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The tensor products of the irreducible representations of the algebra of contin- 
uous functions on the quantum group SU,( 2) were studied. Using the methods 
of q-calculus it was proven that the tensor product of two infinite dimensional 
irreducible representations may be decomposed into a direct integral of 
irreducible representations. 

1. INTRODUCTION 

The algebra of continuous functions C(SU,( 2)) (Refs. 1 and 2) on the quantum group 
SU,(2) is defined as the universal enveloping 6*-algebra of the unital *-algebra generated by 
four elements a, 5, b, b satisfying the following relations: 

ab = ql”ba, a6= q”‘&a, b&= 6b, 

az-ca= (q-II2 -q”‘)&b, aZ+q’/‘&b=I. 
(1.1) 

We assume that - 1 <q”’ < 1, q”2#0. The involution is defined by a*:=ii and b*:=b. 
C(SU,(2)) is a Hopf C*-algebra with the coproduct A given by 

A(a)=a@a-b@&, A(Z)=ZeZ--&sb, 

A(b)=aeb+beii, A(g)=ZB&+&ea, (1.2) 

the counit E given by 

e(a) =6(Z) = 1, e(b) =e(6) =0, (1.3) 

and the antipode S given by 

S(a) =Z, S(Z) =a, S(b) = -q:‘/‘b, S(K) = -q”‘& (1.4) 

The irreducible *-representations of C(SU,(2)) were classified in Refs. 1 and 2. It was 
found that C(SU,( 2)) has two distinct families of irreducible representations, one dimensional 
and infinite dimensional (see Sec. II for details). Since C(SU,( 2)) is a bialgebra, the category 
of its representations comes naturally equipped with a tensor product. In this paper, we 
compute the tensor products of irreducible representations of C(SU,(2)). Our main result is 
that the tensor product of two infinite dimensional irreducible representations is equivalent to 
a direct integral of infinite dimensional irreducible representations (see, e.g., Ref. 3 for the 
definition of a direct integral). 

The proof of this result involves a number of combinatorial identities of q-calculus.4P5 
Throughout the paper we use the standard notation of q-calculus as explained, e.g., in Ref. 5. 
In particular, for 141 51, (I&, we set (a;q)c:=l, (a;q),:=llo,j<n-, (l-aqi), if n)l, and 
(a;q),:=II,,(l-aq-9. 
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II. TENSOR PRODUCTS OF IRREDUCIBLE REPRESENTATIONS OF C(SUJ2)) 

Let rr:C(SU,( 2)) -+ 3 (Z) be an irreducible *-representation of C(SU,(Z)) in the C*- 
algebra 9’ (X) of bounded linear operators on a Hilbert space &“. According to Refs. 1 and 
2, rr is unitarily equivalent to one of the following two families of representations. 

One dimensional representations pv The Hilbert space is &“=Q: and 

p,(a) =e@, p,(b) =Q 

p,(Z) =e-@, p,(b) =0, 
(2.1) 

where O<q, < 2n. 
Injinite dimensional representations ng The Hilbert space is E=12( Z, >, where Z, is the 

set of non-negative integers. Let {+n}na be the standard orthonormal basis for 3?? and let 
E,,,E~? (F) be defined by E,,,n4k=Sn,&,,. We set for 0~8 < 2rr, 

TO(U)= c (l-qn)1’2E,+,,,, ro(b)=eie c q(1’4)(2n+1)E,,n, 
n>l fl>O 

(2.2) 

TO(Z) = 1 ( 1-qn+1)1’2E,,+l,n, 
n>O 

7re(&) =emie n;oq(1/4)(2n+1)En,n, 

Our concern in this paper is the study of tensor product of representations. Recall that if 
7r:C(SU,(2))+Y(;u?) and p:C(SU,(2))-+3(Y) are representations of C(SU,( 2)), then 
their tensor product rr@ p is defined as the composition of morphisms 

cwJ,(2)) - A c(su,(2))ck(su,(2))-Y(Z%kYo), 

where G denotes the spatial tensor product of C*-algebras [since C(SU,(2)) is nuclear,’ the 
choice of C*-norm on the tensor product C(SU,( 2)) @I C(SU,( 2)) is, in fact, optional]. The goal 
of this paper is to prove the following theorem. 

Main Theorem: The following unitary equivalences hold: 

(i) Pv@ Pe”Ppl+e, (2.3) 

(3 pp@ ngYT++e, (2.4) 

(iii) rq Q pp~p-e9 (2.5) 

s 

d 
(iv) rrpc31rfjr (2.6) 

9 
r, da, 

where pt-0 is defined modulo 2a, and where da is the normalized Lebesque measure on S’. 
Beginning of the proof of the Main Theorem: Since A is a *-homomorphism of @Y-algebras, 

it is enough to verify the isomorphisms (i)-(iv) when applied to (I and 6. Verifying (i) is easy 
and we omit the details. To prove (ii) we note that 

(p,@ro)(a)=e@ c (1-q”)1’2En-l,n, 
n>l 

(pp,@rg) (b) =ei(a+@ c q(1’4)(2n+1)En,n. 
n>O 
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Define U:I’(Z+) -+I’( Z+) by U&=e-‘“@+“. Then U is unitary and 

U-‘(p,epe)(b)U=ei’a+‘) c qU/W2”+‘)~ n,n . 
00 

The claim follows. The proof of (iii) is similar and we omit the details. 
To prove (iv) we observe that, as a consequence of (i)-( iii), 

rp@reePv-e@ (~o@~o), 

and so we need to show that 

J- 
@ 

Troe?Tor s’ n;, da, 

and 

pAe Jsy Tada= Jsy Tada. 

We will prove Eqs. (2.7) and (2.8) in the following section. 

(2.7) 

(2.8) 

Ill. PLANCHEREL THEOREM 

In this section we reduce the proof of Eq. (2.7) to the proof of a Plancherel-type theorem. 
This theorem will be proven in Sec. IV. 

We begin by defining a sequence {CO,,},,&+ of l’(Z+) d I’(Z+)-valued distribution on S”. 
We set 

da>= C. 4fY(aMpm& O<a<2r, 
P*=Z, 

(3.1) 

where the coefficients &‘(a) are defined as follows: 

(WI) 1’2 
c&(a)= * ( 1 

q’ l/Z)pr 
ei(p--rfa 

b#%Ml;‘l . 

For each n) 1 we set 

w,(a) = (q;q)~1’2A(Z)“wo(a), 

with the obvious action of A(Z)” on oo(a). 
Proposition III I: With the above definitions, 

I 0, n=O, 
A(a)M (1--qn)1/2wn-l(a), 01, 

A(b)w,(a) =eiclq(1’4)(2n+1)w,(a), 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

J. Math. Phys., Vol. 34, No. 1, January 1993 
Downloaded 22 Apr 2008 to 128.103.60.225. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



A. Lesniewski and M. Rinaldi: Tensor products of representation of c(SU&2)) 

A(&)@,(a) =e-iOLq(1’4)(2n+‘)wn(a), 

Prooj The proof is a simple verification. For example, 

(3.7) 

= p; {( 1 -@p+‘)“2( 1 -q’+‘)“%$ +l,r+1(a)_qc1/2)(P+r+1)~‘(a)}~p,e~ 

. + 

=o. 
0 

Proposition III 2: As Hilbert space valued distributions on S’, 

(w,(a),w,(P>)=s,,s(a-P). 

Prooj We have 

bO(a),wo(P))= ,z dY(a)*diW ’ + 
_ (w?) co 

27T 
2 4Dr ,i(p-r)W-a) 

p,r>O (q;q)p(q;q), 

-‘qf”,‘m C ei&fl-a) C qr(r+k) 

kz ,>O (4;4)rb?x)r+k * 

(3.8) 

(3.9) 

Using Eq. (2.2.8) of Ref. 1 with z=qkfl yields 

c q’(‘+k) 1 c qL(qk+l)’ 1 1 
r)o Gl;4M4;4)r+/r=ok r>o (4;4L(4k+1;4)r= (4xMf+‘F7) m =o, ’ 

and so 

(3.10) 

as claimed. This establishes Eq. (3.8) for n=m=O. Let n > 0. Then, by Eqs. (3.3) and (3.4), 

b,(a),aAP))= (1 -Q)-“*(A(~>w,-l(a>,wo(P))= (1 -q”>-“2(0,_,(a),A(a)wo(P))=0. 
(3.11) 

For the general case, it is no loss of generality to assume that n=m+ k, k>O. Then, as a 
consequence of Eqs. (3.3)-( 3.5), 

-l/2 

(0 m+k(a)ts(8))= 
I 

,ij, ( 1 -qk+j) (1 --4)j 
1 

(~~(~),A(~)“A(~>“oo(P)). 

If k > 0, then this is zero as a consequence of Eq. (3.11) and the fact that A( u)~A(C)” acts 
diagonally on w,(p). If k=O, then 
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(oo(a),A(u)“A(~>“~o(B))= (q;q>,bda),dB)), 

and the claim follows from (3.10). 
Theorem III 3 (Plancherel Theorem): For fe12 (Z, ) o Z2 (Z, ) , 

llfl12= E. S,, I (da)J 1 I2 da. 

We are now prepared to complete the proof of the main theorem. 
End of the proof of the Main Theorem: We define a map 

Cl 

(3.12) 

u: s @ Xf~da+SY@S??, 
s’ 

(3.13) 

where Z?~=Z=12(Z+), in the following way. For x,,&‘“(S1) and any N we set 

U( &x.( - )A):= zN Js, x,W)dP)dP. (3.14) 

Then, as a consequence of Eq. (3.8), 

1 U( &M . Mn) oj= & s,, Ix,(P) I2 @= 1 $p( * Mj2, 
and so U is an isometry. To prove that U is onto we define a map 

(Vf )(a>:= C b,(aLfW,. 
n>O 

Then by Eq. (3.12), 

(3.15) 

(3.16) 

II ( f’f I( * ) 112= nFo js, I (da>,f 1 I2 da= llfl12, 

and so V is an isometry. Furthermore, 

(Vux,( - )4,,)(a) = mTo (%Aa),W-%( * b#,)W,= z. Js, b,(a),4P)MP>d~ 4, 
=xJa)h, 

and so VU=I. Therefore, V is bijective and its right inverse is U. As a consequence, U is the 
inverse of V, and so Eq. (3.13) is an isometric isomorphism. Now, 

(U-‘(r0e 770) (a) U&)(a) = IX b,(a),(n3@ Too) (u)U~n)~m 
m>O 

= z. I;, b,(a)9A(~hAP))d~ 4,. 
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This equals 0, if n =O, and 

if n > 0. Similarly, 

(U-‘(roero) (b) U&)(a) = c Js, (o,(a),A(b)w,(b’))dp +,,, 
m>O 

=qc1/4)~2n+1) c I,, (~,(a),~,(fO)e@d~ 4, m>O 
=eiaq(l/4)(2~+l)~n I 

The proof of Eq. (2.7) is complete. 
To prove Eq. (2.8) we set for x( * ) = C,,~X,( * )#J, E J,“lXa da, 

(TAX)(a):= C x,(a-A)einA#, . 
n>O 

(3.17) 

Then TA is a unitary operator on s,“lRa da and 

(3.18) 
T;‘(nbe To) (6) T~x=eiA(~ocsvo) (b)x, 

where we have identified rro o 7ro with the corresponding representation on s,“lXa da. This 
proves the equivalence Eq. (2.8). 0 

IV. PROOF OF THE PLANCHEREL THEOREM 

In this section we prove Theorem III 3. The proof is a rather tedious computation using a 
variety of q-calculus identities. In order not to interrupt the main line of computation, we defer 
the proofs of three crucial combinatorial identities to Sec. V. 

We need to show that for all p,r,s,t&,, 

(4.1) 

Denoting by &;‘(a) the Fourier coefficient of w,(a) with respect to the basis C$J~ 8 c$,, we can 
write Eq. (4.1) as 

(4.2) 

Lemma IV I: For any n>O we have 
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(q;q) “2 
f$‘(a)=(-1)” * 

( ) 
(4;4)t/2(4;4)~(4;4)r’2 

(1R){(p--k)(r--k)+(n--k)(p+r--2k+l)} 

x O<En (-l) 

kq ,i(p- r)a 

(q;q>p-k(q;q),-k(q;q)n-kok * 
(4.3) 

Proofi We have 

w,(a) = (q;q)n1'2(~~~-~~b)"wo(a) (4.4) 

(to simplify the formulas we have suppressed all the ro’s) . Recall that for x and y obeying the 
algebra 

XY = qyx (4.5) 

we have the following binomial formula: 

(x+v>“= oz<n (;) Ykx”-k, 
4 

(4.6) 

where (ilq:= (q,q),/(q;q)k(q;q),-k is the q-deformed binomial coefficient. Since x= -&eb 
and y=Z@Cobey Eq. (4.5), Eq. (4.6) yields 

Using Eq. (2.2) and Eq. (3.2) we easily obtain Eq. (4.3). Cl 
We now substitute (4.3) into the left-hand side of (4.2). The a integration produces 

~5~-,,~-- We set a: =p - r=s- t and assume in the following that u>O. The case a<0 is similar 
and we omit the details. Introducing the notation 

(4.7) 

we rewrite the left hand side of IQ. (4.2) as 

A(q;q), c c c c--lP+‘(q;q>n 
n>O O<k<n O<I<n 

X 
4 

(3/2)kZ-k/2-(2r+a)k+(3/2)?-l/2-(2ffa)lq~(~+t+~-k-l+~) 

(q;q),-k(q;q),+,-k(q~4)kon-kot-r~~~~~t+~-l~~~~~l~~~~~*-l~ 
(4.8) 

Using the obvious identity 

1 hFk+ %I)& 
G/XL&= (4;q)n ’ (4.9) 

we note that the constraints k<n and I<n in Eq. (4.8) may be dropped. We can thus inter- 
change the order of summations and perform the summation over n first. Using the q-binomial 
formula 
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(a;q)&= o<F<k ( - 1)’ q(“2)‘(‘% 
Q 

we obtain 

= C C (-l)i+jq- ‘- kz 1~+(1/2)i(i+l)+(l/2)j(j+l) 

O<i<k O<j<l 

k 1 

00 

(r+t+a-k-l+i+j+lI 

’ i J q n>o k4)n * 

We now use the familiar formula 

c -L=L 
n>o (4;q)n kq), ’ 

IZI < 1, 

(4.10) 

(4.11) 

(4.12) 

with Z=qr+t+a-k-I+i+j+l (observe that IzI < 1, as r+t+u-k-Z)01 to obtain 

(r+t+o-k--l+i+j+l) 1 G&4) r+t+a-k--l+ifj 

n>O (4x)n 
=(qr+t+n-k-I+i+j+l;q)m= 

(4;4)m * 

As a consequence of these manipulations, Eq. (4.8) becomes 

A k; hco O&k 0%,4 

(3/2)~-k/2-(2r+a)k+(3/2)?--V2-(2t+a)l+(1R)i(i+l)+(l/2)j(j+l)-ik-jl 

We now perform the summation over i. 
Lemma IV 2: For a non-negative integer p, 

(4.13) 

c ( -1)iq(l/2)i(i+i)-ik k 
0 

i (q;q)p+i-&=(q;q)p-~k(P-k+l). 
O<i<k Q 

(4.14) 

Using the above identity with p=r+t+u-l+ j we rewrite Eq. (4.13) as 

A 1 C 2 ~~~~j+k+lq(1/2)k(k+I)+k(t+j-f-r)+(3/2)?-1/2-(2t+a)l+(1/2)j(j+l)-jl 

k>O I>0 O<j<l 

b.?x) r+t+a-1+-j-k 

X(q;q)k(s;q)r-k(q;s)r+=-k(q;q)t-~(q;q)t+=-f(q;q)j(q;q)~-j’ 

We now perform the summation over k in the above expression. 
Lemma IV 3: For u,u&+ such that u - ~00, 

(4.15) 

,$<r (-l)kq(l/2)k(k+l)+k(u-u-r) (4.16) 
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Using the above identity with u=t+u--l+ j, u=u, we rewrite Eq. (4.15) in the form 

1 i (3/2)12-N*-1(*t+.)+(1/2)j(j+l)-j~(q;q)t+.-r+j(q;q)t-,+j “,jo o<+<[ (-1)-q (4;4),(4;4)t-/(4;4)t+a-ror-i(4;4)i(Q;q)r+~(q;q)t-r-~+j * 
(4.17) 

Observe again that the constraint j<Z may be dropped (at the expense of adding zeroes to the 
sum). Substituting I-j-+ I in Eq. (4.17) we rewrite it as 

A (q;q),;q;q),+a 2 wq;;;;;;;y;:r,’ ~d+*li-j(2’+.)(t~~)q (:;;;;;y;!j. 
(4.18) 

TO compute the sum over j we use the following combinatorial identity. 
Lemma IV 4: For a non-negative integer a, 

c q(k-j)2+a(k-j) k 
0 

(%q)k+a =l. 
O<j<k j q (%q)k+a-j 

Using Eq. (4.19) with k=t-i we write Eq. (4.18) in the form 

1 t-r 
A 

(4;4),(4;4),+a(w) t--T q 
-?-ta 2 ( 4)‘q”/2Mw * 

i ) 
. 

I>0 I 

(4.19) 

(4.20) 

Using Eq. (4.10) we obtain 

,,;-, (- l)‘q(l’2)‘(‘-‘) ,I, = (l;q)t-,=s,-,, 
i 1 , * 

4 

As a consequence, Eq. (4.20) is equal to Str, as claimed. 

V. PROOF OF THE COMBINATORIAL IDENTITIES 

In this section we establish the combinatorial identities (4.14), (4.16), and (4.19) used in 
the previous section. The proofs follow a standard pattern familiar from q calculus. 

Proof of Lemma IV2: We denote the left hand side of Eq. (4.14) by A(p,k) and observe 
that 

A(p,O) = (q;dp. (5.1) 

Now, using the well-known identity for the q-deformed binomial coefficients, 

(5.2) 

it is easy to verify that 

A(p,k+l)=A(p--l,k)-q-kA(p,k). (5.3) 

This recursion relation has a unique solution satisfying Eq. (5.2) for all p. Setting A( p,k): 
= (q;q)p-kqk’P-k+” we see that this is the required solution to Eq. (5.3). 0 

Proof of Lemma IV 3: We denote the left hand side of Eq. (4.16) by A (u,v,r) and observe 
that 
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(4;q)u 
A (WO) = (q;q)” ’ (5.4) 

As a consequence of Eq. (5.3), A(u,u,r) obeys the following recursion 

A(u,v,r+l)=A(U+l,U+l,r)-qU-“-‘A(u,v,r). (5.5) 

This recursion relation has a unique solution satisfying Eq. (5.4). Setting A ( u,u,T): 
= (q;q)u-u(E+r)4 we verify that Eq. (5.5) holds and so this is the required solution. cl 

Proof of Lemma IV 4: Substituting k-j-j we rewrite Eq. (4.19) in the following slightly 
simpler form: 

c d( i+d 
’ O<jck 

(5.6) 

Let A(a,k) denote the left hand side of Eq. (5.6). Then 

A(u,O) = 1, (5.7) 

for all a. Using the identity 

(5.8) 

we find that 

A(a,k+ 1) =A(a,k) +qk+“+‘(A(u+ 1,k) --A(u,k)). (5.9) 

This recursion has a unique solution satisfying the initial condition (5.8). Clearly A (u,k) = 1 is 
the required solution. 0 
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