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Abstract

We study a three-parameter stochastic volatility model, originally
proposed by P. Hagan, for the forward swap rate. The model is essen-
tially a stochasticied version of the CEV model, where the volatility
parameter is itself a stochastic process. We construct a computation-
ally efficient, asymptotic solution to this model. This solution allows
one to fit a variety of shapes of the volatility smiles in the swaption
markets. The technique used to obtain this solution is a WKB expan-
sion around geodesic motion on a suitable hyperbolic manifold.
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1 Introduction

A swaption is an option to enter into a swap. A receiver (payer) swaption
gives the owner the right to receive (pay) fixed rate on the swap.

Market lingo: a T into M swaption is a swaption expiring T years from
now on an M year swap. Thus a 7% 5 into 10 receiver is an option to receive
7% on a 10 year swap starting 5 years from now.

The market practice is to quote prices and calculate risk parameters of
European swaptions in terms of Black’s model:

dFt = σFtdWt,

where Ft is the forward swap rate, and σ is the implied volatility or “Black’s
volatility”. For simplicity, rather than pricing calls and puts, we consider
the Arrow-Debreu security whose payoff at time T is given by δ (FT − F ),
where δ denotes Dirac’s delta function. The time t price G (t, f ; T, F ) of
this security (or, the transition probability) is the solution to the following
parabolic problem:

∂G

∂t
+

1

2
σ2f 2∂2G

∂f 2
= 0,

2



G (t, f ; T, F ) = δ (f − F ) , at t = T.

Thus the price V of a payer struck at K is

V = N
∫

G (t, f ; T, F ) max (F −K, 0) dF,

where N is depends on the notional principal of the transaction and today’s
term structure of rates but not σ.

The solution is

G (t, f ; T, F ) =

√
f

2πτF 3σ2
exp

(
−(log (f/F ))2

2τσ2
− τσ2

8

)
,

where τ = T − t. This leads to the well known Black’s formula for pricing
swaptions.

The reality of the market is that implied volatility is a function σ =
σ (K,T, f) of

• strike K,

• time to expiry T ,

• today’s value of the forward f .

The dependence of σ on K reflects economic realities, and is referred to
as the option smile.

Why modeling smile is important?

• Transaction pricing;

• Portfolio mark to market;

• Portfolio risk: smile adjusted delta is

∆ =
∂V

∂f
+

∂V

∂σ

∂σ

∂f

= ∆0 + Λ
∂σ

∂f
,

where ∆0 is the B-S delta, and Λ is the B-S vega. Similarly for the
other greeks;
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• Calibrating term structure models for pricing exotic structures, trans-
actions with embedded options, etc.

How to model smile?

• Interpolate brokers’ quotes;

• Shifted lognormal model:

dFt = (σ1Ft + σ0) dWt;

• CEV model
dFt = σF β

t dWt, 0 ≤ β ≤ 1;

• Stochastic volatility models;

• ...

Implementation issues:

• Exact solutions;

• Numerical implementations (tree, MC, PDE);

• Approximate analytic solutions.

2 Stochastic CEV model

Replace Black’s model by the system

dFt = σtb (Ft) dWt,

dσt = vσtdZt,

where the two Brownian motions are correlated:

E [dWtdZt] = ρdt.

For the CEV model
b (F ) = F β.
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Hagan’s formula
Implied normal volatility σn has the following asymptotic expansion

σn = v
f −K

δ0 (f, K)
×

(
1 +

1

24

[(
2γ2 − γ2

1

)
σ2b (f)2 + 6ρvσγ1b (f) +

(
2− 3ρ2

)
v2

]
τ + . . .

)
,

where

δ0 (ζ) = log

√
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
,

ζ =
v

σ

∫ f

K

du

b (u)
,

and τ = T − t, γ1 = b′ (f) , γ2 = b′′ (f).
We consider the Arrow-Debreu security whose payoff at time T is given by

δ (FT − F, σT − Σ), where δ denotes Dirac’s delta function. The time t price
G (t, f, σ; T, F, Σ) of this security is the solution to the following parabolic
problem:

∂G

∂t
+

1

2
σ2

(
b (f)2 ∂2G

∂f 2
+ 2vρb (f)

∂2G

∂f∂σ
+ v2∂2G

∂σ2

)
= 0,

G (t, f, σ; T, F, Σ) = δ (f − F, σ − Σ) , at t = T.

The price of a payer struck at K is now

V = N
∫

G (t, f, σ; T, F, Σ) max (F −K, 0) dFdΣ

= N
∫

Gσ (t, f ; T, F ) max (F −K, 0) dF,

where

Gσ (t, f ; T, F ) =

∫
G (t, f, σ; T, F, Σ) dΣ

is the marginal transition probability.
The coefficients in this problem are time independent, and so G is a

function of τ = T − t. Denote this function by G (f, σ, F, Σ; τ). Introduce
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the following variables:

s = τ/T,

x = f,

X = F,

y = σ/v,

Y = Σ/v,

K (x, y, X, Y ; s) = vTG (x, vy, X, vY ; sT ) .

In terms of these variables, the initial value problem can be recast as:

∂K

∂s
=

1

2
εy2

(
b (x)2 ∂2K

∂x2
+ 2ρb (x)

∂2K

∂x∂y
+

∂2K

∂y2

)
,

K (x, y,X, Y ; 0) = δ (x−X, y − Y ) , at s = 0,

where
ε = v2T.

It will be assumed that ε is small and it will serve as the parameter of
our expansion. The heuristic picture behind this idea is that the volatility
varies slower than the forward, and the rates of variability of f and σ/v are
similar. The time T defines the time scale of the problem, and thus s is a
natural dimensionless time variable. Expressed in terms of the new variables,
our problem has a natural differential geometric content which is key to its
solution.

3 Exactly solvable case

Let b (F ) = 1, and ρ = 0:

dFt = σtdWt,

dσt = vσtdZt,

E [dWtdZt] = 0.

Also define x = f, y = σ/v. Then the problem becomes:

∂K

∂τ
=

1

2
y2

(
∂2K

∂x2
+

∂2K

∂y2

)
,

K (x, y, X, Y ; τ) = δ (x−X, y − Y ) , at τ = 0.
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This is the heat equation on the Poincare plane!
Recall that the Poincare plane is the upper half planeH2 = {(x, y) : y > 0}

with the line element

ds2 =
dx2 + dy2

y2
.

This comes from the metric tensor

h =
1

y2

(
1 0
0 1

)
.

The geodesic distance d (z, Z) between two points z, Z ∈ H2, z = x + iy,
Z = X + iY is

cosh d (z, Z) = 1 +
|z − Z|2

2yY
,

where |z − Z| is the Euclidean distance between z and Z.
The heat equation on the Poincare plane can be solved in closed form:

K (z, Z; τ) =

e−d2/2τ
√

2

(4πτ)3/2

∫ ∞

d(z,Z)

ue−u2/4τ

√
cosh u− cosh d (z, Z)

du

Asymptotic expansion as τ → 0:

K (z, Z; τ) =
1

2πτ
e−d2/2τ

√
d

sinh d
×

(
1− 1

8

(
d coth d− 1

d2
+ 1

)
τ + O

(
τ 2

))
.

4 Geometry of the full model

Let M2 denote the first quadrant {(x, y) : x > 0, y > 0} , and let g denote
the metric:

g =
(
1− %2

)−1

(
1

y2b(x)2
− ρ

y2b(x)

− ρ
y2b(x)

1
y2

)
.

The case of ρ = 0 and b (x) = 1 reduces to the Poincare metric. The metric g
is the pullback of the Poincare metric under a diffeomorphism: choose p > 0,
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and define φp : M2 → H2 by

φp (z) =

(
1√

1− %2

(∫ x

p

du

b (u)
− ρy

)
, y

)
,

where z = (x, y). The Jacobian ∇φp of φp is

∇φp (z) =

(
1√

1−%2b(x)
− ρ√

1−%2

0 1

)
,

and so φ∗ph = g, where φ∗p denotes the pullback of φp.
The manifold M2 is thus isometrically diffeomorphic with a submanifold

of the Poincare plane. Consequently, we have an explicit formula for the
geodesic distance δ (z, Z) on M2:

cosh δ (z, Z) = cosh d (φp (z) , φp (Z))

= 1 +

(∫ x

X
du

b(u)

)2

− 2ρ (y − Y )
∫ x

X
du

b(u)
+ (y − Y )2

2 (1− ρ2) yY
,

where z = (x, y) and Z = (X, Y ) are points on M2. The volume element on
M2 is given by

1√
1− %2

dxdy

b (x) y2
.

Let z1 = x, z2 = y, and let ∂µ = ∂/∂zµ, µ = 1, 2, denote the correspond-
ing partial derivatives. We denote the components of g−1 by gµν , and use
g−1 and g to raise and lower the indices: zµ = gµνz

ν , ∂µ = gµν∂ν = ∂/∂zµ,
where we sum over the repeated indices. Explicitly,

∂1 = y2
(
b (x)2 ∂1 + ρb (x) ∂2

)
,

∂2 = y2 (∂2 + ρb (x) ∂1) .

Consequently, the initial value problem can be written as:

∂

∂s
K (z, Z; s) =

1

2
ε∂µ∂µK (z, Z; s) ,

K (z, Z; 0) = δ (z − Z) .

Except for b (x) = 1, ∂µ∂µ is not the Laplace-Beltrami operator on M2.
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5 WKB method

We seek K (z, Z; s) in the form

K (z, Z; s) =
1

2πε
R (z, Z; s) exp

(
−1

ε
S (z, Z; s)

)
,

S (z, Z; s) is assumed independent of ε. R (z, Z; s) depends on ε and is as-
sumed smooth at ε = 0. Substituting we obtain the following two PDEs:

Ss +
1

2
∂µS ∂µS = 0, (1)

where the subscript s denotes the derivative with respect to s, and
(
R2

)
s
+ ∂µ

(
R2∂µS

)
= εR∂µ∂µR.

Equation (1) is the Hamilton-Jacobi equation for a free motion of a particle
on M2, S (z, Z; s) is the action function.

Now factor out the ε-independent part of R (z, Z; s):

R (z, Z; s) = q (z, Z)1/2 Q (z, Z; s)

and make the following asymptotic expansion in ε:

Q (z, Z; s) =
∑

k≥0

εkQ(k) (z, Z; s) ,

with
Q(0) (z, Z; s) = 1.

Then the function q (z, Z; s) satisfies the transport equation,

qs + ∂µ (q∂µS) = 0,

and for Q (z, Z; s) we find the equation:

Qs + ∂µQ ∂µS = ε
1

2q1/2
∂µ∂µ

(
q1/2Q

)
.

This last equation is equivalent to an infinite system:

Q(k+1)
s + ∂µQ (k+1)∂µS =

1

2
√

q
∂µ∂µ

(√
qQ(k)

)
,

which we call the WKB hierarchy. The three equations:
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• the Hamilton-Jacobi equation

• the transport equation

• the WKB hierarchy

form a basis for solution of our problem.
Solve the Hamilton-Jacobi equation
We set

S (z, Z; s) = S0 (φ (z) , φ (Z) ; s) ,

where φ = φX . Then S0 satisfies the Hamilton-Jacobi equation on the
Poincare plane:

S0
s +

1

2
y2

((
S0

x

)2
+

(
S0

y

)2
)

= 0.

Seek a solution S0 (w, W ; s) = f (r; s), where r = d (w, W ). Then f satisfies

fs +
1

2
f 2

r = 0,

and so

f (r; s) =
1

2s
r2 + const.

We will choose const = 0. Consequently,

S (z, Z; s) =
1

2s
d (φ (z) , φ (Z))2

=
1

2s
δ (z, Z)2

It is (after reinstating the constant const) the complete integral of the Hamilton-
Jacobi equation.

Solve the transport equation
We set

q (z, Z; s) = p (φ (z) , φ (Z) ; s) det∇φ (z)

=
1√

1− %2b (x)
p (φ (z) , φ (Z) ; s)

to find that
ps + ∂µ

(
p∂µS

0
)

= y2∂1 (log B) ∂1S
0p,

10



where B (φ (z)) = b (x). Substituting p = q0B we find

q0
s + y2

((
q0S0

x

)
x

+
(
q0S0

y

)
y

)
= 0.

This is the transport equation on the Poincare plane. We seek a radial
solution q0 = f (r, s). Then

s (fr sinh r)s + r (fr sinh r)r = 0.

This means that f (r, s) r sinh r is a function of r/s:

f (r, s) =
χ (r/s)

r sinh r
,

and so

q (z, Z; s) =
b (φ−1 (x))√
1− %2b (x)

×

χ (δ (z, Z) /s)

δ (z, Z) sinh δ (z, Z)
.

Solve the WKB hierarchy
Well, ok, let’s stick with Q(0) (z, Z; s) = 1.

6 Probability distribution

We put everything together and verify that in order for the initial condition
to be satisfied we need to choose χ (u) = u2. Hence finally we obtain the
asymptotic formula

K (z, Z; s) =
1

2πεs
√

1− ρ2

√
B (x,X)

b (x)

×
√

δ (z, Z)

sinh δ (z, Z)
exp

{
−δ (z, Z)2

2εs

}
(1 + O (sε)) .

First we calculate the approximate marginal probability distribution from
the WKB Green’s function:

Ky (x,X; s) =

∫ ∞

0

K (z, Z; s) dY
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=
1

2πεs
√

1− ρ2

√
B (x,X)

b (x)
×

∫ ∞

0

√
δ (z, Z)

sinh δ (z, Z)
exp

(
−δ (z, Z)2

2εs

)
dY

Y 2
,

To evaluate this integral we use the Laplace method: as ε → 0,

∫ ∞

0

f (u) e−φ(u)/εdu =

√
2πε

φ′′ (u0)
e−φ(u0)/εf (u0) (1 + O (ε)) ,

if u0 is the unique minimum of φ with φ′′ (u0) > 0.

Let us introduce the notation:

ζ =
1

y

∫ x

X

du

b (u)
.

Given x,X, and y, let Y0 be the value of Y which minimizes the distance
δ (z, Z), and let δ0 (ζ) be the corresponding value of δ (z, Z). Explicitly,

Y0 (ζ, y) = y
√

ζ2 − 2ρζ + 1,

δ0 (ζ) = log

√
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
.

Introduce the notation

I (ζ) =
√

ζ2 − 2ρζ + 1.

This yields

Ky (x,X; s) =
1√

2πεsy2I (ζ)3

√
B (x,X)

b (x)
exp

{
− δ2

0

2εs

}
(1 + O (sε))

This is the desired asymptotic form of the marginal probability distribution.
Let us now compare this result with the normal distribution function:

P (x,X; s) =
1√

2πsεy2
n

exp

(
−(x−X)2

2sεy2
n

)
,
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where yn is related to the normal volatility σn by yn = σn/ε1/2. We shall
relate the cumulative distribution function

∫ ∞

K

P (x,X; s) dX =
1√

2πεs

∫ ∞

K

exp

{
− h2

2εs

}
dh

=
1

2
erfc

(
K − x√
2sεyn

)

to the cumulative distribution function of Ky (x,X; s). Neglecting the terms
of order O (ε2), we have:

∫ ∞

K

Ky (x,X; s) dX =

1√
2πεsy2

∫ ∞

K

√
b (B (x,X))

I (ζ)3 b (x)
exp

{
− δ2

0

2εs

}
dX.

We substitute a new variable in the integral above,

h = h (X) = δ0

(
1

y

∫ x

X

du

b (u)

)
,

which yields ∫ ∞

K

Ky (x,X; s) dX =

1√
2πεs

∫ ∞

h(K)

√
B (x,X (h))

I (ζ) b (x)
exp

{
− h2

2εs

}
dh

Expanding as ε → 0, and comparing the terms we obtain Hagan’s formula.

7 Further developments

• Mean reversion in the volatility dynamics

dFt = σtb (Ft) dWt,

dσt = λσt

(
log

σ

σt

)
dt + vσtdZt,

E [dWtdZt] = ρdt
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• Time dependent parameters

dFt = atb (Ft) σtdWt,

dσt = vtσtdZt,

E [dWtdZt] = ρtdt.

• Term structure model with stochastic volatility consistent with the
vanilla model.
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