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Abstract: The purpose of this paper is to apply the framework of non-commutative 
differential geometry to quantum deformations of  a class of  Kfihler manifolds. For 
the examples of  the Cartan domains of  type I and flat space, we construct Fredholm 
modules over the quantized manifolds using the supercharges which arise in the 
quantization of supersymmetric generalizations of  the manifolds. We compute an 
explicit formula for the Chern character on generators of  the Toeplitz C*-algebra. 

I. Introduction 

I.A. Since the early work on quantum mechanics ([15, 3, 12, 4]) by Heisenberg, 
Born, Jordan, and Dirac, it has been generally recognized that ordinary geometry 
does not apply to the subatomic world. In order to describe the physical pheno- 
mena in that world, the classical notion of phase space needs to be replaced by 
a non-commutative algebra of  "quanturn observables." The coordinates p and q 
on the phase space IR 2 are replaced by generators p and q that obey the famous 
commutation relation [q, p] = ih. This "quantization" procedure amounts to studying 
a non-commutative deformation of a flat space, and, from a geometric viewpoint 
quantum mechanics emerges as some form of symplectic geometry on this non- 
commutative space. The classical algebra of  functions on phase space arises as the 
h --+ 0 limit of  the deformed algebra, and the Poisson bracket of  two observables 
turns out to be the subleading term in the small h expansion of the commutator of  
the corresponding quantized observables. Much work has been done since the early 
quantum mechanics on extending this procedure to more general, non-flat phase 
spaces, resulting in powerful theories known as geometric quantization, deformation 
quantization, quantum groups, etc. 

/.B. In the mid-eighties A. Connes [9] proposed a general scheme of non-commuta- 
tive differential geometry which is ideally suited to describe the geometry of 
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quantum theory. The central concept of this scheme is a non-commutative 112*- 
algebra sr which plays the role of an algebra of continuous functions on the (pu- 
tative) non-commutative space. The de Rham cohomology of a smooth manifold is 
replaced by the cyclic cohomology of d ,  while elements of the group K 0 ( d )  play 
the role of vector bundles over the non-commutative space. Another central concept 
of Connes' framework is that of a p-summable Fredholm module over sO, which 
replaces the classical notion of metric structure on a manifold. This is defined as a 
triple ( ~ ,  p, Q), where ~ is a 2g2-graded Hilbert space, p is an action of ~r by 
bounded operators on ~ ,  and Q is a self-adjoint operator on ~ which is odd with 
respect to the 2g2-grading (see Sect. II for a precise definition). In examples, the 
operator Q is often a Dirac type operator. To a Fredholm module over sO, Connes 
associates a fundamental cocycle in cyclic cohomology, called the Chern character. 

/. C. A conceptual framework of quantization which fits the scheme of non-commuta- 
tive differential geometry was proposed by Rieffel in [19]. This framework relies 
on the use of IE*-algebras and precise operator norm estimates (rather than formal 
power series in Planck's constant), and we refer to it as non-perturbative defor- 
mation quantization. Examples of quantized spaces studied within this framework 
include quantized tori (see [20] for a review and references) and quantized flat 
spaces (see [8] for some recent results and references). In [17, 7, 5, and 6] we 
studied quantum deformations of a class of hermitian symmetric spaces and super- 
spaces, namely the Cartan domains and superdomains. In each case, we constructed 
a family of C*-algebras of "quantized functions" and verified that these C*-algebras 
are indeed quantum deformations of the corresponding classical algebras of func- 
tions. In this paper and its sequel we study Fredholm modules over these algebras 
and the associated Chem characters. 

I.D. As explained by Witten in his work on supersymmetry [21], it is natural to 
regard Dirac type operators as generators of supersymmetries ("supercharges") in 
certain physical systems involving bosons and fermions. This suggests that a natural 
way of constructing Fredholm modules over a quantized manifold is first to quantize 
a supersymmetric generalization of the manifold (see e.g. [2] for an introduction to 
the theory of supermanifolds), and then to take Q to be a supercharge generating 
the supersymmetry. Following this idea, we construct Fredholm modules over the 
quantized type I Cartan domains and over quantized flat spaces. Our construction 
relies on [5], where we studied the relevant supersymmetric theories. We introduced 
there the notion of a super Toeplitz operator and the II;*-algebra generated by such 
operators. The Fredholm modules we construct bear a certain resemblance to those 
constructed for the Toeplitz algebra over the circle in Sect. 4.2 of [11]. 

I.E. The paper is organized as follows. In Sect. II we briefly review Connes' for- 
malism of non-commutative differential geometry. In Sect. III and IV we study 
Fredholm modules over the quantized type I Cartan domains, and in Sect. V we 
study Fredholm modules over quantized flat spaces. 

II. Fredholm Modules and Their Chern Characters 

II.A. In this section we briefly review the notion of a p-summable Fredholm mod- 
ule over a 112*-algebra d .  From a physical point of view, the concept of a Fredholm 
module captures the essential features of a quantum supersymmetric system: the 
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C*-algebra ~r is the algebra of observables, the Dirac operator is the supersymme- 
try generator, and its square is the Hamiltonian of the system. 

Let d be a trivially 7/2-graded C*-algebra (all elements are even). Recall ([9, 
11]) that a p-summable Fredholm module over d is a triple ( ~ , p , Q )  such that: 

(i) ~ is a 2~2-graded Hilbert space. We denote b y / "  the grading operator and by 
~ 0  and ~ 1  the homogeneous subspaces of ~ .  
(ii) p : d ---+ 5 e ( ~ )  is a grading preserving *-homomorphism of ~r into the alge- 
bra of bounded linear operators on H .  For notational simplicity, we will suppress 
p in all formulas throughout the rest of this paper. 
(iii) Q is a self-adjoint operator on ~/f which is odd under the Z2-grading, i.e. 

Q r  + FQ = 0, (II.1) 

and such that for any e > 0, 

(Q2 + I)-1/2 E Ip+~(Jt~ (I1.2) 

Here, Ip(Jeg) denotes the p-th Schatten class of operators on JtL It is natural to 
regard the smallest number p in (II.2) as the dimension of the non-commutative 
space. 
(iv) The subalgebra ~r consisting of those a E d for which the commutator [Q, a] 
is bounded is dense in d .  

We refer to Q as the Dirac operator. In the following, we will denote H := Q2 
and refer to it as the Laplace operator. Clearly, H is a positive self-adjoint operator. 

l l .B. A p-summable Fredholm module defines a fundamental cocycle in the cyclic 
cohomology of ~r called the Chem character [9]. In this paper we use the Chem 
character of [16], which is a cocycle in the entire cyclic cohomology [10] of d Q. 
It has the advantage of being expressed in terms of the heat kernel of the Laplace 
operator (very much like the McKean-Singer formula in index theory), which leads 
to useful integral representations. Its truncation to cyclic cohomology is discussed 

= h/~ ~ ChzBk(O) is a in [11]. This cocycle, Ch~(Q) {C 2k(Q)}k=0, where each (2k + 
1)-linear functional on d Q, is defined as follows. For a E 5r and t > 0 we 
define the unbounded, densely defined operator 

a( t ) := e-tI4ae tH . (II.3) 

For fl > 0 and a0, a~ . . . . .  a2k E J~O we set 

Ch~k(O)(ao, a~,. . . ,  a2k ) := fl-k f Str{ao [Q, al ](tl) �9 [Q, a2k](t2k )e -~H }d2kt , 

4 
(H.4) 

where tr~ := {(tl . . . .  ,tn) E IR n "0 < tl < ".. < t,, < fi}, and where Str denotes 
the supertrace, 

Str(A) := Yr(_rA). (II.5) 

The key analytic input ensuring the existence of (II.4) is the following inequality 
[16]. For sj > O,j = 0 . . . . .  n, with Zj_oS j = fl, and Ao,A1 . . . . .  An E ~(g/g),  

n 

ITr(Aoe-~OnAle-~lH...Ane-~"lr < [I][Ajl[Yr(e -~H) (II.6) 
j=o 
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(we use this estimate with so = tl,Sl = t2 - t l , . . .  ,sn = fl - tn). The inequality (11.6) 
is proven using Hrlder's inequality and holds for any positive operator in place 
of H. 

I/. C. For the case of Fredholm modules arising from the quantized K~ihler super- 
manifolds discussed later in this paper, we will have two Dirae operators Q1 and 
Q2 which generate an N = 2 supersymmetry algebra, namely 

Q1Q2 + Q2Q1 = 0. (II.7) 

These two operators will be essentially self-adjoint on some dense subspace ~ c 
and will have the structure: 

Ql = d + d*,  

Q2 = i(d - d*) , (II.8) 

where d is an operator such that d 2 : 0, Dom(d) = ~ .  We define ~r :___ ~r f-'l 
~r Here we make an important assumption that ~r be dense in ~r (this is the 
key element which limits the generality of the following theorem). This will clearly 
be the case for the examples we consider. 

Theorem ILl .  Let  (Jr ,  p, Q1) and (Jr ,  p, Q2 ) be Fredholm modules over s# , with 
Q1 and Q2 as in (II.8). Then the corresponding Chern characters define the same 
cohomology class in the entire cyclic cohomology o f  ~r 

Proo f  The theorem is proven through a homotopy argument. We can set fl = 1 
with no loss of generality. We form the family of operators 

Q(2) := Q1 cos 2 + Q2 sin 2 = ei2d -q- e-i'~d * , (II.9) 

for 0 < 2 < 2~, which interpolates between Q1 and Q2 " Q(0) :- QI, Q(Tr/2) = Q2. 
Clearly, Q(2) is essentially self-adjoint on ~ ,  and the commutator of Q(2) with 
any element of d 1 is bounded. We proceed as in [13] to show that ~Ch(Q(2))  
exists and is equal to a eoboundary, so that Ch(Q1) and Ch(Q2) are cohomologous. 
Note that the technical assumptions (i) and (ii) of Sect. III of [13] are not satisfied 
in our case and we need to make some changes in the argument. 

Observe that the Q(2) obey the following algebra: 

[Q(2), Q(#)] = 2 cos(2 - # ) H ,  (II.10) 

where [ �9 , �9 ] denotes the graded commutator. In particular, Q(2) 2 = H, and so H 
is the Laplace operator corresponding to Q(2) for any 2. On ~ we can take the 
derivative 

Q'(2) := d-~Q(2 ) = -Q1 sin )~ + Q2 cos 2 = Q(2 + 7r/2), (ILl 1) 

and we thus see the Q~(2) is also essentially self-adjoint on ~ .  Define G z =  
{G~k_~}~=l, where each Gz~k_l is a 2k-linear functional on d 1 given by 

G~k_l(ao . . . . .  a2k-1) 
2k--  1 

:= ~ ( -  1 )l+1 f Str{ao[Q(2), al](tl ) . . .  [Q(2), al](tl)O'(2)(tl+l ) 
I=0 al k 

• [Q(2), al+l](tl+2)... [Q(2), a2k_l](t2k)e--H)d2kt, (II.12) 
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for a0 . . . .  ,a2k-1 E d 1. Observe that the heat kernels in Ch(Q(2)) are independent 
of 2 and so differentiating them is trivial. Differentiating the commutators with Q(2) 
is done by means of (II.11). The arguments of Proposition III.5 of  [13] show that, 
algebraically, 

d c h ( Q ( 2 ) )  = (b + (II.13) B)G ~ , 

where b and B are the coboundary operators of entire cyclic cohomology. We will be 
finished if we prove that each G2~k_ 1 is well-defined and obeys the growth condition 
of entire cyclic cohomology. 

The key estimate on Q(2) is 

IIQ(,~)e-S'll ~ C s  -1/2 , (II.14) 

which follows from the spectral theorem. We proceed as in the derivation of (II.6), 
by applying H61der's inequality to the trace in (II.12). We obtain the estimate 

]Tr(A 0e-'~ e-,1H.. .  Q,( 2)e-stH.. .  A2k- 1 e-Sd4 )1 
2k--1 

<= Q,(~.)e-Sfl/2 Tr(e-g)l-SlTr(e-H/Z)sl) jiT= 0 Aj 

2k -  I 
< Csl  1/2 I-1 Aj . (II.151 

j=O 

Using this estimate, the integral over G2ak in (II.12) is well-defined and gives a 
factor of ~ .  The sum in (II.12) involves 2k such terms, so the resulting bound 
is 

2k ao 2kill 
IG2k-l(a~ <= C(2v--~I) ! , -  f=-l- [Q(2),al] , (II.16) 

where C is independent of k. This shows that the growth condition on G ~ is satisfied 
and so G ;~ is an entire cochain. 

ILD. In fact, formula (II.4) defines a one parameter family of cocyles indexed 
by fl (we will refer to fl as the temperature because of the obvious analogy with 
quantum statistical mechanics). It is shown in [14] and [16] that the entire cyclic 
cohomology class of Ch~(Q) is independent of ft. It is thus natural to study the 
limit fl--+ oo. We have the following theorem ([11], Sect. 2.2). 

Theorem II.2. The zero temperature limits, 

Ch2C~(Q)(a0, al . . . .  , a2k) := lim Ch~2k(Q)(ao, al,. :., a2tc), 
fl---+oo 

(II.17) 

ex&t and define continuous (2k + 1)-linear functionals over the algebra ~ Q .  

Moreover, 

( - 1 )  k 
Ch2~(Q)(ao, al , . . . ,  a2k) - k ~  Str{PoaoPoO(ab a2)Po... Po~2(a2k-1, a2k)}, 

(n.18) 
where Po is the orthogonal projection onto Ker(H), and where (2(a,b)= 
ab - aPob. 
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In the examples studied in this paper, Ker(Q)  is a one dimensional subspace of  the 
even part ~ 0  of  ~ .  The above theorem then yields the following corollary. 

Corollary II .3.  Let  Ker(Q)  be a one dimensional subspace o f  9f~o and let 
ao, al . . . .  , azk E d Q. Then 

o o  

Ch2k(Q)(ao, al , . . . ,a2k)  = ao)o [ I  {(a2m-la2m)O -- (a2m-1)o(a2m)O}, (II.19) 
�9 m = 0  

where (a)o :=  (~b0,aqS0), and where d?o is a normalized vector spannin9 Ker(Q).  

Remark�9 The factors (ab)o - (a)o (b)o appearing in (II. 19) are the truncated vacuum 
expectation values of  a and b. 

Proof  As a consequence of  Theorem II.2, 

C h ~  (Q)(ao, a l . . . . .  a2k ) 

( - 1 )  ~ 
-- ~. (~)o, aoPof2(al,a2)Po'"Pof2(a2~-l,a2k)~bo) 

(_1)~ k 
-- - - ( a o ) o  I ]  {(a2m-la2m)O -- (a2m-1)o(a2m)O}, 

k! m=0 

as claimed�9 [] 

Note, however, that the limit C h ~ 1 7 6  {Ch~(Q)}~=o of  Ch/~(Q) does not 
define an entire cyclic cocycle. The power series S~>=ok!llCh~(Q)l[z 2~ has a fi- 
nite, rather than infinite, convergence radius, and so Connes '  growth condition is 
violated�9 As a consequence, the usual pairing [10, 14], (Ch~~ of  Ch~176 
with a Ko(d ) - c l a s s  e is meaningless. It is, however, easy to see that i f  a hermitian 
projection e E M a t ( d )  is such that the operator I - 2PoePo is invertible, then the 
series defining (Ch~176 converges and, in fact 

1 { I - 2 P o e P o  } 
( C h ~ ( Q ) , e )  = ~StrKer(Q) I -  [I -2Po-7~o)211/2 " (II.20) 

Note that (Ch~176 is an integer such that I(Ch~(Q),e)l <= dim Ker(Q).  We 
are not aware of  a topological significance of  this integer. 

IlL Fredholm Modules Over the Quantum Type I Cartan Domains 

III.A. The Cartan domains of  type I form an infinite sequence Din, n, m,n > 1, of  
non-compact hermitian symmetric spaces. Dm, n is an open subset o f  C mn defined as 
follows: 

Dm, n := {z E Matm, n(ll2) :Ira - z z *  > 0}.  (III.1) 

The quantum deformation of  Dm, n is the Toeplitz algebra Jrr(Dm, n), defined as 
follows [7]. For r > m + n - 1, we consider the following measure on D~,n: 

d#r(z) = Ardet(I,~ - zz* )r-(m+n)dZmnz. (III.2) 

The normalization factor Ar is chosen to normalize the total integral to one: 
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--mn r~r F ( r  - n + k )  
Ar = ~ 11 . . . .  (III.3) 

k=l F ( r  - m - n + k )  

We let ~ ( D )  denote the Hilbert space of holomorphic functions on Dm,~ which 
are square integrable with respect to dpr. The Bergman kernel of Dm, n associated 
with this measure is given by K r ( z , w )  = det(Im - z w * ) - L  The algebra J-r(Dm,n) is 
the IC*-algebra generated by the Toeplitz operators on ~_~(D) whose symbols are 
smooth functions o n  Dm,n which extend to the closure Dm,n. Its generators aij := 
Tr(zij ) and 6ij = Tr(zij ) obey the relations 

[~ij,  akt] = # ( I  -- aa*)ki ( I  - a* a) j l  , 

[lYij , O'kl ] = 0 ,  (IfI.4) 

where # = 1 / ( r -  m) .  

I I I .B .  Our construction of Fredholm modules over J,.(Dm,,) will be based on a 
= D  I quantization of the type I Cartan superdomain X / _  m,~l~ [6]. The starting point 

of this construction is the Hilbert space ~r of superholomorphic functions on 
Jr which are square integrable with respect to the measure 

d#~(Z)  = ~ 1  det(Im - ZZ*)r-mdZmnzd2mno. (111.5) 
7"gmn 

Here, 0 denotes the matrix of fermionic generators and Z = (z, 0) is a collective 
matrix notation for the generators of C~176162 The corresponding Bergman kernel 
is given by 

K r ( z ,  W) = det(Im - Z W * ) - r .  (III.6) 

Let ~-;~(Jg) denote the I[1*-algebra generated by the super Toeplitz operators on 
J f~(J / )  with smooth symbols extending to the boundary. Its generators are Zij = 

T~(Zij) and Zij = T~(Sij).  Note that Sij is the adjoint of Sij. We will adopt a matrix 
notation: S/j = Zji. Often we will write Z = (a,Z) to indicate the submatrices of 
even and odd operators. 

The theorem below applies to all Type I Caftan superdomains ~ ,  not just the 
supersymmetric case that we have denoted by J .  

Theorem IlI.1. Usin9 the above notat ion,  the 9enerators  o f  ~7~(~), where  ~ = 
~ 1  is an arbi t rary  type I Cartan superdomain,  sa t i s f y  the fo l lowin  9 relations: m,nlq 

[S i j  , Sk i  ] = O,  

[~ij, Ski] = #(Ira -- S S *  )ki(Inlq -- X*S) j l ,  (111.7) 

where  [ �9 , �9 ] is the graded commuta tor ,  and # = 1/(r  - m).  In  o ther  words,  

[~ij,  ffkl] = #(Ira -- aa* -- ZZ*)ki(In - a * a ) j l ,  

[aij, Zkl] = -#( Ira  - aa* - ZZ* )~(a* - Z)fl , (III.8) 

[J.ij, Z~l] = -#(Ira  - aa* - ZZ*)ki(In -- Z ' Z ) # .  

Before proving Theorem IiI. 1, we first prove two lemmas. Let Aij be the unbotmded 
operator on ~ r ( ~ )  given by 

~ijq~(z) = ~ q~(z). (III.9) 
uLij 
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Lemma 111.2. For c~ E g,Vfr( ~ ) in the domain o f  Aij for  all 1 < i < m, we have 

~-~Ajk(I  m -- Z Z * ) j i ( 9  : [A--l ~ik~9. 
j=l 

(III.10) 

The domain o f  this operator thus extends to all o f  gfr(N). 

Proof  By definition we have 

m 
A/~(Im ZZ*)/+r - = ~ f ~ [ K  (Z, r)(Im - -  Z Y * ) j i ] ~ b ( Y ) d # r ( Y ) .  (III.11) r 

j = l  j = l  ./g ULjk 

To evaluate the derivative, we need the fact that 

- - K ~ ( Z ,  Y )  = rKr(Z, Y)[Y*(Im -- ZY*) - I ]k  j . (II1.12) 
azj~ 

We thus obtain 

m 0 r 
~-]~ ~--~-[K (Z, Y)(Im - ZY*)ji] 
j = l  ULjk 

m 

= Kr(z ,  Y)~-~.[r[Y*(Im - ZY*)-l]kj(Im - ZY*)ji - ~'ik] 
j = l  

= (r - m)YikKr(Z, Y ) .  (III.13) 

The lemma follows. [] 

Lemma 111.3. For r E ~vta~(~) in the domain o f  Aij for  all 1 < j < n + q, we have 

n+q 
~ ( I n ] q  -- S * S ) j k A l k ~  = IA-12 l j~ ) .  (111.14) 
k=l  

The domain o f  this operator thus extends to all o f  Jt~r( ~ ). 

Proof  We start with 

n+q n+q 
~(Inlq - Z*S) jkAlkr  = ~ f Kr(Z, w)(gnlq - W*W)jk  (a (Wld#~(W) .  
k=l k = l J /  

(III.15) 
Integrating by parts gives 

n+q 
E(/nlq - S*Z)/~A~k4(Z) 
k=l  

= - ~ ( - 1 ) ~ k ( ~ / + ' ) f K r ( Z ,  W)  [(Inlq - W*W)jkdet(Inlq - W * W ) r - m ] r  
k=l ,//g 

(ni.16) 
where e / : =  p(Zij). The derivative is easily computed, 
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c3 Wlk ( lnlq -- W* W )jk det(  lnlq - W* W )  r-m 

= - det(ln[q - W* w)r--rn[( - 1) 8kej lTYlj 

q- (--1)ek(~J-1)(r -- m)(In[ q -- W* W)jk[(lnlq - W* W) -1 m*]kl] .  (III.17) 

Summing over k we obtain 

n+q (~ 
--~(--l)~k(eJ+l)k=1 OWlk  (In]q --  W*W)jkdet(Inlq --  m * w ) r - m  

= (r - m)lTVljdet(Inlq - W ' W )  r-m . (III.18) 

In view of (III.16), this completes the proof. [] 

P r o o f  o f  T h e o r e m  IlI .  1. We start with the fact that 

[ Aab, Zkl] = (~ak(~bl, (III.19) 

restricted to the domain of Aij. We apply operators l,[q - S * S  and I m -  s  to 
both sides of this equation and contract indices: 

~ ( I n l q  - S*Z) jb[Aab ,  Zkl](Im -- SS,*)ai = (Inlq -- S * S ) l j ( l m  -- S Z * ) k i .  (III.20) 
a,b 

Using Lemma III.2 and Lemma III.3, we reduce the right-hand side to 

# - l  ~ - ~ s  m --  z~z~* ) . i  - - / t - l ~ (  - 1 )ebel( Inl q --  z~* ~, ) j b Z ~ k l ~ i b # - l [ s  ~k l]  . 
a a 

(III .21 ) 

This proves the theorem on a restricted domain. It is easy to see that this domain 
is dense, and since both sides of the relation are bounded operators, there is no 
problem in removing the restriction. [] 

I I I .C.  For f 6 C~ bounded, the Toeplitz operator T r ( f )  defines a unique 
super Toeplitz operator which we will denote also by T ~ ( f ) .  This defines an action 
of T ~ ( f )  on the 712-graded Hilbert space ~ ( J r  A continuity argument shows that 
this action extends to an action of the C*-algebra Yrr(Dm,n) on ~ r (~ ( ) ,  and so we 
have a *-morphism p : ~-Tr(Dm,n) ~ 5 e ( ~ ( J / ) ) .  

Let ~ C ~ ( ~ )  denote the dense subspace spanned by all polynomials. We 
now take Dom(Aij) = ~ .  This operator is broken up into its even and odd compo- 
nents as A = (0, z), where, if Z = (z, 0), 

~3ij~(Z) = ~@/j~b(Z), "cij~b(Z)= ~zTqS(Z). (III.22) 
Let Aij , Oij, and z-ij denote the hermitian adjoints of Aij , Oij , and 7Jij , respectively. 
Now we define the operator 

d := ~ ; J g u ,  (III.23) 
ij 

and let d* := S i j ~ j i j  denote its adjoint. 
The two operators 

Q1 : = d + d * ,  

Q2 := i (d  - d * ) ,  (1II.24) 
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are defined on ~ and symmetric. Let No and N1 denote the operators on ~ ,  

No : :  ~ f f i j a i j ,  
td 

N1 := ~-~Zijzij, (Ili.25) 
t,J 

Note that on monomials these operators have the form 

No(z O : =  1/21z O , 

Nl(zUO ~) := Ict[z~O~, (III.26) 

where # E 2~ n and ~ E {0, 1} mn are multi-indices and I#1 =/21 + - . .  +/2m,. Let H 
be the total number operator, 

H := No + N1. (III.27) 

Then No is symmetric and 3/1 is bounded and self-adjoint. 

Proposition III.4. As operators on ~ ,  

Q2 = Q2 = H .  (II1.28) 

Proof Using Lemma 111.2 we have 

d* = /2~'~'Ckj(1 m --  Z Z * ) k i ~ i j  
i,j,k 

Thus, 

and 

= ~ajkz jk .  (III.29) 
j ,k 

Q1 = ~Zjkc3jk + ajkzjk, (111.30) 
j ,k  

Q2 = ~ [ZijOij, aklzkl] 
i,j,k,1 

= E Zij[OiJ ' akl] "ckl ~- f fkl[~ij ,  "Ckl]~ij 
i,j,k,l 

= N1 + N o .  (III.31 ) 

The proof for Q2 is essentially identical. [] 

Proposition 111.5. 
(i) The operators Qj,H, and No are essentially self-adjoint on ~.  

(ii) For any e > 0 , (H + i ) -1 /2  c 12mn+,(~r(Jr 

Proof (i) Let ~b < ~ be a polynomial of degree m. Then IlH~bll ~ Cm k, with 
C independent of k. As a consequence, each q5 E ~ is an analytic vector for H, 
and thus H is essentially self-adjoint on ~ by Nelson's theorem [18]. Since No = 
H - N 1 ,  with N1 bounded, the same is true for No. Finally, Qj is essentially self- 
adjoint on ~ as IIO~ll --< Cmk/2 for all ~b E ~ .  
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(ii) The spectrum of N0 consists of the eigenvalues )~p = p, p = 0, 1,2 . . . .  each 
of which has multiplicity not exceeding 2ran• the number of monomials in zij of 
degree p = O(p ran-1 ). Since N1 is bounded, the claim follows. [] 

The following proposition states that the operators Q1 and Q2 generate an N = 2 
supersymmetry algebra. 

Proposition III.6. As operators on ~ ,  we have the following relations: 

[Q1,6ij] = ~ , i j ,  [Q1,6ij] = -Zij, [Q1, zij] = -aij ,  [Q1, zij] = 6ij, 

[Q2, ffij] = izij ,  [Q2, ~ij] = i~ij, [Q2, Zij] = iaij, [Q2, ~ij] = i f f i j ,  (III.32) 

Furthermore, the operators Qy satisfy the relations: 

[Qj, Qk] = 26jkH . (III.33) 

Proof  We have trivially the following relations: 

[d, aij] = )~ij, 
[d, Zgy] = O, 

[d, ~ij] = 6gj, (III.34) 

In addition, we see using the adjoint of (III.29) that 

[d, ~ij] = 0, (III.35) 

and 
[d, ~ij] = 6ij, (III.36) 

The relations (III.32) follow from (III.34), (III.35), and (III.36). 
Among the relations (III.33), only [Q1, Q2] = 0 needs to be established. This, 

however, is an immediate consequence of (III.24). [] 

As a consequence of the above considerations and of Theorem ILl, we obtain 
the following theorem. 

Theorem III.7. 
(i) The two triples (~,ug~(dg), p, Qj) define 2mn-summable Fredholm modules over 

~-;r( Dm,n ). 
(ii) The correspondin9 chern characters define the same cohomology class in the 

entire cyclic cohomology o f  ~(Dm~)  I. 

IV. The Chern Characters 

1V.A. Let d p~ be the subalgebra of ~-~(Dm, n) consisting of polynomials in the 
Toeplitz operators. Clearly, an element of a C d p~ has a representation by an in- 
tegral kernel: 

aO(Z) = f a(Z, W)4)(W),  (IV. 1 ) 
~a 

where a(Z, W) is an even function (with respect to the grading) which is holomor- 
phic in Z and depends smoothly on W. In this section we derive explicit expressions 
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for Ch~/~(Qj)(a0 . . . . .  a2k), for aj E ~r and give representations for these function- 
als in terms of multiple Berezin integrals over ~/.  We also consider the special case 
when the aj are Toeplitz operators. 

For the remainder of  this subsection, f denotes a smooth function on Dm,n whose 
first derivatives are bounded. 

Proposition IV.1. For f as above, 

m ~ mT,  Q ~ f )  

i=1 i=1 

~[~jOi~, T~(f )l -F_,)~ij ~ �9 (IV.2) 
i = l  

Proof It is sufficient to prove the first of these identities as the second one follows 
by taking the hermitian conjugate. Consider the commutator: 

m " 0 
~[Zij~ik, T~(f)] = ~  f Oij~--Kr(Z, W)f(w)(o(W)d#r(W) 
i= 1 i= 1 Jtl OZik 

+ :xr(z ,  
i=I ,/.g 

+ ~ fKrfZ,  W)ffw)q~i(~(W)o~ikd#rfW). 
i=IJl 

(iv.3) 

We use 

logdet(Im WW*) -m = rn~(  m vvvv )li lk, 
Ow;k Z=~ 

to rewrite the third term of (IV.3) as 

m E fKr(Z, W)f(w)tlij#lk(I m - WW* )7/1 q~( m)d,lAr(m). 
i,l Jg 

(IV.4) 

Ov.5) 

We make the thj into a derivative using 

m 
log det(Im - WW*) -m = -m~( Im  - W W * ) ~ / l t / i j  �9 

c~hj i=l 
(Iv.6) 

The third term of (IV.3) thus becomes 

m ~ d - ( -  1 )P(~)t=~ ~ f Kr(Z' W)f(w)ff~tk 4(W) ~ l j  #r(W), (IV.7) 

where p(~b) is the parity of ~b, which appears because the t/ was moved past the 
~b. If we integrate by parts, this parity is cancelled and the third term of (IV.3) 
becomes 

" 0 r Z  f ~=-_K ( , W)f(w)ff~lk(o(W)d#r(W) (IV.S) 
l = l J g  Otl lj 

where the derivative strikes only the kernel. Using computations essentially identical 
to (IV.4) and (IV.6), we find that 
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m 

E # l k  Kr(z ,  W)  = W ) .  (IV.9) 
/=1 tllj i=1 ~Wik 

Thus, the third term in (1V.3) cancels the first term, and the proposition 
follows. [] 

Corollary IV.2. With the above definitions, 

[Ol,T~(f)]  = .~i T~ Zij - ~ijTr , (IV.10) 

~ -  Zij + if~ijTr . 
t,J 

Corollary IV.3. There is an inclusion ~pol C ~r(Dm,n) 1. 

IV.B. For t E a~ and a0 . . . .  , an E d p~ bounded, we now consider the expression 

Str{aoal(tl ) . . .  an(tn )e-/~/-/} �9 (IV.11 ) 

As a consequence of (II.6), the supertrace (IV.11) is well defined. Our goal in this 
subsection is to express it as a multiple integral over J/g. The integral representation 
given below has the flavor of a Feynman-Kac representation in Euclidean field 
theory. 

Proposition IV.4. Under the above assumptions, 

Str{a0al ( t l ) . . .  an(tn)e -fill } 

= f ao(e-(~-t")Zn,Zo)al(e-qZo, Z1)a2(e-( t2-q)ZbZ2) . . .  
J ln+l  

. . .  an(e -(t"-t"-I )Zn_bZn)dpr(Zo) . . .  d#r(Zn).  (IV. 12) 

Proof  Using a basis of homogeneous polynomials, we can write (IV.11) as 

~(--  l )P(qS~)(~a, aoal ( q ) . . . an( tn ) ~  )e -fl(de94~). (IV. 13) 
r162 

Now, for t > 0 and a holomorphic function ~b E Ran(e-t/~), we clearly have 

etLr dp(Z) = ~ (e tZ ) ,  (IV.14) 

by the definition of H. This, in turn, implies that 

a(t)C~(Z) = f a(e-tZ,  W)c~(e t W ) d # r ( W )  . (IV.15) 

Using this fact we can rewrite (IV.13) as 
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}-](--1) p(4~) f 4)~(e-flW)ao(W, Zo)al(e-tl Zo, Z1)a2(e-(t2-q)Z1,Z2)... 
C~ Jc'n+2 

.,. an(e-q, -t,-x )Zn-1, Zn )~)c~(et"Zn )d#r( W)d#r(ZO ).. .  d#r(Zn ) 

= ~ f ao(W, Zo)al(e-qZo,Z1)a2(e-(t2-q)ZbZ2)...al(e-(t"-t"-l)Zn-l,Zn) 
ot d(n+2 

• ~ba(et~Zn )~b~(e-fl W)d#r( W)d#~(Zo )... d#r(Zn ). (IV. 16) 

Because 
Kr(z, W) = ~ (~(Z)c~(W) ,  (IV.17) 

(IV.16) reduces to 

f ao(W, Zo)al(e-qZo, Z1)az(e-(tz-q)Z1,Zz)...an(e-(t"-t"-x)Zn-l,Zn) 
Jgn+2 

xKr(e(13-t')Zn, W)dm(W)d#r(Zo)... d#r(Zn) . (IV.! 8) 

We perform the W integration, yielding (IV.12). [] 

We now give the explicit formula for the Chern character. Here as in Sect. II, 
Ch2flk(Qj) denotes the 2k-th component of the Chem character associated with the 
Dirac operator Qj. 

Theorem IV.5. Let fo .. . . .  f2k E C~176 have bounded first derivatives. On 
C~176 define the differential operator 

a := E0/ j  ~_ (IV.19) 
O. ~z ij a z i j  

Then, for j = 1, 2 we have the integral representation: 

Ch~zk(Qj )( Tr(f o ) . . . . .  r~(f  2k ) ) 

2k _ fl 1-IK~(e-~%,Zl+l)  = ( - - 1 ) ( J - 1 ) k f l  - k  f f (~ S n 
[fl j{2k+l /=0 
2k+l 

• fo(ZO):mH=l{Om ~ ~fm(Zm)+(--1)JOm " ~fm(Zm)}2n~=od#r(ln) d2k+ls, 

(IV.Z0) 
where Z2k+l := Zo. 

Proof Start with the definition (II.4). The variables tj are replaced by sj := tj+l - tj. 
We use then the integral representation following directly from Proposition IV.4. 
We apply then Corollary IV.2 to conclude the proof. [] 

V. Fredholm Modules Over Quantized Vector Spaces 

V.A. A complex vector space V ~ C n has a quantum deformation given by a 
Toeplitz tE*-algebra (see [8] and references therein). The perturbed measure on V 

f n 
is defined by d#r(z) := 7~ exp(- rz  �9 Z)d2nz on V, for r > 0, where z �9 Z = ~qzjZj. 
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Let Wr(V) be the Hilbert space of holomorphic functions on V which are square 
integrable with respect to d#r. The Bergman kernel for d#~ on V is 

K~.(z, w) = exp(rz �9 ~). (V.1) 

The Toeplitz algebra 3-7,(V) is the ~*-algebra generated by the Toeplitz operators 
on ~ ( V )  whose symbols are smooth bounded functions on V. Its "generators" 
ai = Tr(zi) and 6i = T~(Yi), 1 < i < n obey the relations 

[6j, ak] = 16jk. (V.2) 
r 

Note that o- and 6 are not bounded, so the algebra Jrr(V) will be generated only 
by certain bounded functions of these operators. This issue will not be important 
here. 

To construct Fredholm modules over J ; (V)  we proceed as in Sect. III. The 
supervector space 5f ~ ~nln is the supersymmetric version of V. The quantum 
deformation of X [5] is based on the Hilbert space Jf,(Y') of superholomor- 
phic functions on X which are square integrable with respect to the measure 
d#~(Z) := ~ e xp ( - rZ  �9 2,)denzd2nO. Here Oi, 1 < i < n denote the fermionic gener- 

ators, Z = (z, 0), and Z -  2 = ~j ( z j~ j  + OjOj). The Bergman kernel for the measure 
d#, on Y" is 

Kr(Z, W) = exp(rZ �9 W). (V.3) 

We denote the algebra generated by super Toeplit z operators on Yg,(X) with 
smooth bounded symbols on Y" by ~'~,(Y'). We define "generators" o- i :-- Tr(zi), 6i := 
Tr(Yi),li := T~(Oi) and Zi := T~(Oi). The operators ai and 6i are not elements of 
~rr(Y'), and they will be interpreted as unbounded operators on ~ ( L r ) .  The gener- 
ators satisfy the relations: 

r 

[~/, ~k] = 0, 

F 

[aj, ak] = [ZJ, Zk] = [aj, ;(k] = 0, (V.4) 

and their hermitian conjugates. 

V.B. We can decompose the Hilbert space ~ ( X )  into odd and even subspaces, 
which are orthogonal. As in Sect. III, we can define a grading preserving *- 
morphism p : 3~,(V)--+ ~ r  We again let ~ C ~ ( X )  denote the dense 
subspace spanned by polynomials in z and 0. For 1 < i _< n we define the opera- 
tor 

~,~(z) = ~ ( z ) ,  (v.5) 

with D o m ( 0 i )  = ~,  and let ~i denote its hermitian adjoint. Let 

d : =  ~ i j a j ,  (V.6) 
J 

with adjoint d*. Then the two operators 
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Q1 := d +d* ,  

Q2 := i (d  - d * ) ,  (V.7) 

are defined on ~ and symmetric. Let No and N1 denote the following operators 
on ~:  

No(z~O ~) := I#lz~O ~ , 

N~(z"O ~) := I~tz~O ~ , (v .8 )  

where # and ~ are multi-indices. No is symmetric, N1 is bounded and self-adjoint, 
and we let H := No + N1. 

Proposition V.1. As operators on ~ ,  

Q? = 02 z = H .  (V.9) 

In other words, H is the Laplace operator corresponding to both Ol and Q2. 

Proof  We make use of the orthonormal basis for ~ ( Y ' )  [5], 

(rl/*l+l~[ ~ 1/2 
~b,,~(Z) := k , - - ~ !  J z~O~' (V.IO) 

where p! = #l] .../~.[ and 0 = is ordered 071 ...0~ n. We easily derive 

= [(/'9 + 1)/r]l/Z~p,+lj,~, 

gj(Ou,~ = (flj/r)l/2 (O,-lj.~ . 

zjq~;.~ = (-- 1){Zk<J c~k} (1 -- ~j)r-1/2~;.~+l j . 

~j4)#,~ = (#jr )l/2 0#_lj,~ , 

~bu, = = [(& + 1 )r] 1/2 qS/t +lj,a , (V.  11) 

where lj is the multi-index with 1 in the j-th place and zeroes elsewhere. We 
compute using (V.I 1): 

Q2 = [d,d*] 

= ~{z t~k[a l ,  ~k] + [z~,;?d&~t} 
k,t 

=N1 + N o ,  [] 

for j =  1,2. 

Proposition V.2. 
(i) The operators Qy, H and No are essentially self-adjoint on ~ .  

(ii) For any ~ > O,(H + 1 )  -1/2 E Izn+~(~r(~r)). 

(v .12)  
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Proof The proof (i) follows that of Proposition III. 5 (i). For (ii) we observe that 
the norm 

II(H + I)-~/21122,+~ = y~.(1 + I~l + I~1) -t-=/= 

< ny~.(1 + I#l) -l-~/2 , (v.13) 

is finite for all e > 0 precisely when l = n. [] 

The following proposition states that the operators Qj with j = 1, 2 generate 
an N = 2 supersymmetry algebra. 

Proposition V.3. As operators on ~,  we have the followin9 relations: 

[QI,aj] = gj, [Ol, #j] = -Zj, [01,Zj] = --~rj, [ Q 1 , z j ]  = ~j,  

[O2, o-j] = izj, [Q2 ,# j ]  = izj,  [Q2,zj] = iaj, [ O 2 , z j ]  = i6 j .  ( v . 1 4 )  

Furthermore, the operators Qj satisfy 

[Oj, Qk] = 26jkH . (V.15) 

Proof These are easily derived from (V.11). [] 

Following the arguments of Theorem III.7 we establish the following result. 

Theorem V.4. 
(i) The two triples ( ~t~( Rc),p, Qj) define 2n-summable Fredholm modules over 

~(v) .  
(ii) The correspondin9 Chern characters define the same cohomology class in the 

entire cyclic cohomology of 37r(V) 1. 

V.C. We now proceed to find explicit expressions for the Chern characters, follow- 
ing the approach of  Sect. IV. 

Proposition V.5. For f E C~176 bounded with bounded first derivative, we have 
the relations 

0 
[Zj, Vr(f)] = 0 ,  (V. 16) 

and their complex conjugates. 

Proof The second property follows immediately from the factorization 

d#r(Z)  = exp( - rz  �9 T) exp( - r0  �9 O)dZnzdZnO. (V.17) 

To prove the first we evaluate 

Oj Tr(f)cb(z) = f O-~-Kr(Z, W)f(w)(9(W)d#r(W) 
~c 8zj 

= rfffgKr(Z, W)f(w)c~(W)d~tr(W). (V. 18) 
~e 
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Tr(f)3yO(Z) = r Kr(Z' W ) f ( w )  ~---~j 4)( W)d#r(W) 

= r fKr(Z,  W)f(w)e)(W)ffgd#r (W) 

- f Kr(Z, W) ~ j f (w)c~(W)dk tr (W)  , (V.19) 

using an integration by parts. This completes the proof. [] 

Corollary V.6. For f E Coo(V) bounded with bounded first derivatives, we have 
the relations 

J 

] 

KD. For t E O-~m and ao . . . . .  am E ~pol, we form the supertrace 

Str { aoal ( tl ) . . . am( tm )e-BH } , (V.21) 

which is well-defined because of (II.6). 

Proposition V.7. Under the above assumptions, 

Str{aoal(h ) . . .  an(tn)e -llI-t } 

= f ao(e-qZo, Z1)affe-(t2-t')Z1,Zz).. .an(e-(t"-t"-l)Zn-l,Zn) 
,~'n + l 

xKr (e-(~-t")Zn, Zo )d#r (Z0)... d#r(Zn ). (V~22) 

Proof Using the basis (V.10), we can write (V.21) as 

~ ( -  1)l~l ( (~u,~, aoal ( tl ) . . .  am( tm )(a~,~ )e -~(M+N ) . (V.23) 
fl,o: 

As the basis again consists o f  monomials,' the proof follows that of Proposition 
IV.4. [] 

At this point it becomes straightforward to evaluate the Chem character asso- 
ciated td Qj on general elements of d p~ However, as this essentially repeats the 
statement of Theorem IV.5, we will not write the result. We confine ourselves to 
writing the integral representation for the functional evaluated on Toeplitz operators. 

Theorem V.8. Let f o . . . . .  f 2k E C~176 have bounded first derivatives. On C ~  ( dg ) 
define the differential operator 

c9 c~ (V.24) 0 �9 ~z := Y'Oi 
"7" 
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Then, f o r  j = 1, 2, 

Ch~2k(Qj )( T r ( f  o ), . . . , T ~ ( f  2k ) ) 

(2 0 =(--1)U-1)kfl -k f f ~ sn--fl I-[Kr(e-S'Zl,Zl+l) 
r# ~2k+1 l=0 
"2k+l 

• fo(zo) ]--[ Ore" fm(Zm)+( - -1 ) JOm �9 f~ (Zm)  d#~(Zn)d2~+ls,  
m=l  

(V.25) 
where Z2k+l : =  Zo. 
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