism. Furthermore, 

PT~(f  o p)p-~ = RT~o(f)R-1 dO. 
1 

Proof. We omit the elementary calculations. []  

It is a standard fact in the theory of Toeplitz operators that T~o(f) is compact if 
and only if f vanishes at the boundary of C* and that such T~o(f) generate our. This 
means that d , ( C * )  is a subalgebra of C(S 1) ® Y. But d , (C*)  is clearly rich and so 
we conclude [11] that 

d , ( c * )  - c ( s  1) ® 4". 

This proves Theorem 2.2. 
Our second example is that of tori. In the following, we use the notation of 

Section 2. The symplectic form on C/F~ is given by the same expression as the 
symplectic form on C, namely (4.5). The quantization condition (4.2) leads to the 
following restriction on r: 

r I m z  
- -  e N .  ( 4 . 7 )  

7r 
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Comparing (4.7) with (2.14) shows that for such r's, the projective representation 
Ur(7) of F~ in H 2(C, d#,) is a genuine representation. 

Let X be a character of Ft. The Hilbert space of (4.3) can be identified with the 
following direct integral 

= ;~  H~(C/FO Yf dz, 

where dz is the Haar measure on the dual of Ft. Here, H2(C/F,) is the space of 
holomorphic functions ~b on C such that for every ? e F~, 

The norm on this space is given by 

II ¢ II 2 = fo 14,( 0 12 d/~((), 

where D is a fundamental domain for Ft. This construction is well known from the 
theory of automorphic forms. We denote the Toeplitz operators in H2(C/F0 by 
Tz(f). Finally, let k be the standard projection C ~ C/Ft. 

THEOREM 4.2. The map 

K: HE(C, d#r) ~ 

given by 

K~b(X, () = ~ Z(7-1)Ur(7)O(~) 
yeFz 

is an isomorphism. Furthermore, 

KTr(fO k)K -1 = f ;  T~(f) dz. 

Proof The proof is a straightforward calculation similar to that leading to 
Proposition 2.4 and involving Fourier analysis on Ft. [] 
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