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Abstract: We apply the concepts of superanalysis to present an intrinsically su- 
persymmetric formulation of the Chern character in entire cyclic cohomology. We 
show that the cocycle condition is closely related to the invariance under supertrans- 
lations. Using the formalism of superfields, we find a path integral representation 
of the index of the generalized Dirac operator. 

I. Introduction 

I.A. The purpose of this note is to present an intrinsically supergeometric formu- 
lation of the Chern character of [7] in entire cyclic cohomology [3]. The concept 
of a Fredholm module is closely related to the structure of supersymmetric quan- 
tum theory. The construction of the Chern character associated with a O-summable 
Fredholm module presented in [7] uses in an essential way ideas adopted from su- 
persymmetric quantum field theory. The n th component of  the Chern character is 
written as a certain finite temperature (n + 1)-point Schwinger function integrated 
over an n-simplex. The physical interpretation of the closedness of the Chern char- 
acter under Connes' coboundary operator ~3 remained, however, unclear. 

The construction of this paper is based on the simple observation that a more 
natural form of the Chern character arises if  the integrals over simplexes are re- 
placed by Berezin integrals over supersimplexes. (A supersimplex is a superdomain 
whose base is an ordinary simplex.) This makes the supersymmetric nature of  the 
Chern character transparent. We find that the Chern character is invariant under the 
(l]l)-dimensional supergroup of translations in the time direction and in one ex- 
tra fermionic direction. It is the invariance under supertranslations in the fermionic 
direction which is equivalent to the closedness of the Chern character under 0. 
Furthermore, this form of the Chern character lends itself well to a path integral 
representation. This should be a useful technical tool in studying the topological 
properties of Fredholm modules arising in quantum field theory. Our discussion 
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of  this idea has a preliminary character and is based on a number of  technical 
assumptions whose validity needs to be established in each situation separately. 

LB. The paper is organized as follows. Section II contains the superspace formula- 
tion of the Chern character. In Sect. III, we discuss the relation between the cocycle 
condition satisfied by the Chern character and its supertranslation invariance. Finally, 
in Sect. IV we discuss the conditions under which the Chern character and index 
of the generalized Dirac operator have natural superpath integral representations. 

/. C There are several different definitions of a supermanifold available. For the 
purpose of this paper, it would not matter which one is used. For convenience, 
we adopt the Berezin-Leites-Kostant definition, see e.g. [1]. A supermanifold W is 
thus a locally trivial ringed space whose structure sheaf is isomorphic to the tensor 
product of  the sheaf of smooth functions on a manifold X (called the base of Y'), 
and a Grassmann algebra A(E)  over a vector space E. We denote the superalgebra 
of  global sections of  this sheaf by C~176 and refer to a set of  (even and odd) 
generators of  this superalgebra as the coordinates of a "point" of W. By | we 
denote the 2g2-graded, completed projective tensor product of  sheaves. Structure 
sheaves of  supermanifolds are sheaves of nuclear vector spaces, and so using ~ .  
is convenient as it leads to natural functorial properties of cartesian products of 
supermanifolds. 

II. The Chern Character 

I/.A. Let d be a unital C*-algebra. Recall [2] that a O-summable Fredholm module 
over ~r is a triple (~ff, Q, p), consisting of a 2g2-graded Hilbert space 9f ,  a self- 
adjoint operator Q on 24 ~ which is odd with respect to the 2g2-grading of 24 ~, and a 
grading preserving *-homomorphism p of ~4 to the C*-algebra 5 r  of  bounded 
linear operators on ~ .  For convenience of notation, we suppress p in all formulas 
below. We require that 

�9 the subalgebra d l  := {a E sO: ]][Q,a]]] < oc} is dense in d ;  
�9 for a l l f l  > 0, 

Tr(exp(- f lQ2))  < ec .  

Throughout this paper we will make the simplifying assumption that ~r is triv- 
ially graded meaning that all elements of d are even. By F we denote the grading 
operator on ~ .  It satisfies the properties F 2 = 1 and F* = F. By Q+ := P_QP+, 
where P•  := �89 :k F), we denote the restriction of Q to the even subspace of ~/{. 
Finally, by Tr(A) we denote the trace of A E 5 ~  

A O-summable Fredholm module defines a fundamental cohomology class in 
the entire cyclic cohomology of sO, the Chern character [3]. In the representation 
of [7] and [5], the Chern charater is a sequence of (n + 1)-linear functionals on 

~r r # s v / ~ ~  constructed as follows. For A0 . . . . .  An E &o(j~ff) we define z 1 n J n = 0  

Fff(Ao,A1 . . . . .  A , )  := fl-"/2 f Tr(AoAl( t l ) . . .A,( tn)exp(- f iQ2))dt  , ( ILl)  

where A(t) := exp (-tQ2)A exp tQ 2 is the operator A "at the Euclidean time t" [8], 
and where cr~ := {(q, . . . , t , , )  6 IR n : 0 < tl < ... < tn < fl} is the n-simplex of 



Superspace Formulation of the Chern Character 645 

length ft. We then set for a0 . . . . .  an C d ,  

z~(a0,al . . . . .  a , )  := F~(Fn+lao, [Q, al] . . . .  [Q, an]) �9 (II.2) 

For furore reference, we also define the following sequence of  multilinear function- 
als: 

"~(a0,al . . . . .  an) := Ff(Fnao, [Q, al]  . . . .  [Q, an]) �9 (II.3) 

ll.B. Let N+ denote the (1]l)-dimensional superdomain whose base is the set 

of  positive real numbers. The coproduct morphism A" C~( IR~I )  --+ C~176 1)@~ 

C~(IR21)  given by 

(A f ) ( s ,  6;t,e) := f ( s  + t - 6e,6 + e) , (II.4) 

and the counit morphism t " cg~ 1 ) ~ IR given by 

z f  := f ( 0 , 0 )  (II.5) 

furnish ~,+ with the structure of  supersemigroup. Informally, we will use the prod- 
uct notation, (s, 3 ) .  (t, e) = (s + t - 6~, 6 + e). 

Proposition I L l  The morphism cg~(lR~l)---+ cg~( lR~l )~SC(Juf )  given by 

(t,e) --+ T(t,e) := exp ( - t Q  2 + eQ) (II.6) 

defines a representation of  lRl+ 1 on ~ .  

Proof We note that 

exp6Q exp eQ = (1 + 3Q)(1 + eQ) 

= 1 + (3 + e)Q + 6eQ 2 = exp(6eQ 2 + (6 + e )Q) ,  

and so 

T(s, 6)T(t, e) = exp ( - s Q  2 + 3Q)exp ( - t Q  2 + eQ) 

--- exp ( - ( t  + s - 6~)Q 2 -}- (3 + e)Q) = T((s, 6).  (t, 8)),  

and the claim follows. [] 

II. C. For a positive integer n and/3 > 0, we define the (n[n)-supersimplex a~k n to 

be an (n[n)-dimensional superdomain [1] whose base is the n-simplex a~. We let 
t l , . . . , tn and e n . . . ,  en denote the even and odd generators of  the structure sheaf of  
a~ln, respectively. By f . . . d tde  we denote the usual Berezin integral [1]. 

We set for a E sJ  and (t,e) E ~1~11, 

a(t, e) := exp ( - t Q  2 + eQ)a exp (tQ 2 - eQ) , 

We note that a(t) = a(t, 0). 

(II.7) 
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Proposition II.2 

(i) 

We have the followin9 identities." 

fa ( t ,  e)de = [Q, a](t) ; 
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(ii) As operators on Ran(exp(-flQ2)), 

exp ( - s Q  2 q- 6Q)a(t, e) exp (sQ 2 - 6Q) = a((s, 6 ) .  (t, e)) . 

(H.8) 

(II.9) 

Proof  The first identity follows from the observation that 

a(t, ~) = a(t) + ~ exp (- tQ2)[Q, a] exp tQ 2 . 

The proof of the second identity is similar to the proof of Proposition II. 1. [] 

II.D. An immediate consequence of (II.2) and Proposition II.2 (i) is the follow- 
ing representation of the Chem charater by means of a Berezin integeral over the 

supersimplex train, 

~c~(ao, al . . . .  , an) = fl--n/2 f Tr(/-n+~aoal (t,, g , ) . . ,  an(tn, gn) exp (_f lQ2))dtdg.  

(II.10) 
A similar representation holds for ~?~, 

n 

f~(ao, al . . . . .  an) = ~-n/2 f Tr(rnaoal(tl,  gl ) . . .  an(&, gn) exp (_f iQ2))dtdg.  (II. 11 ) 

IlL Translation Invariance in Superspace and Connes' Coboundary 

An immediate consequence of the representation (II.11), and the cyclicity of the 
trace is the following translation invariance property. 

Proposition III.1. The functional ~ is &variant under the supersemigrou p ~,+ , 

g~(ao(s, rl),al(s, rl), . . . ,an(s, rl)) = g~(ao, al . . . . .  an).  (III.1) 

Let us now take the left derivative ~/0, of (III. 1 ) and evaluate it at s = 0, t / =  0. 
Keeping in mind the sign count in the super Leibniz rule, we obtain the equation 

( -1)J~(ao . . . . .  [ Q ,  a j ]  . . . . .  a . )  = O . 
O<=j<n 

(III.2) 

We claim that the above identity is just the cocycle condition 0~/~ = 0, where 
(3 = B + b is Connes' coboundary operator of entire cyclic cohomology (see [2] 
for the definitions of b and B; below we use the normalization of [7]). This fol- 
lows from the proposition formulated below. The proof of this proposition can be 
easily extracted from the computation on pages 12-13 of [7]. For completeness, we 
present a superspace version of these computations. 
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Proposi t ion III .2.  We have the identities 

(Bz ~)n(aO, al . . . .  , an) = [31/2 ?n/~([Q, a0], a l , . . . ,  an), 

and 
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0n.3) 

(bz~),(ao, a l , . . . , a , )  = [31/2 ~ (_lY?n~(a0 . . . . .  [Q, aj] . . . . .  a , ) .  (III.4) 
l<=j<n 

Proof  The proof  of  (III.3) is a straightforward calculation. Using cyclicity of  the 
trace, we find 

[3(n+ 1 )/2 ( B,r2fl )n ( ao, a 1 . . . . .  an ) 
H 

_ [3(n+~)/2~(_ l nj 
- -  ) "Cn+l(I, an+l- j . . . . .  an, ao . . . . .  an-j)  

j=O 
H 

= ~ ( - 1 )  nj f Yr(Fnan+l-j(h,~l)... 
j=O a/n/+ 1 In+ 1 

Q2 
a,(tj_l,ej_l)ao(tj ,  ej) . . .an_j(tn_j,  en_j)e -~ )dtd~ 

= k f Tr(F'ao(O, eo). . .aj(tj ,  ej)aj+l(tj+2, gj+l).. .  
j=O a~+l [n+l 

a , ( t ,+ l ,  e ,)e -~Q2 t i m e ,  

using translation invariance in t. Integrating out the redundant variables, we rewrite 
the above expression as 

k f (tj+l - tj)Tr(Fn[Q, ao]al(t l ,  e l ) . . ,  an(tn, en) exp (- f iQ2))dtde 

= [3 f Tr(F'[Q, ao]al( tbel) . . .an(tn,en)exp(-[3Q2))dtde 
a~l,, 

= [3(n+2)/z?~([Q, ao], al . . . . .  an ) ,  

where to :=  O, tn+~ := fi, and our assertion is proven. 

We now prove (III.4). Using Proposition II.2 (ii), we obtain the representation 

n/2 ~fl 
fi %(ao, a l , . . . , [Q,  aj] . . . . .  an) 

= f f Tr(Fnaoal( t l ,e l ) . . .a j( t j  - & j , e / +  6)...an(tn, en)exp(- f lQ2))d tded6.  
J,I, 

(III.5) 

But aj(tj - 8ej, e/ + 8) = aj(tj - 8ej, O) + (ej + 8)[aj, Q](tj) = aj(tj - 8ej) + (r + 
8)[aj, Q](tj), because of  e~ = 8 2 = 0.  The term proportional to ej + 8 gives a zero 
contribution to (III.5), and so we are left with aj(tj - &j )  only. At this point one 
is tempted to make a change of  variables tj - &j  --~ tj to conclude that the integral 



648 A. Lesniewski, K. Osterwalder 

is zero. This, however, is incorrect, as the integrand in (III.5) is not compactly 
supported [1]. Instead, we have for j = 1,2 . . . . .  n, 

tj+l 
fa j ( t j  - 6ej)dt f le jd6 = - f a~jaj(tj)dtj = aj( t j -1)  - ai(tj+l) , 

tj--1 
(III.6) 

(we set here to := 0, tn+l := fl, and e0 = en+l := 0) and consequnetly 

fin~2 ~ft. %(ao, al . . . . .  [Q, aj] . . . . .  an) 

= -- f Tr(Fnaoal (tl, 81 ) . . .  aj(tj )aj+l (tj, ej ) . . .  an(tn, 8n)e -~Q2 )dtde 

~ 1 In_ 1 

+ f Tr (Fnaoal ( t l ,81) . . . a j_ l ( t j_ l , e j_ l )a j ( t j_ l ) . . .  

anfl_lln_l 

an(tn-1, en-1)e -~Qz)dtde . (m.7) 

Using the fact that 

( a l a 2 ) ( t , e ) = a l ( t , e ) a 2 ( t ) + a l ( t ) a 2 ( t , e ) ,  (III.8) 

we thus obtain 

fin~2 ~ (-1)@~(ao,  a b . . . , [ Q ,  aj] . . . . .  an) 
1 <j<=n 

n-1  
= ~ ( - 1 )  j f Tr(Fnaoal( t t ,eI) . - . (aiaj+l)( t j ,  s j ) . . .a , ( tn ,  en)e-PQ2) dtd8 

j=0 qfl l]n--I 

= fl(n 1)/2(bzp)n(ao, al . . . . .  an) ,  

and the claim follows. [] 

IV. Path Integral Representation of the Index 

IV.A.  We now assume that the O-summable module (2(Y, Q, d )  is associated with a 
supersymmetric quantum theory. This theory may involve finitely many degrees of 
freedom (quantum mechanics) or an infinite number of  degrees of freedom (quan- 
tum field theory). As a rule, a quantum theory involving finitely many degrees of  
freedom leads to a p-summable Fredholm module with the associated dimension 
equal to the number of  degrees of freedom. Quantum field theories lead to infinite 
dimensional O-summable Fredholm modules. Aside from some simple examples, 
the infinite dimensional constructions described below have not been yet carried 
through in a rigorous manner. Therefore, in mathematical terms, the results formu- 
lated below have a partially conjectural character as they rely on the existence and 
properties of certain measures on infinite dimensional Grassmann algebras. 

More specifically, we require the existence of a Euclidean supersymmetric quan- 
tum field theory in the following strong sense. 
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�9 The algebra d consists of suitable functions of "time zero bosonic and 
fermionic field operators" ~oj(x) and ~/j(x), where j = 1, . . . ,n.  Here x E Z, where 
X is a compact Riemannian manifold. In the case of quantum mechanics, X consists 
of a single point. We will assume that ~oj(x) is a real scalar field, while ~pj(x) is a 
Majorana Fermi field. In fact, these are operator valued distributions, and so only 
smoothed out objects q~j(f) and ~ / ( f )  (with f a test function) are well defined 
operators. The fact that the number of bOsonic operators is set to be equal to the 
number of fermionic operators is not accidental: it reflects the underlying symmetry 
(supersymmetry) of the theory. A natural way to describe a supersymmetric theory 
is the language of superfields. 

�9 There exists an underlying space of Euclidean superflelds. Euclidean super- 
fields are integration variables in an infinite dimensional Berezin integral, very 
much like Brownian paths are integration variables in a Wiener integral. For our 
needs, a scalar superfield ~ j ( x , t , g )  ( (x , t )  E Z x IR), j = 1 . . . . .  n, has the form 
ebj(x,t ,e) = (o j (x , t )+et I - ' j (x , t ) ,  where Oj(x , t )  is a Euclidean bosonic field, and 
where qoj(x,t) is a Euclidean Majorana field. Strictly speaking, Euclidean super- 
fields are Grassmann algebra valued distributions, and so need to be regularized to 
produce non-singular objects. Observe that the algebra generated by the regularized 
superfields is commutative; this is a consequence of the fact that Euclidean Bose 
fields commute and Euclidean Fermi fields anticommute. 

�9 The key elements of quantum theory are various Feynman-Kac formulas 
which provide a bridge between the Hilbert space and Euclidean formulations of 
the theory. A Feynman-Kac formula relates a functional on the algebra d (like the 
vacuum value expectation, trace or supertrace) to an integral over ~/~ with respect 
to a suitable measure dg(cb). For our purposes we require the following Feynman- 

Kac formula. For ao . . . . .  an E d and (t,e) E a~ln' there exist functions A0,...,A,, of 
~b( �9 , t, 8) such that 

n 

Tr(Fao(to,  go )al (tl, 81 ) . . .  an(tn, an) exp (_flQ2)) =_ f i ]A j (qs (  . , {1, e j ) ) d J ( g o ) ,  
j-O 

(IV.l) 

where d J ( ~ )  is a measure depending on ft. In concrete physical models, fl depen- 
dence means that the measure d#~(cb) is concentrated on r which are periodic in 
t with period ft. 

IV.B. Assuming the existence of the structure described in the previous subsection 
we can prove the following theorem. It expresses the index ind(Qp+) of the operator 
Qp := p Q p ,  where p E d is a projection, as a supersymmetric path integral. This 
identity generalizes the local version of the Atiyah-Singer index theorem; for more 
background and motivation see [2] and [3]. 

Theorem IV.1. Le t  P be a func t ion  o f  ~b corresponding to p. then, 

ind(Qp+) =fp(qs (  . , O, 0)) exp [ - f l - l ( f P ( q b (  �9 , t, e))dtde)2]dpe(q~) 

+ l f{1  - exp [ - f l -* ( fP (q ) (  � 9  t, e))dtde)2]}dl~a(q)) .  

(IV.2) 
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Proof According to the results of [3] and [6], the index ind(Qp+) can be computed 
from the even part o f  the Chern  character according to the formula 

oo  
ind(Qp+ Z~o(p) -~- ~ ( - 1  "k(2k)! fle I = j ---~-.r z2kt p - ~ ,p  . . . .  , p ) .  (IV.3) 

k = l  

From (IV.I) and (II.10), 

"c~k(a0, al  . . . . .  a2k) 

= fl-k f Ao(~( �9 , 0 , 0 ) ) A I ( ~ (  �9 , t l , ~ l ) ) . - . A 2 k ( ~ (  " ,t2k, e2k))dJ(~)dtde 

a~kr2k 

2k 
= ( 2 k ) ~ - ~ / ~  - ~  f fAo(~( �9 , O , O ) ) I - / A A ~ (  �9 ,t~,~;))d#~(~)dtd~, 

i~2k l2 k .j= 1 

where we have used the fact that the Euclidean scalar superfields commute with 
each other, and where I[ki2k denotes the (2k[2k)-dimensional supercube of side ft. 
Substituting this into (IV.3) we obtain 

ind(Qp+) = fP (~(  �9 , O, 0))d#/~(~b) 

+ ~ ~ f ( P ( ~ ( . ,  O, 0)) - �89 t, ~))dtd~)2kd#l~(q~), 
k = l  

and the claim follows. [] 
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