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We present index theorey for Dirac operators Q on the loop space S’+ Iw. These Dirac 
operators are obtained from sypersymmetric quantum field models containing one real Bose 
held and one real (Majorana) Fermi field. The interactions of the model are described by a 
real polynomial V. We prove that Q is Fredholm and we compute its index, namely 
& [ (deg V + 1) mod 21. c!J 1988 Academic Press, IIIC. 

1. INTRODUCTION 

In this paper we continue our program, begun in [l-3], of index theory for 
Dirac operators on loop space. See [4] for a review of our work. We present here 
the construction of a family of Dirac operators Q on /1R, the space of smooth maps 
cp: S’ + R, where S’ is a circle. This space is an infinite-dimensional manifold, the 
loop space of R. 

The Dirac operators we study are suggested by two-dimensional, supersymmetric 
quantum field models and are parameterized by a real polynomial V of degree 
n 2 1. Unlike the case of the complex loop space A@, the quantum field theories 
studied here are not ultraviolet finite. This means that the theory is not completely 
specified by the parameters of I’ but it requires a “renormalization.” This is accom- 
plished by introducing an additional real parameter, the Wick ordering mass m > 0. 
In the physics literature, this class of models is sometimes referred to as the N= 1, 
Wess-Zumino model. 

Our main result is the computation of the index i(Q+) associated with Q (see [4, 
Sect. III], for the definitions); we find that on /1lR, i(Q + ) = s[(deg V+ 1) mod 23, 
where E = + 1 is the sign of the highest degree coefficient of V. This result is proved 
by establishing the existence of a homotopy between the Dirac operator Q and a 
finite-dimensional Dirac operator, whose index has been computed in [S, 61 (see 
also [7]). 

The technical aspects of the construction given here are somewhat different from 
those of [l-3]. The main difference in this respect centers about the presence of a 
Majorana, or self-adjoint, Fermi field in the model. As a consequence, we find that 
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a Pfaffian appears in the functional integral representation of the heat kernel of Q’ 
(rather than a determinant, as was the case for a Dirac fermion). In order to 
establish convergence estimates, we use the theory of infinite-dimensional Pfafftans 
developed for this purpose in [S]. 

Another substantial difference between the quantum fields studied here and those 
of [l-3] is the possibility of supersymmetry breaking [S, 6). For deg V odd, the 
index vanishes; hence it is possible that zero is not an eigenvalue of the 
Hamiltonian. Vanishing of the index is not sufficient to guarantee the absence of a 
zero energy state. However, it is known [S-7] that for the quantum mechanics 
models described by the endpoint Q(0) of the homotopy we construct, the ground 
state energy is in fact nonzero. As a consequence, the ground state for H(0) = Q(0)’ 
is degenerate and supersymmetry is said to be broken. As all the models in Cl-33 
give rise to Q’s which have a nonzero index, the quantum field theories presented 
here give our first candidates for supersymmetry breaking. 

The main mathematical object which we construct and then use to establish 
estimates is a measure on path space over loop space. This is a measure dp on the 
space of functions 

The set of times B is either R or S’. This measure has the general form 

Here Pf, is a regularized, relative Pfaflian, d denotes a renormalized action, and dp 
is a Gaussian measure. A precise formulation of this result is found in 
Theorem 111.3. We construct, in fact, three such measures of this form, dp, dpp and 
dp,, where 

s dp = (Q,, eppHf2,), (1.2) 

s dp, = Tr(epLsH), (1.3) 

and 

s d,u P = Str(e -BH), (1.4) 

where 0, is the Fock vacuum vector, where Tr denotes a trace on the Fock space 
X, and where Str is a graded (super) trace on Z. These measures yield 
corresponding states on the field algebra. 
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II. DIRAC OPERATORS ON LOOP SPACE 

In this section we define the Dirac operator Q on the loop space AR. We first 
define the loop space, both as maps q: S’ + R and also by its Fock space construc- 
tion. The need for a spin structure on loop space leads to the introduction of the 
ferminonic Fock space. We then introduce a polynomial function I/ on loop space 
which can be interpreted as a connection (or potential) for the Dirac operator Q. 
The Q we construct is self-adjoint and its square H is a Laplace operator on loop 
space. We show that H and Q have compact resolvents and that Q is Fredholm. We 
then show that there is a continuous family Q(K) of Fredholm operators with com- 
pact resolvent of the form Q,, + Q,(K), such that Q,(K) acts on a space of dimension 
O(ti) and such that the index of Q(K) is independent of K Using this homotopy, we 
compute the index of Q. 

11.1. The Hilbert Space 

The HiIbert space .Y? is the tensor product of a bosonic HiIbert space Xb and a 
fermionic Hilbert space Xr. The bosonic space Xb is a symmetric tensor algebra 

(11.1) 

over K = L2( Tj). We denote the circle here as the one-torus T,! = R/L?, l> 0. The 
symbol @“, means the kth symmetric tensor power. The fermionic space & is an 
antisymmetric tensor algebra over W, 

(11.2) 

where Ak means the kth exterior power. 
Let Szb E Ye,, the bosonic Fock vacuum vector, be defined by 

s2;=(1,0,0 )... ). (11.3) 

Likewise we define SzL E X, as the fermionic Fock vacuum vector. The full Fock 
vacuum vector is Q. = ai 0 Sz;. Let $8, denote the set of vectors in X with finitely 
many nonvanishing components and Cm wavefunctions. 

On Xb we define for p E pj = (2n/Z) Z the operator a(p) satisfying 

and 

Q(P) 52; = 0, (11.4) 

[la(p), 44)1= [a(P)*, a(s)*1 = 0, 

C4PL a(s)*1 = &,Y 
(11.5) 
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where 6,, is the Kronecker delta. The time zero Bose field is an operator valued 
distribution defined by 

d-x)=-L 1 (2/4p))P2 (a(p)* + a( -p)) e-rp-v, 
,/T 

(11.6) 
pE f/ 

where p(p) = (p2 + m*)“‘, and where m > 0 is fixed. The momentum conjugate to 40 
is given by 

n(x)=i 1 (C((P)/2)“2(a(p)*-a(-p))e-‘? 
fi,.i: 

We then verify that 

(11.7) 

Cdx), cp(Y)l = Cdx), n(y)1 = 0, 

[n(x), cp(Y)l = -i@ - Yh 
(11.8) 

where 6 is the Dirac measure. 
On & we define operators b(p), p E f!, satisfying 

(11.9) 

where ( , ) denotes the anticommutator. The time zero, Majorana Fermi fields are 
defined by 

i,(x)=? 1 GW7))-“’ (v(-P)b(p)*+v(p)b(-p))e-iP”, 
pE P; 

(11.10) 

$-(x,=X c (2~(p))~“Z(v(p)b(p)*-v(-p)6(-p))e-’P”, 
$ PEP; 

where V(P) = (P + P(P)) ‘I* They satisfy the anticommutation relations . 

W&)? $~(Y)l = L, fib - Y)? (II.1 1) 

whereu.,pE{+, -1. 
By tensoring with the appropriate identity operator we let q(x), n(x), and IcfJx) 

act on the whole Hilbert space. As no confusion will arise we will denote these by 
abuse of notation as q(x), n(x), and Il/Jx). Technically, q(x), rc(x), and Il/Jx), 
c( = +, are real, bilinear forms on the domain S&, x gO. Averaged with real C; test 
functions, they extend uniquely to self-adjoint operators. 

Let N, denote the bosonic number operator, defined as the unique self-adjoint 
extension of the operator 

c 4P)’ Q(P) (11.12) 
/JEfj 
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with domain gO. Similarly we define the fermionic number operator Nr. The 
operator 

I- = exp( inN,) (11.13) 

defines a grading of 2 (see [4] ), and 

Let 

(11.14) 

Yo=(p -;)> h=(g J 
denote the two-dimensional, Dirac matrices. We define $ = tj*yO. As yO is 
hermitian, the bilinear form :I,&@: = :$*yO$: is real. Here the colons denote Wick 
ordering with respect to the mass m. 

11.2. The Regularized Dirac Operator with a Polynomial Potential 

Let V(x) be a real polynomial of degree n > 2; let W(x) = V(x)-imx2. Let 
x E Y(R) satisfy 

0) ~20, 
(ii) j x(x) dx= 1, 

(iii) x(-x) = x(x), 

(iv) i(p) > 0, 

(~1 suppi(~)c C-L 11, i(p)>0 for Ipl Gt. 

We use the following periodic regularization of the Dirac measure, 

LA-~) = K 1 X(K(X - W), 
kcd 

(11.15) 

and define the regularized field operators by 

CPJX) = XK * dxh 

$1. K(X) = XK * $cAx), 
(11.16) 

The regularized supercharge is defined as a bilnear form of the domain $8 O x 2$, by 

Q~(K-) = Q,, o + Q,, AK), (11.17) 

where 

Q +,o= 
J 

T :  
(+~,(x)~(x)-~~T(x)~,(~(x)+mll/,(x)cp(x))dx, (II.181 

Q,,,(h.)=jT! $~(x):w’(cpl,(x)): dx. (11.19) 
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Here : : denotes Wick ordering with respect to the mass m. The regularized Dirac 
operator is defined by 

where 

P(K)=-%P+W+Q-(K)) 
G 

= Qo + Q,(K), (11.20) 

Qo=‘(Q+,o+Q-.o) 
3 

and e,(~)=~(e..,(K)-te-.,(~)). 
3 

PROPOSITION 11.1. The form Q(K) uniquely defines an essentially self-adjoint 
operator with domain SO, such that (as a form) its square H(K) = Q(K)* is also 
essentially self-adjoint on gO. On gO, 

H(K)=H~+~~ 
T: 

(:W’(rp,(x)):)*dx+m~ 
Ti’ 

q(x): W’(cp,(x)):dx 

+; I,I $,b, $(x):~((P&)): dx. (11.21) 

Remarks. (1) The last term in H(K) is actually real, without further sym- 
metrization. (2) We use, without danger of confusion, the symbols Q(K) and 
H(K) to denote the unique self-adjoint extensions of Q(K) and H(K), respectively. 

Proof: The statements follow by arguments similar to [ 1, Sect. 11.5; 2, 
Sect. VI. 11. 

11.3. The a priori Estimates 

We state now four basic estimates which are proved in Section III. Let Z,(X) 
denote the pth Schatten class of operators with the norm IITllp = {Tr(T*T)p’2}“p. 

THEOREM 11.2. For any fl> 0 and 0 6 K < co, exp( -/lH(k))~ Z2(Z). There is 
C= C(/?) < co such that 

uniformly in K. 

(11.22) 

Our second estimate states that the semigroup exp( -flH(rc)) is continuous in K 
and has a limit as k + co. 

THEOREM 11.3. Let @ > 0 be fixed. The map 

K + ev( -OH) (11.23) 
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is continuous from R + to I>. The familv (exp( -/OH)} converges in I, as K + co 

to a semigroup T(p), 02 0. 

In order to express T(p) as exp( -/?H) with a self-adjoint generator H, we require 
strong continuity of T(p). 

THEOREM 11.4. The semigroup T(p) is strong1.v continuous at p=O, 

st lim T(p) = I. (11.24) 
8-O 

As a corollary we obtain 

THEOREM 11.2’. For /? > 0, exp( - BH) E I,( 2). 

Finally, our last a priori estimate deals with continuity and convergence of Q(K). 

Let SQ = (Q(K) - Q(K’))-, where denotes the operator closure. 

THEOREM 11.5. Let /I > 0. Then Range(exp( -/?H(K))) c D(SQ) and 

as ,K-K,, 4. andas K K l~~~‘~““Qe~~H”‘lll=o(l)~ 
I 

(11.25) 

A consequence of these four estimates is the existence of the K -+ CO limit of Q(K). 

THEOREM 11.6. The resolvent (Q(K) + i) -’ is norm-continuous in K and norm- 
convergent as K -+ 00. The limiting operator is the resolvent of a selfadjoint operator 
Q with Q’= H. 

The proof of this theorem follows verbatim [2, Sect. V]. Write 

Q-(K) 
o ,  (11.26) 

according to the decomposition (11.14). Set Q( CO) = Q. Another consequence of the 
above result is 

THEOREM 11.7. For 0 < K < cm, 

(i) Q+(K) is Fredholm, 
(ii) the index i(Q +(K)) is constant in K. In particular, 

i(Q+)=i(Q+tO),- 

Proof See [4], Section III. 

(11.27) 
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11.4. Index Theorem 

In this section we compute the index of Q, . 

THEOREM II.8 (Index Theorem). Let Q be the Dirac operator corresponding to a 
polynomial V. Then 

i(Q+)=s[(l +deg V)mod2], (11.28) 

where E is the sign of the highest order coefficient of V. 

Remark. The index i( Q + ) is independent of the Wick ordering mass m. In fact, 
if deg V = n, then the Wick ordering adds, for K < co, a polynomial S V of degree 
n-2 to V. Thus we do not expect that Wick ordering influences the index. The 
limit K + co, however, exists only with the Wick ordering taken into account. In 
this limit the coefficients of 6V diverge (asymptotically as polynomials in log K). 
Our estimates establish the existence and continuity of the index also at tc = co. 
Hence the index is independent of K for all K 6 co. 

Proof: Let ‘p,, = I-“‘e(O), rcO = /-‘“72(O), and $z,0 = I-“2$,(O). Then Q(0) can 
be expressed as 

(11.29) 

corresponding to the decomposition 2 = X0@ X’k, where X0 is the subspace 
spanned by the zero momentum modes. Here, Q,’ is the restriction of the free Dirac 
operator to 20” and it has a unique ground state. Therefore, i( Q + (0)) = i( Q”, (0)). 
An explicit expression for Q”(0) is 

Q”(o)=~((1L~.o-~+.o)~o+(~-,o+JI+.o):V’(~o):)~ 
a 

which is unitariiy equivalent to 

(11.30) 

-io,g+o,u’(x) (11.31) 

Here x = cpo, u(x) = :V(x):, where 0, and o2 are the usual Pauli matrices and : : 
denotes the linear map defined on monomials by 

where Hj denotes the jth Hermite polynomial, and where c = (a,, cp:sZ,) is the 
Wick ordering constant. This is precisely the Dirac operator corresponding to the 
N = 1 sypersymmetric quantum mechanics, Its index is known to be equal to 
E[( 1 + deg v) mod 21 [S, 73, This is our claim, since the highest order terms of u(x) 
and V(x) are identical. 
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III. INFINITE-DIMENSIONAL PFAFFIANS AND THE A PRIORI ESTIMATES 

In this section we present the proofs of Theorems 11.2-j. Many of the proofs in 
this section are substantially the same as those given for similar arguments in [3]. 
The basic difference is that Pfallians replace determinants. To avoid redundancy, we 
only present arguments that differ from those of [3]. 

The proofs of Theorems 11.2-5 rely on path integral representations of the heat 
kernel for the approximating Hamiltonians H(K). Such representations were 
established for the N= 2 Wess-Zumino model in [2]. Here we use our theory of 
infinite-dimensional Pfaffians developed in [S]; we refer the reader to this paper for 
the definitions and properties of the Pfaffians. 

We also establish a path integral representation of the index, an analog of the 
similar representation of [ 11. This formula may be used to give an alternative 
computation of the index. 

III. 1. Feynman-Kac Formulas for the Regularized Theory 

Let us begin with some notation. We consider a two-dimensional cylindrical or 
toroidal space-time B x T:, where either B = R or B = Ti. Let A be the Laplacian 
on Bx T:. If B=IW, we set C,=(-A+m2)p’ on the cylinder, while if B=Ti, we 
set C,,B=(-A+m2)-’ on the torus. Let dp,(@) denote the Gaussian measure on 
Y”(B x T:) with mean zero and with covariance C, where C= CI or C = C, B. 

Let D = 1, iy,” 13, denote the Dirac operator on B x T:, where y: are the 
Euclidean Dirac matrices: yt = - iyO, y: = yi, and yO, yi are the matrices of 
Section 11.1. We set S,= yO(D + m)-’ for B = R and similarly we define S, B for 
B=,Tb. By B we denote the Dirac operator on the torus twisted in the time 
direction by rr; i.e., functions in the domain of fi satisfy f(xo + 8, xi) = -f(x,, xi). 
We let s,,,=yO(fi +m)-‘. Note that all the above “fermionic covariances” are 
skew-symmetric, 

ST= -s, (111.1) 

where T means transposition (no complex conjugation!). 
For @E Y’(R x T:) we set 

@K(XO, x1) = s 7-f 
@(xo, 4 1 X&I - 4 1 d-6, (111.2) 

and 

Aj”‘(@) = 1 
CO. PI x Tf 

((:IV’(@,,(x)):)‘+m@(x):IV’(@,(x)):) dx. (111.3) 

Let X 1,2 = 3f- 1,2 0 sf- I,2, where Xa = Y!(B x T:) is the Sobolev space of order cc 
Also, let Bj”)(@) denote the operator on K,,*, whose integral kernel is given by 

Bl”‘(@b, Y)= bo(:W”(@,(x)): + :W(@,(Y)):) x[o.&o) XCO,~,(YO) x,c(x, -Y,). 
(111.4) 
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Here x1,,, a7(t) is the characteristic function of the interval [0, p]. Clearly, B{“)(G) is 
a skew-symmetric operator on X- ii*. A simple estimate (cf. [2, Sect. VI.21) shows 
that for almost all @, and for 0 <K < co, the assumptions of Definition III.9 of 
[S] are fulfilled with A = S,, B= Bj”)(@), V= ( -d2/dxf + m2)&, where E >O is 
sufficiently small. Then the relative Pfaffian 

Pf(S,, B(“‘(@)) 

is a random variable. The Pfaffian has the property [S] that 

Pf(S,, B~“)(cD))~ = det(Z- K(“)(Q)), 

with 

(111.5) 

(111.6) 

Kj”)(@) = S,Bi”‘(@). (111.7) 

Equation (111.6) and its generalizations allow us to reduce estimates to those of 
[2, 31. Finally, we define 

FjK)( @) = Pf( S,, BjK)( @)) exp( -A j”)(Q)), (111.8) 

and the analogous quantities fl,Kj(@) and Fj,Kd(@) obtained by replacing (C,, S,) by 
(Cl. Bj 3,. a) and (C, 8, S,, B), respectively. Relation (111.6) and arguments similar to 
those of [2, Sect. VI.21 show the following: there exists c1 >O such that 
p““‘EL,(dpc)forall l<p<l++andforallO6~<~~). 

Our proof of Theorem II.4 requires a path integral representation for the matrix 
elements of the heat kernel. Such a representation was established in [2, 
Proposition VI.81 for the complex case. Let ui E YK ,,2( Tj), j = 1, . . . . q, wj E CC ,( Tj), 
d;‘:...,~, and set <j=Il/,,(~,), j=l,..., q, t,-,=rp(w,), j=l,..., p. For O<s</? we 

tj(s) = e--sHO(,esHo. (111.9) 

Let c1,, j= 1, . . . . p + q, be C” functions with supp tx, c [0, /?I. We consider the state 

(III. 10) 

where T means “time ordering” defined as follows. 
Consider the cone s,, < sjX < . . < s/,+, . In this cone the time ordered product is 

defined by 

T(~~~j(sj))=&~~F,(s,), (111.11) 

where E is here the signature of the permutation of the order of the fermionic 
operators induced by time ordering, compared to the natural order. On the boun- 
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dary of the cone, fields may occur at equal times. For a subset of fields at equal 
times, the time ordered product is not unique. Its order is specified by choosing a 
given cone and letting the time differences tend to zero within that cone. Let 52’ be a 
second vector of the form (1X1.10) such that q + q’ = 2k. We set 

g,=uy*tlpaq ,..., gy=u:e,a,, g,+,=u;a; ,..., g,,=u’,a’, 4 4’ 

where (Baa)(s) = a@-- s)*, and relabel correspondingly the spinor indices. 
Likewise, we define the test functions fi, . . . . fp+ ,,,’ corresponding to the bosonic 
operators. Let Pf(A, B; g, , . . . . g,,) be the Pfaffian minor as defined in the Appendix. 

PROPOSITION 111.1. With the above definitions, 

(Q, exp( -bH(K)) Sz’) =E 1 Pf(S,, Bj”)(@); g,, . . . . 

xexp(-AI”)(~))d~~=,(~) 7 (111.12) 

where E= +_l. 

Proof: The proof of this formula follows the methods of [9, 10,2). The only 
difference is that the formula (VI.41) of [2] is replaced by an expression at strictly 
time ordered points, s1 < s2 < . . . < So,,, 

(QL, ~,,(x,)e-(“2~S~)HO.I1(I~Z(~2)...e-(”~~~”2~~~)H~.~~,n(~z,)~~) 

=Pf{(y,S,),,,,(s,-sk, xj-xk)}. (111.13) 

The PfafIian (III.13) is defined on the indicesj, k = 1, . . . . 2n. The kernel of (Y~,S~)~~ is 
a function defined on space-time. 

The proofs of Theorems 11.2, 3, and 5 require path integral representations 
involving “finite temperature states”; see [l-4] for a discussion. Let us state the 
simplest representation of this sort. 

PROPOSITION 111.2. Let Z,, B = rips ?; coth(flp(p)). Then for /? > 0, 

Tr(exp(-PH(K)))=E,,p &K@)~Pc,,~(@). s (111.14) 

Finally, we state a path integral representation of the index of Q+(K). To this aim 
we use the well-known heat kernel representation of the index (see, e.g., [4, 
Sect. III]): 

This yields 

(111.15) 
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PROPOSITION 111.3. For /I > 0, 

i(C? + I= [ F&W) 4+,.,,(@). (111.16) 
i 

111.2. The Limit K + CC 

The proofs of Theorems 11.2-5 are simple applications of the methods used to 
prove analogous statements in [3] and we do not reproduce them here in full 
detail. The following remarks should help the reader to bring the methods of [3] 
into the context of the N= 1 case. 

1. To prove Theorem 11.2 we use (V.ll) of [S] to write 

ms,. /I, q$(@)) = pm,, pv B(.Kd(@)) exp{ - + Tr @J(Q) - + Tr @‘&@)2}, (111.17) 

with &,K&@) given by (III.7), and correspondingly 

F$( @) = Pf,( 3: l.8, B&X@)) exp( - ~~,“&@))~ (111.18) 

where 

$,“j(@) = ~Ij,~j(cD) + { Tr &j(Q) + $ Tr &.Kj(@)2. 

Note the identity (see [8, Eq. (V.l)]) 

Pf,(S,,p, B:“~(~))*=det,(Z-~~,~~(~)). 

(111.19) 

(111.20) 

Estimates similar to those of [3] show that the L,-limit 2,. &@) = lim,, Ix1 ~?j.“j(@) 
exists for all 1 6 p < cc and thus exp( - 2,. a(&‘)) is a random variables. Similarly, 
PM% 87 B,. a(@)) is a random variable, where B,, 8(@) is defined by (111.4) with 
x,Jx, - y,) replaced by the Dirac measure 6(x, - yl). Furthermore, we have the 
following: 

THEOREM 111.3. (i) The functions Fj,“j converge as K + co in each LJd,u,-,, ,), for 
1 d p < CC to the limit 

8, a(@) = Pf,(z,, 89 4,(@)) ev( -4. #W. (111.21) 

(ii) Similar statements holdfor F:“)(D) and F,“)(Q) with respect to d,q,,, and 
&c,, respectively. 

Remark. This theorem establishes the existence of the measures of the form 
dp, dppr dp, discussed in the Introduction. 

The proofs of Theorem II.2 and Theorem III.3 are similar to the proof of 
Theorem II.1 of [3] with [ = 0. In particular, we use (111.20) to reduce estimates on 
the Pfafhan to the familiar Fredholm determinant estimates. 
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2. The proof of Theorem II.3 follows the method of proof of Theorem III.2 of 
[3]. Set S=s,,, and B(s)=sB,J@)+(l-s)Bj(($@), 06~61. We require an 
estimate on 

$ Pf,(S, B(s)) = - f Tr(B’(s) SB(s) SB(s)(S-’ -B(s))-’ Pf,(S, B(s))). 

Let 

K=&Jc,pP)> K’IC) = 3, p B;j( CD), 

and K(s) = sK+ (1 - s) K’“‘. Then we can bound (111.22) by 

iIlK-K’“‘Il, Il&)ll: IIC-‘-W-‘Pf,(S, BMW’II, 

and we need a bound on the last factor in the above product. We have 

Il(S-‘- B(s))-’ Pf,(S, B(s)) S-III 

= sup IQ% (S-l -B(s))-’ Pf,(S, B(s)) S-‘g)l, 
llfll = llgll = 1 

(111.22) 

(111.23) 

(111.24) 

where the norms and the inner product in this formula denote the X,,z norms and 
inner product; also % denotes complex conjugation. Using (A.4) we write the right 
hand side of (111.24) as 

sup I ( 0 
det (Vg, (I- K(s))-‘f 

Yfx (I- K(s))-' g) 

llfll = llgll = 1 0 ) 
det 

3 
(z-K(s)) 1'2 

= sup I(%~A @g. A’ (I- K(s))-’ f A g),,z X,12 det,(Z- @))I 1,2 
llfll = lldi = 1 

and now we proceed as in [3]. 

3. The proof of Theorem II.4 does not differ significantly from the 
corresponding proof in [3]. The expansion (65) [3] for the Fredholm minor is 
replaced by the corresponding expansion for the Pfaffian minors. The resulting 
terms are estimated by means of (A.6). 

4. The proof of Theorem II.5 follows the proof of Theorem VI of [3] with the 
difference that the Fredholm minors must be replaced by Pfaffian minors and 
estimated as explained in Remarks 2 and 3. 

Finally, we have the integral representations 

595/183/2-l I 
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THEOREM 111.4. For p > 0, 

Tr(e -6”) = ‘: -,, p &. p(@) hc,, ,(@). (111.25) 

THEOREM 111.5. For /? > 0, 

i(Q+)=IF,p(~)~~qp(~). (111.26) 

APPENDIX: PFAFFIAN MINORS 

In [S, Sect. IV] we defined the notion of a PfafIian minor. Let A and B be skew- 
symmetric, Zz,(%) (n odd) operators on a Hilbert space .# such that 

(A --I - B) -’ exists and is bounded. (A.11 

For f,, . . . . fzk E x we set 

WA B;f,, -.,fx)= Pf((@TT, (-4 -‘-W’S,)) WA, B), (44.2) 

where V denotes a complex conjugation on 2.’ Note that Pf;(A, B) of [8] equals 
%(A, B; e,, . . . . e,,,), where (T = (j,, . . . . j,,), and where ej are elements of a real basis 
for 2”. Since by Theorem V.6 of [S]. 

IPUA B;f,, ...yf2k)l ~~,II~Il~,~~~~~,II~~lI~~ fi Ilf,ll, (A.3) 
j= I 

we infer that (A.l) can in fact be relaxed. Furthermore, 

WA4 B; f,, . . . . fzk)*=det((%“, (A-‘- B)V’f,)) det,(Z-AB). 

This identity allows us to conclude 

IWA, B; f, > . . . . fid12 

(A.4) 

= I( T (es,, AZk (I- AB)-’ K A/,),2k x d&U- AB)i, (A.5) 
J=I /=I 

and finally 

IPf,,(4 B; fi , . . . . f2k)l < llAZk (Z-AK’ det,(Z-AB)ll$x 

x fj Ilf;ll I’* IlAf~ll li2. (A.61 
j= I 

’ Note that it was essential in [8] to assume that A? comes from the complexification of a real Hilbert 
space. 
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The above estimate reduces estimates on Pfaffian minors to familiar estimates on 
Fredholm minors and is frequently used in the proofs of Section 111.2. 

Finally, we note the identity 

WA4 B; f,, . . . . flk) = Pf,(( VP’)= A VP ‘, VBV=; I”, , . . . . Vfi,), (A.7) 

which is valid for skew-symmetric A, BE I,,(#) and bounded I’. As in [8] we use 
(A.7) to extend the definition of Pf,(A, B;f,, . . . . fzk) to pairs of operators (A, B) 
which are not necessarily both I,,, but have the property that (I/-‘)= AV-‘, 
VBVT E I*,,, for some V. This is useful, if for instance A E I,,, _ E, and we “transfer” 
the extra regularity to B. Such a transfer of regularity has been used in Section III. 
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