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1 Statement of the problem
We construct a family of Green’s functions GX (τ, x) for a forward following the CEV
dynamics. Specifically, we consider the initial value problem:

∂

∂τ
GX (τ, x) =

1
2

b (x)2
∂2

∂x2
GX (τ, x) ,

GX (0, x) = δX (x) ,

(1)

where δX (x) = δ (x−X) denotes Dirac’s delta supported at X . This is actually the
terminal value problem for the backward Kolmogorov equation written in terms of the
time variable τ = T − t. The function b (x) has the form1:

b (x) = σxβ , β < 1. (2)

We impose the natural boundary condition:

GX (τ, x) → 0, as x →∞. (3)

In addition, at x = 0, we impose the following family of boundary conditions (the
Robin problem [2]):

∂

∂x
GX (τ, x) + µGX (τ, x)

∣∣∣
x=0

= 0. (4)

This reduces to the reflecting (Neumann) problem for µ = 0, and the absorbing (Dirich-
let) problem for µ → ∞. It is these two boundary value problems that we consider in
this manuscript.

Taking the Laplace transform of GX (τ, x),

GX (τ, x) =
∫ ∞

0

e−λτg (λ, x) dλ, (5)

1Peter Carr informed me that the restriction β ≥ 0 is not necessary
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we find that
1
2

σ2x2βg′′ + λg = 0. (6)

Simple algebra shows that g can be expressed as

g (λ, x) =
√

x u

(
2ν
√

2λ

σ
x

1
2ν

)
, (7)

where
ν =

1
2 (1− β)

, i.e. ν > 0, (8)

and where u (z) satisfies Bessel’s equation [4]:

u′′ +
1
z

u′ +
(

1− ν2

z2

)
u = 0. (9)

Now (see e.g. [5]), any solution to Bessel’s equation is a linear combination of
Bessel’s functions Jν (z) and Yν (z) of the first and second kind, respectively:

u (z) = AνJν (z) + BνYν (z) . (10)

Recall (we refer to [4] for details) that Jν (z) is defined by the series

Jν (z) =
∑

k≥0

(−1)k

k! Γ (ν + k + 1)

(z

2

)2k+ν

, (11)

and

Yν (z) =
Jν (z) cos (νπ)− J−ν (z)

sin (νπ)
. (12)

We shall determine the constants Aν and Bν so that all the conditions imposed on the
solution are satisfied. Using (11) and (12) as well as the well known properties of the
gamma function we observe that, as x → 0,

g (λ, x) ∼ 1
Γ (ν + 1)

(
ν
√

2λ

σ

)ν (
Aν (λ) + cot (νπ) Bν (λ)

)
x

−Bν (λ)
Γ (ν)

π

(
σ

ν
√

2λ

)ν (
1 +

2νλ

σ2
x

1
ν

)
.

(13)

2 Dirichlet boundary condition
Let us start with the Dirichlet problem. Since from (13),

g (λ, 0) = −Bν (λ)
Γ (ν)

π

(
σ

ν
√

2λ

)ν

, (14)
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we infer that the Dirichlet problem has a solution for all values of ν. Furthermore, we
have Bν (λ) = 0, and thus

g (λ, x) = Aν (λ)
√

x Jν

(
2ν
√

2λ

σ
x

1
2ν

)
, (15)

and we need to determine Aν (λ).
In order to do this recall first that the Hankel transform (see e.g. [1]) Hνf of a

function f is given by

(Hνf) (p) =
∫ ∞

0

f (x)Jν (px) x dx. (16)

Its key property is that

f (x) =
∫ ∞

0

(Hνf) (p)Jν (px) p dp. (17)

In particular, note that
(HνδX) (p) = XJν (pX) . (18)

As a consequence, we get the following expression for Aν (λ):

Aν (λ) =
2ν

σ2
X

1
ν− 3

2 Jν

(
2ν
√

2λ

σ
X

1
2ν

)
. (19)

Using the identity [4]:
∫ ∞

0

e−τp2
Jν (ap) Jν (bp) p dp =

1
2τ

exp
(
−a2 + b2

4τ

)
Iν

(
ab

2τ

)
, (20)

we finally obtain the following explicit representation for the Dirichlet Green’s function
GD

X (τ, x):

GD
X (τ, x) =

(
xX1−4β

)1/2

(1− β) σ2τ

× exp

(
−x2(1−β) + X2(1−β)

2 (1− β)2 σ2τ

)
Iν

(
(xX)1−β

(1− β)2 σ2τ

)
.

(21)

Recall that the non-central χ2 distribution with r degrees of freedom and the non-
centrality parameter λ is given by the following probability density distribution:

p (x; r, λ) =
1
2

(x

λ

)(r−2)/4

exp
(
−x + λ

2

)
I(r−2)/2

(√
λx

)
, (22)

and thus the Dirichlet Green’s function can be written as

GD
X (τ, x) =

4νxX1/ν−2

σ2τ
p

(
4ν2X1/ν

σ2τ
; 2ν + 2,

4ν2x1/ν

σ2τ

)
. (23)
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Note that the total mass of GD
X (τ, x) is indeed less than one, meaning that there is a

nonzero probability of absorption at zero. Using the series expansion [4]:

Iν (z) =
∑

k≥0

1
k! Γ (ν + k + 1)

(z

2

)2k+ν

, (24)

we readily find that
∫ ∞

0

GD
X (τ, x) dX = 1− 1

Γ (ν)
Γ

(
ν,

2ν2x1/ν

σ2τ

)
, (25)

where

Γ (ν, x) =
∫ ∞

x

tν−1e−tdt (26)

is the complementary incomplete gamma function [5]. The quantity

1
Γ (ν)

Γ
(

ν,
2ν2x1/ν

σ2τ

)
(27)

is the probability of absorption at zero. For example, in the square root process case,
i.e. ν = 1, that probability equals exp

(− 2x
σ2τ

)
.

We shall now follow [3] in order to express the option pricing function in terms of
the cumulative noncentral χ2 distribution function:

χ2 (x; r, λ) =
∫ x

0

p (y; r, λ) dy. (28)

The pricing function of a call struck at c is given by the integral
∫ ∞

0

max(X − c, 0) GD
X (τ, x) dX

=
∫ ∞

c

XGD
X (τ, x) dX − c

∫ ∞

c

GD
X (τ, x) dX.

(29)

The first term on the right hand side of (29) is easy to calculate: after substituting

z =
4ν2X1/ν

σ2τ
(30)

we find that it evaluates to

x

(
1− χ2

(
4ν2c1/ν

σ2τ
; 2ν + 2,

4ν2x1/ν

σ2τ

))
. (31)

In order to calculate the second term on the right hand side of (29), we shall first
establish the following symmetry property of the noncentral χ2 distribution:

∫ ∞

x

p (y; r − 2, λ) dy +
∫ ∞

λ

p (x; r, µ) dµ = 1. (32)
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Indeed, consider the function:

ϕ (λ) =
∫ ∞

x

p (y; r − 2, λ) dy +
∫ ∞

λ

p (x; r, µ) dµ.

From (24),
ϕ (λ) → 1, as λ → 0.

On the other hand, we verify readily that

∂

∂x
p (x; r, λ) =

1
2
(− p (x; r, λ) + p (x; r − 2, λ)

)
,

∂

∂λ
p (x; r, λ) =

1
2
(− p (x; r, λ) + p (x; r + 2, λ)

)
,

and thus for all positive λ,

d

dλ
ϕ (λ) =

∫ ∞

x

∂

∂λ
p (y; r − 2, λ) dy − p (x; r, λ)

= −
∫ ∞

x

∂

∂y
p (y; r, λ) dy − p (x; r, λ)

= 0.

Consequently, ϕ (λ) = 1, as claimed.
Now, introducing the notation

λ =
4ν2x1/ν

σ2τ
,

q =
4ν2c1/ν

σ2τ
,

and using (32), we find that
∫ ∞

c

GD
X (τ, x) dX =

∫ ∞

q

(
λ

z

)ν

p (z; 2ν + 2, λ) dz

=
∫ ∞

q

p (λ; 2ν + 2, z) dz

= 1−
∫ ∞

λ

p (z; 2ν, q) dz

=
∫ λ

0

p (z; 2ν, q) dz.

Putting everything together we obtain the following explicit representation for the
pricing function of a call struck at c:

VD
call (τ, x) = x

(
1− χ2

(
4ν2c1/ν

σ2τ
; 2ν + 2,

4ν2x1/ν

σ2τ

))

− cχ2

(
4ν2x1/ν

σ2τ
; 2ν,

4ν2c1/ν

σ2τ

)
.

(33)
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From the put call parity, the pricing function of a put struck at c is:

VD
put (τ, x) = xχ2

(
4ν2c1/ν

σ2τ
; 2ν + 2,

4ν2x1/ν

σ2τ

)

− c

(
1− χ2

(
4ν2x1/ν

σ2τ
; 2ν,

4ν2c1/ν

σ2τ

))
.

(34)

3 Neumann boundary condition
Let us now turn to the Neumann problem. Since, as x → 0,

∂

∂x
g (λ, x) ∼ 1

Γ (ν + 1)

(
ν
√

2λ

σ

)ν (
Aν (λ) + cot (νπ)Bν (λ)

)

−Bν (λ)
2λΓ (ν)

σ2π

(
σ

ν
√

2λ

)ν

x
1
ν−1 ,

(35)

we conclude that the Neumann problem has a solution if 1/ν − 1 ≥ 0. Equivalently,
the Neumann problem has a solution if

β ≥ 1
2

. (36)

Assume first that ν < 1. The coefficients Aν and Bν must then obey the relation:

Aν (λ) = −Bν (λ) cot (νπ) , (37)

and thus, as a consequence of (12)

u (z) = Bν (− cot (νπ)Jν (z) + Yν (z))

= −Bν
1

sin (νπ)
J−ν (z) .

(38)

This implies that g (λ, x) is given by

g (λ, x) = −Bν (λ)
1

sin (νπ)
√

xJ−ν

(
2ν
√

2λ

σ
x

1
2ν

)
. (39)

The computation follows now the same outline as in the Dirichlet case. Using the
technique of Hankel transforms, we find that the Neumann Green’s function GN

X (τ, x)
is given by

GN
X (τ, x) =

(
xX1−4β

)1/2

(1− β) σ2τ

× exp

(
−x2(1−β) + X2(1−β)

2 (1− β)2 σ2τ

)
I−ν

(
(xX)1−β

(1− β)2 σ2τ

) (40)
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or, equivalently,

GN
X (τ, x) =

4νX1/ν−1

σ2τ
p

(
4ν2X1/ν

σ2τ
; −2ν + 2,

4ν2x1/ν

σ2τ

)
. (41)

This is a bona fide probability distribution of X; a straightforward calculation shows
that ∫ ∞

0

GN
X (τ, x) dX = 1. (42)

Finally, the pricing functions with Neumann boundary conditions at zero are given
by

VN
call (τ, x) = xχ2

(
4ν2c1/ν

σ2τ
; −2ν,

4ν2x1/ν

σ2τ

)

− c

(
1− χ2

(
4ν2x1/ν

σ2τ
; −2ν + 2,

4ν2c1/ν

σ2τ

))
,

(43)

and

VN
put (τ, x) = x

(
1− χ2

(
4ν2c1/ν

σ2τ
; −2ν,

4ν2x1/ν

σ2τ

))

− cχ2

(
4ν2x1/ν

σ2τ
; −2ν + 2,

4ν2c1/ν

σ2τ

)
.

(44)
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