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Fixed income markets

Debt and debt related markets, also known as fixed income markets, account for
the lion share of the world’s financial markets.

Instruments trading in these markets fall into the categories of cash instruments,
or bonds, and derivative instruments, such as interest rate swaps, bond futures
and credit default swaps.

Bonds are debt instruments issued by various entities (such as sovereigns,
corporations, municipalities, US Government Sponsored Enterprizes, etc), with
the purposes of raising funds in the capital markets.

Derivatives are synthetic instruments which extract specific features of
commonly traded cash instruments.

Depending on their purpose, fixed income instruments may exhibit very complex
risk profiles. The value of a fixed income instrument may depend on the level
and term structure of interest rates, credit characteristics of the underlying entity,
foreign exchange levels, or prepayment speeds of the collateral pool of loans.

In these lectures we focus on modeling volatility of interest rate derivatives and
its implications for quantifying risk inherent to these instruments.

A. Lesniewski Interest Rate Volatility



Linear interest rate derivatives
Options on LIBOR based instruments

Empirical dynamics of the ATM swaption matrix

LIBOR and OIS

Like all other financial markets, fixed income markets fluctuate, and the main
driver of this variability is the current perception of future interest rates.

Market participants have adopted the convention that a rally refers to falling
interest rates, while a sell off refers to rising rates.

Each fixed income instrument is a stream of known or contingent cash flows.
Such cash flows are typically periodic, and are computed as a fixed or floating
coupon, applied to a principal (or a notional principal).

Much of the activity in the world capital markets is tied to the LIBOR rates. They
are widely used as benchmarks for short term (overnight to 1 year) interest rates.

A LIBOR (= London Interbank Offered Rate) rate is the interest rate at which
banks offer (at least in principle) unsecured deposits to each other.

Daily fixings of LIBOR are published by Thompson Reuters on behalf of the
British Banking Association (BBA) on each London business day.

These fixings are calculated from the quotes provided by a panel of participating
banks. The details on the composition of the panels and how the fixings are
calculated can found on the web site www.bbalibor.com of the BBA.
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LIBOR based instruments

There is a variety of vanilla LIBOR based derivative instruments that are actively
trading both on exchanges and over the counter (OTC):

(i) LIBOR futures,
(ii) forward rate agreements,
(iii) interest rate swaps.

Each of these instruments serves as an underlying for an option.

Below we summarize the mechanics of these instruments without discussing
their economic significance.
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Forward rate agreements

Forward rate agreements (FRAs) are OTC transactions, i.e. they are arranged
between the counterparties without an involvement of an exchange.

In a FRA transaction, counterparty A agrees to pay counterparty B LIBOR
settling t years from now applied to a specified notional amount (say, $100 mm).
In exchange, counterparty B pays counterparty A a pre-agreed interest rate (say,
3.05%) applied to the same notional.

The contract matures on an anniversary T (say, 3 months) of the settlement
date, and interest is computed on an act/360 day count basis. Anniversary dates
generally follow the modified following business day convention.

FRAs are quoted in terms of the annualized forward interest rate applied to the
accrual period of the transaction.
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Eurodollar futures

Eurodollar futures, known also as the LIBOR futures, are exchange traded
futures contracts on the 3 month LIBOR rate. They trade on the Chicago
Mercantile Exchange, which also clears and settles the trades.

In many ways, Eurodollar futures are similar to FRAs, except that their terms,
such as contract sizes and settlement dates are standardized.

Each of the contracts assumes a notional principal of $1,000,000. Interest on
these contracts is computed on an act/360 day count basis assuming 90 day
accrual period.

In order to make a Eurodollar future resemble a bond, the market has adopted
the convention according to which the forward rate R underlying the contract is
quoted in terms of the “price” defined as

100× (1− R).

For example, if R = 2.32%, the quoted price of the contract is 97.68. Unlike a
FRA, the Eurodollar future quoted price is linear in the underlying rate.
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Eurodollar futures
Ticker Price Open Int Volume
EDZ11 99.355 992506 120246
EDF12 99.415 32443 10324
EDG12 99.385 7623 2849
EDH12 99.355 933497 184855
EDJ12 99.340 426 0
EDK12 99.325 255 0
EDM12 99.310 1063728 158419
EDU12 99.295 801723 151663
EDZ12 99.290 796494 146512
EDH13 99.300 753118 94834
EDM13 99.290 593587 77793
EDU13 99.260 478959 86254
EDZ13 99.190 544016 69813
EDH14 99.085 374708 58436
EDM14 98.930 307804 47007
EDU14 98.760 217849 43230
EDZ15 98.580 182137 36593
EDH16 98.415 137627 21723
EDM16 98.250 111012 17310
EDU16 98.085 76774 18580
EDZ16 97.905 55982 18628
EDH17 97.760 47385 14877
EDM17 97.620 37211 9331
EDU17 97.490 38411 9577

Table: 1. Snapshot of the Eurodollar futures market

A. Lesniewski Interest Rate Volatility



Linear interest rate derivatives
Options on LIBOR based instruments

Empirical dynamics of the ATM swaption matrix

Swaps

A fixed for floating interest rate swap (or simply: a swap) is an OTC transaction in
which two counterparties agree to exchange periodic interest payments on a
pre-specified notional amount.

One counterparty (the fixed payer) agrees to pay periodically the other
counterparty (the fixed receiver) a fixed coupon (say, 3.35% per annum) in
exchange for receiving periodic LIBOR applied to the same notional.

Spot starting swaps based on LIBOR begin on a start date 2 business days from
the current date and mature and pay interest on anniversary dates that use the
same modified following business day conventions as the LIBOR index.

Interest is usually computed on an act/360 day basis on the floating side of the
swap and on 30/360 day basis in the fixed side of the pay. Typically, fixed
payment dates (“coupon dates”) are semiannual (every 6 months), and floating
payment dates are quarterly (every 3 months) to correspond to a 3 month
LIBOR.

In addition to spot starting swaps, forward starting swaps are routinely traded.

In a forward starting swap, the first accrual period can be any business day
beyond spot. Swaps (spot and forward starting) are quoted in terms of the fixed
coupon.
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Swaps

Table 2 below contains a snapshot of the swap rate market. Each rate is the
break even rate on the swap of indicated tenor paying coupon semiannually on
the 30/360 basis, versus receiving 3 month LIBOR.

Tenor Rate (%)
2Y 0.690%
3Y 0.798%
4Y 1.008%
5Y 1.248%
7Y 1.690%

10Y 2.106%
12Y 2.298%
15Y 2.478%
20Y 2.599%
25Y 2.660%
30Y 2.694%

Table: 2. Snapshot of the swap market taken on 12/13/2011
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OIS

In the wake of the 2008 credit crunch, LIBOR’s credibility as a funding rate was
put to question.

Part of the issue is the de facto absence of the interbank unsecured lending
market which raises doubts over the validity of the quotes submitted by the
participating banks to the BBA.

As a result, rates referred to as the OIS rates, linked to the overnight rate
controlled by the local (to the currency) central bank became increasingly
important as benchmark funding rates. OIS stands for overnight indexed swap.

An overnight indexed swap is a fixed for floating interest rate swap where the
floating rate is based on a short term (overnight), daily compounded (rather
quarterly, as in a LIBOR swap) interest rate.

By default, both the fixed and floating legs accrue based on the act/360 basis.
OIS swaps tend to be of short maturity, ranging from a few days to five years.

In the USD market, OIS rates are calculated by reference to daily fed funds
effective rate.
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LIBOR / OIS basis

The LIBOR / OIS spread, defined as the difference between the 3 month LIBOR
and 3 month OIS rates, is an important indicator of stress in the capital markets.

A wider spread is an indication of a decreased willingness to lend by major
banks, while a tighter spread indicates easier availability of credit. The LIBOR /
OIS spread is a gauge of market participants’ view of the credit worthiness of
other financial institutions and the general availability of funds for lending
purposes.

The LIBOR / OIS spread has been historically hovering around 10 basis points.
However, at times of elevated credit stress, the basis between LIBOR and OIS
can be quite volatile.

In the midst of the financial crisis that started in 2007, the spread between
LIBOR and OIS was wildly volatile and peeked at an all-time high of 364 basis
points in October 2008, indicating a severe credit crunch.
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Multi-curve paradigm and valuation of swaps

We now turn to the problem of the valuation of non-contingent (but not
necessarily known) future cash flows. The building blocks required are:

(i) Discount factors, which allow one to calculate present value of cash
received in the future.

(ii) Forward rates, which allow one to make assumptions as to the future
levels of interest rates.

Until 2008, it was common practice to use LIBOR as both the discount rate, i.e.
the interest rate used for calculating the discount factors, as well as the index
rate, i.e. the rate used as the forward rate.

Since then, in the wake of the financial crisis, the industry has been steadily
moving away from this practice, and adopted the multicurve paradigm to swap
valuation.

Since OIS is a better indicator of the costs of funding, it is used for discounting,
while LIBOR is the index rate. It remains to be seen whether the fed funds
effective rate will retain this role in the USD market.
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Zero coupon bonds

A zero coupon bond (or discount bond) is a cash instrument which pays a
predefined principal amount, say $1, at a specified future date. More precisely, a
zero coupon bond is characterized by two dates, the settlement date S which
marks the start of the accrual period, and the maturity date T > S on which the
payment is made. Its value at settlement is thus the present value (abbreviated
PV) of $1 guaranteed to be paid at time T .
In practice we are interested in the value P(t ,S,T ) of the forward zero coupon
bond for any valuation date t ≤ S. It is thus the time t value of zero coupon bond
(whose face value is $1) which settles on the date S years from now and
matures in T years. The forward zero coupon bond P (t ,S,T ) is also called the
(forward) discount factor.
There is a useful no arbitrage relationship involving P(t ,S,T ), namely:

P (t ,S,T ) =
P (t , t ,T )

P (t , t ,S)
. (1)

Throughout these presentations we adopt the following convention. If the
valuation date is today, t = 0, then we denote the price of the zero coupon bond
by P0(S,T ), i.e.

P0(S,T ) ≡ P(0,S,T ). (2)

A. Lesniewski Interest Rate Volatility



Linear interest rate derivatives
Options on LIBOR based instruments

Empirical dynamics of the ATM swaption matrix

Forward rates

The OIS forward rate F (t ,S,T ) for start S and maturity T , as observed at time t ,
is defined as

F (t ,S,T ) =
1
δ

( 1
P(t ,S,T )

− 1
)
, (3)

where δ denotes the day count factor for the period [S,T ].

The discount factor P(t ,S,T ) can be expressed in terms of F (t ,S,T ) by means
of the formula:

P(t ,S,T ) =
1

1 + δF (t ,S,T )
.

The LIBOR forward rate for start S and maturity T , as observed at time t , is
denoted by L(t ,S,T ).

The LIBOR / OIS spread B(t ,S,T ) is given by

B(t ,S,T ) = L(t ,S,T )− F (t ,S,T ). (4)
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Forward rates

Discount factors can be expressed in terms of the continuously compounded
instantaneous forward rate f (t , s). For all practical purposes, we can think about
f (t , s) as the forward overnight OIS rate.

In terms of f (t , s),

P(t ,S,T ) = exp
(
−
∫ T

S
f (t , s)ds

)
. (5)

This equation is merely the definition of f (t , s), and expresses the discount factor
as the result of continuous discounting of the value of a dollar between the value
and maturity dates.

Conversely, the instantaneous forward rate can be computed from the discount
factor:

f (t , s) = −
1

P(t ,S,T )

∂P(t ,S,T )

∂T

∣∣∣
T=s

= −
∂

∂T
log P(t ,S,T )

∣∣∣
T=s

.

(6)
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Valuation of swaps
We consider a swap which settles at T0 ≥ 0 and matures at T . We assume that
the notional principal is $1.
Let T c

1 < . . . < T c
nc = T denote the coupon dates of the swap, and let

0 ≤ t ≤ T0 denote the valuation date. The PV of the interest payments on the
fixed leg of a swap is calculated by adding up the PVs of all future cash flows:

Pfix
0 (t) =

nc∑
j=1

αj CP0(t ,T c
j ), (7)

where C is the coupon rate, P0(t ,T c
j ) are the discount factors to the valuation

date, and αj are the day count fractions on the fixed leg.
For example, on a standard USD swap paying semi-annual coupon, the α’s
correspond to the modified following 30/360 business day convention. It is
useful to write this formula as

Pfix
0 (t) = CA0 (t) , (8)

where
A0 (t) =

∑
1≤j≤nc

αj P0(t ,T c
j ), (9)

is the annuity function of the swap.
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Valuation of swaps
Likewise, let T f

1 < . . . < T f
nf

= T denote the LIBOR payment dates of the swap.
The valuation formula for the swap’s floating leg reads then:

Pfloat
0 (t) =

∑
1≤j≤nf

δj Lj P0(t ,T f
j ). (10)

Here
Lj = L0(T f

j−1,T
f
j ) (11)

is the LIBOR forward rate for settlement at T f
j−1, and δj is the day count fraction

applying to the floating leg. In the USD, the payments are quarterly, and the δ’s
correspond to the modified following act/360 business day convention.
The PV of a swap is the difference between the PVs of the fixed and floating legs:

P0 (t) = Pfix
0 (t)− Pfloat

0 (t) .

A break-even (or mid-market) swap has zero PV:

Pfix
0 (t) = Pfloat

0 (t) .

That uniquely determines the break-even swap rate:

S0(T0,T ) =
Pfloat

0 (t)
A0 (t)

. (12)
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Vanilla interest rate options

There are several types of liquidly traded options on interest rates:
(i) Caps / floors: these are options on LIBOR forwards.
(ii) Eurodollar options, which are options on Eurodollar futures.
(iii) Swaptions, which are options on swaps

Below we summarize some basic facts about these instruments and market
conventions for their pricing.
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Caps and floors

Caps and floors are baskets of European calls (called caplets) and puts (called
floorlets) on LIBOR forward rates. They trade over the counter.

Let us consider, for example, a 10 year spot starting cap struck at 2.50%. It
consists of 39 caplets each of which expires on the 3 month anniversary of
today’s date.

A caplet pays

max(current LIBOR fixing− 2.50%, 0)× act/360 day count fraction.

The payment is made at the end of the 3 month period covered by the LIBOR
contract, and follows the modified business day convention.

Notice that the very first period is excluded from the cap: this is because the
current LIBOR fixing is already known and no optionality is left in that period.
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Caps and floors

In addition to spot starting caps and floors, forward starting instruments are
traded.

For example, a 1 year × 5 years (in the market lingo: “1 by 5”) cap struck at
2.50% consists of 16 caplets struck at 2.50%, the first of which matures one year
from today.

The final maturity of the contract is 5 years, meaning that the last caplets matures
4 years and 9 months from today (with appropriate business dates adjustments).

Unlike the case of spot starting caps, the first period is included into the
structure, as the first LIBOR fixing is unknown. Note that the total maturity of the
m × n cap is n years.

The definitions of floors are similar with the understanding that a floorlet pays

max(strike− current LIBOR fixing, 0)× act/360 day count fraction

at the end of the corresponding period.
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Eurodollar options
Eurodollar options are standardized contracts traded at the Merc. These are
short dated American style calls and puts on Eurodollar futures.
At each time, options on the first eight quarterly Eurodollar futures contracts and
on two front serial futures are listed. Their expirations coincide with the maturity
dates of the underlying Eurodollar contracts.
The exchange sets the strikes for the options spaced every 25 basis points (or
12.5 bp for the front contracts). The options are cash settled.

Strike Calls Puts
98.875 0.5325 0.0525
99.000 0.4175 0.0625
99.125 0.3075 0.0775
99.250 0.2025 0.0975
99.375 0.1125 0.1325
99.500 0.0450 0.1900
99.625 0.0100 0.2800
99.750 0.0025 0.3975
99.875 0.0025 0.5200

Table: 3. ED options: March 2012 expirations. Price of the underlying 99.355
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Eurodollar options
In addition to the quarterly and serial contracts, a number of midcurve options
are listed on the Merc. These are American style calls and puts with expirations
between three months and one year on longer dated Eurodollar futures.
Their expirations do not coincide with the maturity on the underlying futures
contracts, which mature one, two, or four years later.
The prices of all Eurodollar options are quoted in ticks.

Strike Calls Puts
98.875 0.5275 0.0925
99.000 0.4200 0.1100
99.125 0.3150 0.1300
99.250 0.2175 0.1575
99.375 0.1275 0.1925
99.500 0.0650 0.2250
99.625 0.0250 0.3400
99.750 0.0075 0.4475
99.875 0.0025 0.5650

Table: 4. ED options: June 2012 expirations. Price of the underlying 99.31
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Swaptions

European swaptions are European calls and puts (in the market lingo they are
called receivers and payers, respectively) on interest rate swaps.

A holder of a payer swaption has the right, upon exercise, to pay fixed coupon on
a swap of contractually defined terms. Likewise, a holder of a receiver swaption
has the right to receive fixed on a swap.

Swaptions are traded over the counter.

For example, a 2.50% 1Y→ 5Y (“1 into 5”) receiver swaption gives the holder
the right to receive 2.50% on a 5 year swap starting in 1 year. More precisely, the
option holder has the right to exercise the option on the 1 year anniversary of
today (with the usual business day convention adjustments) in which case they
enter into a receiver swap starting two business days thereafter.

Similarly, a 3.50% 5Y→ 10Y (“5 into 10”) payer swaption gives the holder the
right to pay 3.50% on a 10 year swap starting in 5 years.

Note that the total maturity of the m→ n swaption is m + n years.

Since a swap can be viewed as a particular basket of underlying LIBOR
forwards, a swaption is an option on a basket of forwards.
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Black’s model
The market quotes the prices on interest rate options is in terms of Black’s
model.
We assume that a forward rate F (t), such as a LIBOR forward or a forward swap
rate (do not confuse with the OIS rate!), follows a driftless lognormal process,

dF (t) = σF (t) dW (t) . (13)

Here W (t) is a Wiener process, and σ is the lognormal volatility.
It is understood here, that we have chosen a numeraire N with the property that,
in the units of that numeraire, F (t) is a tradable asset. The process F (t) is thus
a martingale, and we let Q denote the corresponding measure.
The prices of calls and puts are given by the Black-Scholes formulas:

Pcall(T ,K ,F0, σ) = N (0)
[
F0N(d+)− KN(d−)

]
,

, N (0)Bcall(T ,K ,F0, σ),

Pput(T ,K ,F0, σ) = N (0)
[
− F0N(−d+) + KN(−d−)

]
, N (0)Bput(T ,K ,F0, σ).

(14)

Here, N (x) is the cumulative normal distribution, and

d± =
(

log
F0

K
±

1
2
σ2T

)
/σ
√

T . (15)
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Valuation of caps and floors

A cap is a basket of options on LIBOR forward rates. Consider the OIS forward
rate F (S,T ) spanning the accrual period [S,T ].

Its time t ≤ S value F (t ,S,T ) can be expressed in terms of discount factors:

F (t ,S,T ) =
1
δ

(
P(t , t ,S)

P(t , t ,T )
− 1
)

=
1
δ

P(t , t ,S)− P(t , t ,T )

P(t , t ,T )
.

(16)

The interpretation of this identity is that F (t ,S,T ) is a tradable asset if we use
the zero coupon bond maturing in T years as numeraire.

Indeed, the trade is as follows:
(i) Buy 1/δ face value of the zero coupon bond for maturity S.
(ii) Sell 1/δ face value of the zero coupon bond for maturity T .

The value of this position in the units of P(t , t ,T ) is F (t ,S,T ). An OIS forward
rate can thus be modeled as a martingale! We call the corresponding martingale
measure the T-forward measure and denote it by QT .
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Deterministic basis assumption

Consider now a LIBOR forward L(S,T ) spanning the same accrual period.

Throughout these presentations we assume that the LIBOR / OIS spread is
deterministic (rather than stochastic). This assumption is, clearly, a gross
oversimplification of reality but it has some merits. There are no liquidly trading
options on this spread, and thus calibrating a model with a stochastic spread is
problematic.

From the conceptual point of view, the picture is more transparent with a
deterministic spread. Namely, we know from the discussion above that

L(t ,S,T ) = F (t ,S,T ) + B(t ,S,T )

=
1
δ

P(t , t ,S)− P(t , t ,T ) + δB(t ,S,T )P(t , t ,T )

P(t , t ,T )
.

(17)

This shows that the LIBOR forward is a martingale under the T -forward measure
QT .
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Deterministic basis assumption

This assumption generalizes the deterministic shift extension idea [1] to
multi-curve context (as well as multi-factor modeling). In this framework, the
discount rate and index rate are allowed to be different.

We recognize the fact that fluctuations of the funding rate and index rate do not
generally share the same set of risk factors [5], and the basis spread between
LIBOR rate and OIS rate is, in fact, stochastic [6], [4].

There are, however, valid reasons (in addition to simplicity) that the common set
of risk factors assumption is defensible as a working assumption:

(i) The basis LIBOR / OIS remains positive.
(ii) Liquid volatility products on the basis LIBOR / OIS are not available, and

making the basis spread stochastic results in non-calibrateable and
non-hedgeable parameters.
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Valuation of caps and floors
Choosing, for now, the underlying process to be lognormal (given by (13)), we
conclude that the price of a call on L(S,T ) (or caplet) is given by

Pcaplet(T ,K , L0, σ) = δP0(0,T )Bcall(S,K , L0, σ), (18)

where L0 denotes here today’s value of the forward, namely
L(0,S,T ) = L0(S,T ).
Since a cap is a basket of caplets, its value is the sum of the values of the
constituent caplets:

Pcap =
n∑

j=1

δj Bcall(Tj−1,K , Lj , σj )P0(0,Tj ), (19)

where δj is the day count fraction applying to the accrual period starting at Tj−1
and ending at Tj , and Lj is the LIBOR forward rate for that period.
Notice that, in the formula above, the date Tj−1 has to be adjusted to accurately
reflect the expiration date of the option (2 business days before the start of the
accrual period). Similarly, the value of a floor is

Pfloor =
n∑

j=1

δj Bput(Tj−1,K , Lj , σj )P0(0,Tj ). (20)
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Valuation of swaptions

Consider a swap that settles at T0 and matures at T . Let S(t ,T0,T ) denote the
corresponding (break-even) forward swap rate observed at time t < T0.
We know from the discussion above that the forward swap rate is given by

S(t ,T0,T ) =

∑
1≤j≤nf

δj Lj P(t ,Tval,T f
j )

A(t ,Tval,T0,T )
, (21)

where Tval ≤ T0 is the valuation date of the swap.
Here, Bj is the LIBOR / OIS spread, and A(t ,Tval,T0,T ) is the forward annuity
function:

A(t ,Tval,T0,T ) =
∑

1≤j≤nc

αj P(t ,Tval,T c
j ). (22)

We can write S(t ,T0,T ) as

S(t ,T0,T ) =
P(t , t ,T0)− P(t , t ,T ) +

∑
1≤j≤nf

δj Bj P(t , t ,T f
j )

A(t , t ,T0,T )
. (23)

The forward annuity function A(t , t ,T0,T ) is the time t present value of an
annuity paying $1 on the dates T c

1 , . . . ,T
c
nc , as observed at t .
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Valuation of swaptions
The interpretation of (23) is that S(t ,T0,T ) is a tradable asset if we use the
annuity as numeraire (recall that we are assuming that all the LIBOR / OIS
spreads are deterministic).
Indeed, consider the following trade:

(i) Buy $1 face value of the zero coupon bond for maturity T0.
(ii) Sell $1 face value of the zero coupon bond for maturity T .
(iii) Buy a stream of δj Bj face value zero coupon bonds for each maturity T f

j .
A forward swap rate can thus be modeled as a martingale! The corresponding
martingale measure is called the swap measure.
Choosing, again, the lognormal process (13), we conclude that today’s value of a
receiver and payer swaptions are given by

Prec = A0(T0,T )Bput(T0,K ,S0, σ),

Ppay = A0(T0,T )Bcall(T0,K ,S0, σ),
(24)

respectively. Here A0(T0,T ) = A(0, 0,T0,T ), i.e.

A0(T0,T ) =
∑

1≤j≤nc

αj P0(0,T c
j ) (25)

(all discounting is done to today), and S0 is today’s value of the forward swap
rate S0(T0,T ).
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Beyond Black’s model

The basic premise of Black’s model, that σ is independent of T , K , and F0, is not
supported by the interest rates markets.

In fact, option implied volatilities exhibit:
(i) Term structure: At the money volatility depends on the option expiration.
(ii) Smile (or skew): For a given expiration, there is a pronounced dependence

of implied volatilities on the option strike.

These phenomena became pronounced in the mid nineties or so and, in order to
accurately value and risk manage options portfolios, refinements to Black’s
model are necessary.

Modeling term structure of volatility is hard, and not much progress has been
made. We will discuss some empirical facts later in this presentation.

Our main focus will be on modeling volatility smile.
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Local volatility models

A class of models extending Black’s model, called local volatility models, are
specified as follows:

dF (t) = C(t ,F (t))dW (t) , (26)

where C(t ,F ) is a certain effective instantaneous volatility.

The idea is that even though the exact nature of volatility (it could be stochastic)
is unknown, one can, in principle, use the market prices of options in order to
recover the risk neutral probability distribution of the underlying asset.

To see this, note that

d
dK

(F − K )+ =
d

dK

(
(F − K )θ(F − K )

)
= −θ(F − K )− (F − K )δ(F − K )

= −θ(F − K ),

and thus
d2

dK 2
(F − K )+ = δ(F − K ).
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Local volatility models

This implies that

d2

dK 2
EQ[(FT − K )+] = EQ[δ(FT − K )].

Let gT (F ,F0) denote the terminal probability distribution function of the forward
swap rate S. From the equality above we infer that

d2

dK 2
EQ[(FT − K )+] =

∫
δ(F − K )gT (F ,F0)dF .

= gT (K ,F0).

Consequently, the terminal probability distribution can (in principle) be computed
from the option prices [3].
This, in turn, will allow us to find an effective (“local”) specification C(t ,F ) of the
underlying process so that the implied volatilities match the market implied
volatilities.
Empirical studies (see e.g. [2]) show that depending on the level of rates, their
dynamics may be more akin to that of a lognormal model (very low or very high
rates) or a normal model (intermediate range).

A. Lesniewski Interest Rate Volatility



Linear interest rate derivatives
Options on LIBOR based instruments

Empirical dynamics of the ATM swaption matrix

Normal model

The dynamics for the forward rate F (t) in the normal model reads

dF (t) = σdW (t) , (27)

under a suitable choice of numeraire. The parameter σ is appropriately called
the normal volatility.
Prices of European calls and puts are now given by:

Pcall(T ,K ,F0, σ) = N (0)σ
√

T
(
d+N(d+) + N′(d+)

)
,

, N (0)Bcall
n (T ,K ,F0, σ),

Pput(T ,K ,F0, σ) = N (0)σ
√

T
(

d−N (d−) + N′ (d−)
)

, N (0)Bput
n (T ,K ,F0, σ),

(28)

where

d± = ±
F0 − K

σ
√

T
. (29)

The normal model is (in addition to the lognormal model) an important
benchmark in terms of which implied volatilities are quoted.
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CEV model
The CEV model (for ”constant elasticity of variance”), interpolates smoothly
between the normal and lognormal models:

dF (t) = σF (t)β dW (t) , (30)

where β < 1.
In order for the dynamics to be well defined, we have to prevent F (t) from
becoming negative (otherwise F (t)β would turn imaginary!).
To this end, we specify a boundary condition at F = 0. It can be

(i) Dirichlet (absorbing): F |0 = 0. Solution exists for all values of β, or
(ii) Neumann (reflecting): F ′|0 = 0. Solution exists for 1

2 ≤ β < 1.
The CEV model requires solving a terminal value problem for a partial differential
equation, namely the backward Kolmogorov equation:

∂

∂t
B(t , x) +

1
2
σ2x2β ∂2

∂x2
B(t , x) = 0,

B(T , x) =

{
(x − K )+, for a call,
(K − x)+, for a put,

(31)

This equation has to be supplemented by a boundary condition at zero x .
Pricing formulas for the CEV model can be obtained in a closed (albeit
somewhat complicated) form.
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Swaption volatilities

Table 5 contains the December 13, 2011 snapshot of the at the money swaption
market. The rows in the matrix represent the swaption expiration and the
columns represent the tenor of the underlying swap. Each entry in the table
represents the premium of a swaption straddle expressed as a percentage of the
notional on the underlying swap.

1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 0.06% 0.11% 0.18% 0.27% 0.37% 0.67% 1.10% 1.70% 2.17% 2.94%
3M 0.10% 0.20% 0.31% 0.48% 0.68% 1.18% 1.91% 2.90% 3.69% 5.02%
6M 0.14% 0.30% 0.47% 0.74% 1.04% 1.73% 2.71% 4.06% 5.17% 6.97%
1Y 0.21% 0.35% 0.75% 1.16% 1.60% 2.51% 3.82% 5.56% 7.05% 9.45%
2Y 0.40% 0.85% 1.37% 1.94% 2.55% 3.66% 5.26% 7.38% 9.23% 12.20%
3Y 0.62% 1.26% 1.91% 2.58% 3.25% 4.50% 6.26% 8.61% 10.64% 13.77%
4Y 0.78% 1.54% 2.28% 3.02% 3.75% 5.11% 7.00% 9.52% 11.66% 15.11%
5Y 0.88% 1.74% 2.56% 3.35% 4.13% 5.58% 7.57% 10.21% 12.49% 16.15%
7Y 0.97% 1.90% 2.78% 3.63% 4.44% 5.97% 8.09% 10.81% 13.16% 16.86%

10Y 1.01% 1.96% 2.86% 3.71% 4.53% 6.08% 8.22% 10.86% 13.12% 16.71%

Table: 5. ATM swaption prices
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Swaption volatilities

Table 6 contains the implied normal volatilities corresponding to the swaption
prices in Table 5.

1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 30Y
1M 45 46 52 59 66 86 103 112 117 120
3M 50 48 53 61 70 88 104 112 114 120
6M 49 52 56 65 75 92 105 111 115 118
1Y 51 56 65 74 83 96 106 109 113 114
2Y 71 77 84 90 95 101 105 105 107 107
3Y 93 95 99 100 102 104 105 103 105 101
4Y 101 103 106 104 104 105 105 102 102 99
5Y 106 106 109 106 106 105 105 101 101 98
7Y 103 105 106 103 102 101 101 96 95 91
10Y 101 101 100 97 96 95 93 89 88 83

Table: 6. Swaption ATM normal volatilities (in basis points)
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Empirical dynamics of the ATM swaption volatilities

Swaption volatilities exhibit a pronounced term structure both in their
dependence on the expiration as well as in their dependence on the underlying
tenor.

This term structure has a persistent dynamics whose characteristics withstand
market regime switches.

We analyse the dynamics of the ATM swaption volatility matrix using recent
market data, from January 01, 2003 through September 16, 2014. This time
window includes the 2007 / 2008 financial crisis, as well as the pre-crisis and
post-crisis periods. We include swaptions of maturities of 1M, 3M, 6M, 1Y, 2Y,
3Y, 4Y, 5Y, 7Y and 10Y, and underlying tenors ranging from 1Y to 30Y.

Our presentation is based on the work of Shi [7].
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Term structure of ATM swaption volatilities

The term structure of ATM swaption volatilities can be well captured by the
“hump function”:

σ (t) = (at + b)e−λt + µ. (32)

The parameters of this function have clear intuitive meaning:
(i) µ is the volatility at long expiry, as σ(∞) = µ;
(ii) b + µ is the instantaneous volatility level, since σ(0) = b + µ;
(iii) a is the slope at short expiries;
(iv) λ is the rate of exponential decay for long expiries.

The hump function captures well the volatility regimes over the period January
2003 through September 2014, as illustrated by the graphs below.

On these graphs, the black circles indicate market data, and the blue line is the
fitted hump function.
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Term structure of ATM swaption volatilities
Figure 1 shows the shapes of the ATM swaption volatilities during the pre-crisis
period. Note the hump in the short end (around 6M - 2Y).

Figure: 1. Term structure ATM swaption volatilities on September 16, 2004.
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Term structure of ATM swaption volatilities
Figure 2 shows the shapes of the ATM swaption volatilities during the crisis
period. Note the absence of the hump in the short end.

Figure: 2. Term structure ATM swaption volatilities on September 16, 2008.
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Term structure of ATM swaption volatilities
Figure 3 shows the shapes of the ATM swaption volatilities during the post-crisis
period. Note that the hump has reappeared.

Figure: 3. Term structure ATM swaption volatilities on September 16, 2014.
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Term structure of ATM swaption volatilities

In the three graphs below we show the term structure of the parameters a, b, λ, µ
as functions of the underlying tenor T .

Each of the term structures can be fitted to a power function.

We illustrate the dependence of the parameters on T separately for each of the
market regimes: pre-crisis, crisis, and post-crisis.

The values of the parameters are indicated by a green circle while the blue line is
the fitted power function.
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Term structure ATM swaption volatilities

Figure: 4. Tenor dependence of the hump function parameters during the pre-crisis
period.
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Term structure ATM swaption volatilities

Figure: 5. Tenor dependence of the hump function parameters during the crisis period.
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Term structure ATM swaption volatilities

Figure: 6. Tenor dependence of the hump function parameters during the pre-crisis
period.
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PCA of ATM swaption volatilities

In order to identify the factors that drive the dynamics of volatility matrix, we
perform principal component analysis (PCA) on the time series of the ATM
swaption volatility matrices. For this purpose, each swaption volatility matrix is
regarded a vector in a 100-dimensional space.

The analysis was performed over three time windows:
pre-crisis: from January 1, 2003 through December 31, 2003,
crisis: from January 01, 2008 to December 31, 2008,
post-crisis: from June 01, 2013 to May 31, 2014.

Interestingly, the first three principal components (PC1, PC2, and PC3) together
explain over 94% of the variance of the volatility matrix.

The dominant principal component can be interpreted as parallel shift of the
volatility matrix. The second and third components can be identified as tilts along
the tenor and option expiration dimensions, respectively.

This structure is present during each of the three market regimes.
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PCA of ATM swaption volatilities
During the pre-crisis period, 94.5% of the variance are explained by the three
principal components, with PC1 explaining 77.1% of the variance.

Figure: 7. PC1 of ATM swaption volatility in 2003.
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PCA of ATM swaption volatilities

PC2 explains 12.6% of the variance. It corresponds to a tilt along the tenor axis

Figure: 8. PC2 of ATM swaption volatility in 2003.
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PCA of ATM swaption volatilities
PC3 explains 4.8% of the total variance. It corresponds to a tilt of the short dated
volatility.

Figure: 9. PC3 of ATM swaption volatility in 2003.
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PCA of ATM swaption volatilities
The three following graphs (Figures 10, 11, and 12) show a similar picture for the
crisis period. The first three components explain 80.0%, 15.0% and 2.5% of the
total variance, respectively, with a total of 97.5%.

Figure: 10. PC1 of ATM swaption volatility in 2008.
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PCA of ATM swaption volatilities

Figure: 11. PC2 of ATM swaption volatility in 2008.
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PCA of ATM swaption volatilities

Figure: 12. PC3 of ATM swaption volatility in 2008.
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PCA of ATM swaption volatilities
Finally, Figures 13, 14, and 15 pertain to the post-crisis period. The first three
components explain 77.8%, 14.5% and 4.4% of the variance, respectively, with a
total of 96.8%.

Figure: 13. PC1 of ATM swaption volatility from June 2013 to June 2014.
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PCA of ATM swaption volatilities

Figure: 14. PC2 of ATM swaption volatility from June 2013 to June 2014.
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PCA of ATM swaption volatilities

Figure: 15. PC3 of ATM swaption volatility from June 2013 to June 2014.
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