
Commun. Math. Phys. 121,337-344 (1989) 
Communications in 
Mathematical 

Physics 
© Springer-Verlag 1989 

Heat Kernel Regularization of Quantum Fields* 

Arthur Jaffe, Andrzej Lesniewski, and Christian Wieczerkowski** 

Lyman Laboratory of Physics, Harvard University, Cambridge, MA02138, USA 

Abstract. We discuss some consequences of the existence of a heat kernel 
regularization (HKR) for quantum fields. We demonstrate that HKR applies in 
certain examples, using methods which should be useful more generally. 

I. The Heat Kernel Regularization 

Let ~ be a Hilbe~ space and let H >= 0 be a self-adjoint operator. We consider the 
self-adjoint contraction semigroup T( t )=exp( - tH) ,  t >__ O, which is generated by 
H. We introduce a scale of Hilbert spaces 

~ - - , ~ ( e _ ~ ,  ~>0,  (I.1) 

where ~ is the completion of the domain of exp(eH) with respect to the inner 
product 

(Zl, Zz)Je, = (e~nzt, eettZ2)~*'. (I.2) 

Also, 5~g_~ is the dual space to ~ with respect to (-, ")Je. By ~qf(~, ~_ , )  we denote 
the space of bounded linear operators mapping ~ into ~ _  v Let W be a bilinear 
form on 54f with domain ~ x ~ for some e > 0. 

Definition 1.1. We say that W has a heat kernel reguIarization (HKR),/f  

We ~°(o~f,, ~f_ ~). (1.3) 

Furthermore,/f(I.3) holds for every e>0, then we say that W has a strong HKR. 

Let 
W~ = e-"nWe-*H (1.4) 

denote the operator on ]t" uniquely determined by (I.3). We call W~ the HKR of W. 
The condition (I.3) is equivalent to the boundedness of W~ on d4f, 

~eY(J '¢ ' ,~ f )  <:~ We~(~f~, ~_ , ) .  (1.5) 
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The notion of heat kernel regularization is particularly natural in analysis on 
infinite dimensional manifolds, e.g., in the context of quantum field theory [1 ]. The 
existence of a H K R  in quantum field theory is a stronger property then the domain 
assumptions in the standard Wightman axioms, see e.g. [2]. Its advantage is that it 
provides a dean treatment of the operator theory for local quantum fields. Since 
the use of the heat kernel has become a standard way to investigate quantum fields, 
and since it is often combined with a path integral representation to establish 
estimates, the study of H K R  is quite natural. 

In this paper we discuss the H K R  property in the context of the N = 1 and N = 2 
two-dimensional Wess-Zumino models (see [3] for a review). We prove that Wick 
polynomials in the local field operators have a strong HKR.  Also, we show that 
this fact and the spectral condition lead to certain analyticity properties of the heat 
kernel regularized field operators. 

II. Regularity of Wick Polynomials 

In this section we establish boundedness of heat kernel regularized Wick 
polynomials in the time-zero field operators. Such Wick polynomials are densely 
defined bilinear forms on the Fock space 24°. Our results show that they define 
bounded operators from ~ to ~/f_~ for e>0.  

We prove the estimates for the special class of models studied in [4-6]. The 
same methods apply to the models presented in [2], and in principle to all other 
models studied in constructive field theory. Without loss of generality we can 
restrict attention to Wick monomials; polynomials are defined by linearity. Let ~o e 
denote 9 or ~0"; in the N =  1 case (pc = 9 as the boson is self-adjoint. Likewise, let 

q~* denote ~ or ~ =~ '7o ,  where ~o = (~ 10).ConsiderthecircleTl=Sl=lR/12g 

and let _x=(xl,...,xb), _Y=(Yl,...,Yl) be points in ( r l )  b or (r~) I. The Wick 
monomials 

b y 
W(x, y ) :  : j~l q0 e (x j): : j~l  ~P'~(YJ)" (II.l) 

are defined in [7] as densely defined bilinear forms on Fock space. Here the 
product over fermions is taken, by convention, from left to right in order of 
increasing j. Also let 

W~(x, 2) = e-~HW(x, y)e-,H , (II.2) 

where H is the Hamiltonian of the N = 1 or N = 2 models studied in [4-6]. Let tl" lip 
denote the pt~ Schatten norm. Our main result is 

Theorem II.1. For e > O, the bilinear form W~(x, y) defines a Hilbert-Schmidt operator 
on 2gP, and 

tr w;(_x, ~)112 < c < oo (II.3) 

with C independent of (x_, y_). 

Remark. The proof we give can easily be modified to prove the same result in all 
previously constructed, two-dimensional models. 

The remainder of this section is devoted to the proof of (I1.3). We use a path 
space (Feynman-Kac) representation of II~(_x,_y)l[~. Such representations are 
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standard in constructive field theory and were used in [5, 6] to establish the a priori 
estimates leading to the existence of a theory. Our notation follows [3-6]. We give 
a detailed proof of Theorem II.1 for the N = 2 models. The case of the N = 1 models 
is treated similarly. The only difference is that our estimates on determinants have 
to be replaced by estimates on Pfaffians along the lines of [6, 8]. 

Let us introduce a regularized approximation to W~, namely 

l/V~)(x, y) = e-~m~)W(x, y)e -~m~), (II.4) 

with H(x) defined in [-4-6]. For ~c < 0% the Hamiltonian H(~c) involves finitely many 
interacting modes, so it is easy to see that W~(~)(x, y) is Hilbert-Schmidt. Using 
standard methods we obtain the Feynman-Kac representation of 

II W~)( - x , _Y) - W~')( - x, Y)Jl 2. (II.5) 

This representation is a sum of terms of the following form. The first term is 
b b 

,.-,~/,2e~3;H ~)#(xj, O)* H ~)#(Xj, g); 
j = l  j : l  

rF(~) t,,. * F(~') . ,~*~ 2F~,~')t,,. a, ~b*)]d#c(~, ~*) (II.6) x L  1.2~z,~b,~ ) +  ,.2~(Y_,~,v J -  ,.2~ ~,_,~,, 
where 

F(r)I,2g~,Z, "£ ,4~*'~j = (__ i) # act { ( I -  Rl~)2,(q~, ~b*))- 1K}~)2,(q~ , ~b*)g~i~(wj, Zk) } 

X det 3 (I--/~)2~(q~, ~b*))exp{ -~}~2)~(~b, qS*)}, (II.7) 

with the sign ( -  I) *~ depending on the choice of # ,  and where F~,~i~ ") is defined by a 
similar expression, but with /~,~)2~ and ~}~2)~ replaced by /~i~')  and ~},~'), 
respectively. (See [5], Eqs. (41-2) for the definitions.) The first determinant in (II.7) 
is the determinant of an f x f  matrix, while det3 is the regularized Fredholm 
determinant. The fact that the entry of the finite dimensional determinant in (II.7) 
has a factor ~ )  r,~ q~.) is the result of the Wick ordering of the fermions. Also, ax/, 2&W, 
wl .. . .  , woe, zl, . . . ,  zoe is a permutation of (Yl, 0) ..... (yoe, 0), (Yl, e),..., (yoe, e), whose 
only property relevant for the arguments to follow is that t(wj)z--(Zk)2[ = e, where 
(w92 is the second coordinate of r~). The sign ( -  1) e plays no role in our proof. The 
other terms in the Feynman-Kac representation of (II.5) have the form of a product 
of a smooth function in a subset of variables x_, y and an expression of the form (II.6) 
(with some other b and f). It is thus sufficient to study (II.6). 

We showed in [5] that 

Fl,~(q~, q~*)= det3 (I-/£1,e(~b, ~b*)) exp { -~t,~(q~, ~b*)}, (II.8) 

(i.e., ~ = oo) is Lv, for each 1 < p < oo. The only new difficulties arise from the factors 
( I - K ) - ~ K S .  We consider 

F~,~(y; q~, q~*)=(-- 1) # det {(I-R,,~(q~, q~*))- ~/(~.~(~b, ~b*) 

x S;,~(wj, z~)}F,,~(q~, q~*). (II.9) 

Proposition II.2. For e > O, 

I ~ ~ q~*) : ]-I ck~(xj, O) * I] (°(xj, e):F,.~(Y_;(a,(o*)d#c(( a, < C < o o ,  (II.10) 
j = l  j = l  

uniformly in (~, ~). 
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ProoJ~ using Gaussian integration by parts, we see that the integral in (II.l 0) equals 

{ 
x II C((x~, ~)- u j) H C((xj, o)-  Odu_dv~ duc(¢, 4*).  (n . l  1) 

J J ) 

To estimate (II.11) we apply Cauchy's bound. Let f, g ~ Lp(T 2) for all 1 _< p < oo. 
For  0 ~ Loo(d#c) we define 

o~((, t/; ~) = i Q(~b, q~*)F~, p(y; q~ + (f, q~* + tlg)d#c(d?, q~*), (II. 12) 

where (~, t/) E IE 2. Let D r C 112 2 denote a closed polydisc of radius r around the origin. 

Lemma IL3. For q e Lo~, the map ((, t/)-*ff ((, t/ ; q) is entire. Furthermore, 

sup IIg(~,t/;0)ll <C, II~ItL~, (II.13) 

uniformly in (x_, y_). 

Assuming the lemma, it follows by Cauchy's bound that for (~, t/)~ D~, 

~ o~(~, t/; e) < C r l l e l l ~ .  

We infer that the L~-derivative 

a 

exists, and that 

~ ~* ((, t/; ~) = J' e(~b, ~b )~Fl,~(y;~o+(f,  dp*+t/g)d#c(4),c~*). 

Analogous statements hold for 0/0t/. As a consequence, (II.1 I) can be written in the 
form 

[I  ~ j~s~ ~)* +je~sE~JfJ)d#cl= 6 ' (II.14) 

where fj(z)= C(vj-z)  ~ Lp(TE), 1 __< p < ~ .  Using Lemma II.3 and Cauchy's bound 
we obtain (II.10), choosing Q constant. 

Proof of Lemma IL3. Let u(~, (,, t/, rl) be a smooth function supported in D~. We 
show that 

tl F~, p(y; ~b + (f, q~* + t/g)l[L~(d,c) ~ C < oo, (II.15) 

uniformly in _y and ((, t/) e D,. Note that Fz, p depends implicitly also on x through 
our choice of fj. It is clear that the estimate (II.15) holds uniformly in _x. This 
estimate implies that the function 

u((, ~ t/, fl)~(4), ~*)F~,~(_Y; ~b + (f, 4" + t/g) (II.16) 

defined on t12 2 x 6~'(T 2) is L~(tl~ 2 x .Y'(T2), [d(d~dt/dgll®dpc ). Therefore, the weak 
derivatives O/3~-and ~ / ~  of o~((, t/; 0) are zero. By the elliptic regularity theorem, 
i f ( l ,  t/; 0) is holomorphic. Estimate (II.13) is a consequence of (II.15). 
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To prove (11.15) it is instructive to consider first the case of F~.a(qS, qS*) (no 
fermion operators). As shown in [5], 

IFt, a(~b, ~b*)l < R(~b, ~b*), (II.17) 

where 

R = {det4(I + L+)} 1/2 exp(-- ~/F), (11.18) 

where L+ is the positive part of the operator L =  - K - - K *  ÷ K ' K ,  and where 

= d + ¼11K t144 - Re Tr(K2K *) - ~  TrL 3 . (II.19) 

We show that for 1 < p < c~, 

sup 11RK~b + ~f, q~* + t/g)II Lp < C < oo. (II.20) 
(~, ~/) e O~ 

To prove (II.20) we proceed as in [9, 5]. We introduce an auxiliary regulariza- 
tion 2 > 0. Let q5 z = Z~ * qS, where )~z is a cutoff function. Denoting 

v(~b, ~b*)= logR(qS, ~b*), (II.21) 

and using f, g e Lp(T2), 1 __< p < o% we establish (as in [5]) the following bounds: 

v(~x + ~f, 4~ + qg) > C f I4~x(x)l z("- 1)dx - O((log 2)"- 1), (II.22) 

and 

Hv(O+~f, 4)* +tlg)-v(qb~ +~f  ~b~ +qg)[IL2~O(;t-~), (I1.23) 

for some 6 > 0, uniformly in (~, t/)s Dr. These two bounds yield (II.20). 
We return now to the general case. Write 

(I - K ) -  ~ K = K + K ( I - -  K ) -  ~ K , (II.24) 

in (II.9). Then the finite dimensional determinant is a sum of terms of the following 
form: 

! KS(w1 - z , ) . . .  KS(w1, z v) 
+det  " " 

KS(w, , -  zO... KS(w,,.,~) 

K(I -- K)-  ~ KS(w~, zp + ~) ... K(I--  K)-  ~ KS(w ~, z,,,) 
• • . (II.25) 

K ( I -  K)-  ~KS(Wm, z, + 0""  K ( I -  K)-  iKS(wm, z,,,) I 

Here the first p columns have the kernels KS(w, z) as the entries, and the last 
m - p  columns consist of the kernels K(I -K) -~KS(w ,  z). Expanding (II.25) with 
respect to the first p columns, we obtain a sum of terms of the form 

+-- (1-71 KS(w,,, zb)) det {K(I - K)-  1KS(w j, Zk) } . 

We use H61der's inequality to obtain 

[(l-[ K S(wa, zb)) det { K( I - K)-  1KS(w j, Zk)} det3 (I-- K) exp(-- sg)12 d#c 

< 1] 1[ KS(w,, Zb)t1 ~, ]l det {K(I -- K)-  ~KS(wj, zk) } det3 (I - K) exp( - sO)II ~,  
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By hypercontractivity, this is bounded if the following two estimates hold: 

llKS(w, Z) I1L~__< C, (11.26) 

and 

I ldet{g(I-K)-~KS(wj,  zk)}det3(I-K)exp(-~c)t lL~<C, (II.27) 

uniformly in (~, q)e D~. To prove these two estimates we need the following. 

Lemma 11.4. (i) Let h e L~.( T z) and let 4,S(h)= ~ 4,(z)ih(z)dz. Then 

II 4,J(h)li L~ =< C II h II L~(T~)- (II.28) 

(ii) Let Uj(w, z) and Vj(w, z) satisfy n Uj[l, < 0% I[ V;ll, < o% where H" 11, denotes 
the negative Sobolev space norm 

II g II ~ = I I ( -  A ~ + m 2)- ~/4g(w, z)l Zdwdz. (II.29) 

Set 

Then 

otjw) = ~ U j w ,  z): 4,*(z~: dz ,  

f l jw)  = f Vj(w, z) : 4' ~(~)'~ : dz .  
(II.30) 

Jt(~, ^ . . .  ^ ~,, A " q -  g,.~(4, + ~f, 4,* + ~g))-'~,.g~, A.. .  ^ ~,) 

x F,,P(4,+(f 4,* +tlg)llLz<=CllR(4,+(f 4,* +qg)ilL~ h flU~It.IIVjlt., 
)= ~ (II.31) 

for (~,q)~D r 

Proof (i) This is a standard estimate which uses the fact that Cl,p(w-z) ~ log ]w-  z I, 
as ]w-z]-~0. (ii) Using the bound (see e.g. [5], Sect. IV) 

I(a 1 A ... A a,, A"(I-K)-1Si l l  A ... /x fl~) det 3 ( I - K ) e x p ( - d ) l  

< CR f i  H~jII~_.2 II/~jll~_,,=, (II.32) 
j = l  

and HSlder's inequality, we bound the left-hand side of (II.31) by 

c ~ I1~ I f(-  Aw + m2)I/4G~w, z)" 4,*(z)~: dzl~dwll~,. 

× ~I IIS IS ( - ~ w + m2) '/4 ~ w ,  z): 4, * (z)t~ : dzl:dw I IL~° 
j = l  

x II g(4, + ~f, 4,* + ~g) ll ~ .  (II.33) 

Using hypercontractivity we replace the Lp-norms by the LE-norm in the above 
expression. Since 

II~ 1~ k(w, z)4, *(z)Jdzl2dwlIL2 ~ Cllkll~z(T2 x r2), (11.34) 

inequality (II.31) follows. 
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o r  

To prove (II.26) we apply (II.28) with 

h(x) = (J f (x)JS(w- x)S(x - z) 

h(x) = r/ig(xyS(w- x)S(x-  z). 

To prove (II.27) we apply (II.31) with U and V of the form (JS(w-z)f(z) j or 
rflS(w-z)g(z) ~. The proof of Proposit ion II.2 is complete. 

Proposition II.5. For f ixed e > O, 
(i) 

b b 
[.: [I 4) *(xj, 0)* 1-I 4) e~(x~, e): ,rF(~),, 2eky_,(*'" W,rA 4)* ) _ Ft" 2,(~; 4), 4)*)]dpc(4), 4)*)--+0, 

J=* J=* (II.35) 
a s  K-....+oo, 

(ii) 
b b 

I: H 4)~(x~,0)* ]7I 4)#(x~,e " F (~'~')_" * F " ) . [  ,,2~ (y ,4 ) ,4 ) ) -  ,,2~(y, 4), 4)*)]d#c(4), 4)*)- +O, 
= 1 j= 1 (II.36) 

as ~:,~c'--+O, uniformly in (x_,y). 

Theorem ILl  is an immediate consequence of Proposit ion II.5. 

Proof of  Proposition II.5. We present the details of the proof of(II.35). The proof of 
(11.36) is identical and we omit it. Reasoning as in the proof  of Proposit ion 11.2 we 
reduce the proof  to showing that 

F (~)¢,," z,a,y, 4) + (f, 4)* + ~/g)- F~,e(_y; 4) + (f, 4)* + r/g)llL=--+0 (11.37) 

uniformly in (~, r/)e D~ and (~, y_). Then 

~(~)(~, t/; e ) - ~ ( ~ ,  r/, ~), (II.38) 

uniformly in (~, r/) e D,. Here, ~(~)(~, r/; ~) is defined by (II.12) with Fz,p replaced by 
Fl~p ). As a consequence, the derivatives of ~(~)(~, r/; Q) converge to the derivatives of 
~.~((, r/; ~), and the proof  of (II.35) is complete. 

To prove (11.37) we use the following uniform version of Lemma 3.5 of [10]: 

LemmalL7.  Let (f2,f~) be a measurable space and {fC},>=t and f ¢  measurable 
functions depending on ~ ~ K, K compact, and such that 

(i) fne ~ f ¢ almost everywhere, uniformly in ¢, 
(ii) HT~IIL_<C, p>l ,  uniformly in n and ~. 
Then f ¢ ~  and IIf¢--f~tlL -+O, uniformly in ¢, for all 1 ~ q < p .  

By hypercontractivity [11], it is sufficient to show that 

IJFl.~}(~; 4) + (f, 4)* + r/g)llL= < C, (II.39) 

uniformly in ~:, _y, and ((, q)e D,, and 

F(~)~,,. ,~ ~, a~y_, ~, + (f, 4)* + ~/g)--Ft, a(y; 4) + ~f, 4)* + r/g), (II.40) 

uniformly in £ and (if, r/)e D r 
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To  p rove  (II.39) we define R (~) and  v ~) by formulas  ana logous  to (II.18) and  
(II.21) with appropr ia t e  modificat ions.  Then,  repeat ing the a rguments  of  the p roof  
of  P ropos i t ion  II .2 and  not ing tha t  all the F e y n m a n  graph  est imates are uni form in 
x, we find 

F(~)t-,,. II t,#~,Z, ~'-b ~.£ (O*-'}-qg)llL2<= tlR~")IIL2<= IIRIIL, exp ltv--v~'~)llL,< C, 
since tlv--v~")llL,<_O(~:-o) for ~:~:o and some 6>0 .  

Est imate  (11.40) is a consequence of the following two est imates  which can be 
easily established by  me thods  of [5] (cf. L e m m a  11.3): 

$11gt,a(4~+~f,4~* +ng)-gl~,A(~+~f,4~* +rtg)l]~d~c(4~,4~*)--,O, (II.41) 

uniformly for (~, q) ~ D,, and 

~l~z,a(c~+(f ~p* +,g)- , .~}~(q~+(f  c~* +qg)lPd#c(C~,~*)~O, (II.42) 

as K ~  ~ ,  uni formly  in (~, ~/) ~ D~. These  two est imates  imply tha t  the cor responding  
functions converge  uniformly in ((, ~/) a lmos t  everywhere  with respect  to  d#c. Using  
H61der cont inui ty  of  det3, we infer (II.40). 
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