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Arbitrage free approach

The arbitrage free approach to SABR [5] replaces the explicit asymptotic
expressions discussed in Presentation II with an efficient numerical solution of
the model.

The probability density function:

p(t , x , y ; T ,F ,Σ) dF dΣ

= Prob(F < F (T ) < F + dF ,Σ < σ (T ) < Σ + dΣ |F (t) = x , σ (t) = y)
(1)

satisfies the forward Kolmogorov equation:

∂

∂T
p =

1
2

∂2

∂F 2

(
Σ2C(F )2p

)
+ ρα

∂2

∂F∂Σ

(
Σ2C(F )p

)
+

1
2
α2 ∂2

∂Σ2

(
Σ2p

)
, (2)

with the initial condition:

p(t , x , y ; t ,F ,Σ) = δ(F − x)δ(Σ− y). (3)
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Arbitrage free approach

We have the following probability conservation laws:

∫ ∞
0

∂2

∂F∂Σ

(
Σ2C(F )2p

)
dΣ =

∂

∂F

(
Σ2C(F )2p

) ∣∣∣∞
0

= 0,∫ ∞
0

∂2

∂Σ∂Σ

(
Σ2p

)
dσ =

∂

∂Σ

(
Σ2p

) ∣∣∣∞
0

= 0,

(4)

Introduce now the moments:

Q(k)(t , x , y ; T ,F ) =

∫ ∞
0

Σk p(t , x , y ; T ,F ,Σ) dΣ, (5)

for k = 0, 1, . . .. Clearly, Q(0)(t , x , y ; T ,F ) is the terminal probability of F , given
the state (x , y) at time t .

In the following, we will suppress the explicit dependence on (t , x , y) of Q(k).
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Effective forward equation

Integrating the forward Kolmogorov equation over all Σ’s and using the
probability conservation laws (4) yields the following equation:

∂

∂T
Q(0) =

1
2

∂2

∂F 2

(
C(F )2 Q(2)

)
. (6)

The time evolution of the marginal PDF Q(0) depends thus on the second
moment Q(2).

Now, each of the moments Q(k) satisfies the backward Kolmogorov equation:

∂

∂t
Q(k) +

1
2

y2C (x)2 ∂2

∂x2
Q(k) + ραy

∂2

∂x∂y
Q(k) +

1
2
α2y2 ∂2

∂y2
Q(k) = 0,

Q(k)(T , x , y ; T ,F ) = ykδ(F − x).

(7)

Rather than finding an explicit solution to (7), we seek to express Q(2) in terms of
Q(0), in order to close the forward equation (6).
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Effective forward equation
A detailed analysis using asymptotic analysis of the the backward Kolmogorov
equation for Q(0) and Q(2)show that:

Q(2)(T ,F ) = y2(1 + 2ρζ + ζ2) eραyΓ(T−t)Q(0)(T ,F )
(
1 + O(ε3)

)
= y2I(ζ)2 eραyΓ(T−t)Q(0)(T ,F )

(
1 + O(ε3)

)
,

where

ζ =
α

y

∫ F

x

du
C (u)

,

I(ζ) =
√

1 + 2ρζ + ζ2 ,

Γ =
C(F )− C (x)

F − x
.

The marginal PDF Q(0)(T ,F ) satisfies thus the effective forward equation:

∂

∂T
Q(0) =

1
2

∂2

∂F 2

(
y2I(ζ)2 eραyΓ(T−t)C(F )2Q(0)

)
. (8)

The approximation above is accurate through O(ε2), which is the same accuracy
as the original SABR analysis.

A. Lesniewski Interest Rate Volatility



Arbitrage free SABR
Term structure modeling

Stochastic volatility Hull-White model

Option prices

To price an option we thus proceed in the following steps.

We solve numerically the effective forward equation:

∂

∂T
Q(0) =

1
2

∂2

∂F 2

(
y2I(ζ)2 eραyΓ(T−t)C(F )2Q(0)

)
, (9)

with the initial condition:

Q(0)(0,F ) = δ(F − F0), at T = 0. (10)

We assume that 0 < F < Fmax, where Fmax is a suitably chosen maximum value
of the forward (say 10%).

We assume absorbing (Dirichlet) boundary conditions so that F (t) is a
martingale:

Q(0) = 0, at F = 0,

Q(0) = 0, at F = Fmax.
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Numerical solution

The reduced problem is one dimensional.
(i) Its solution is implemented using the moment preserving Crank-Nicolson

scheme.
(ii) Its run time is virtually instantaneous.

Furthermore, the method
(i) guarantees that probability is exactly preserved, and that F (t) is a

martingale: ∫ ∞
0

p(T ,F ) dF = 1,∫ ∞
0

Fp(T ,F ) dF = F0;

(11)

(ii) the maximum principle for parabolic equations guarantees that

p(t ,F ) ≥ 0, for all F . (12)
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Numerical solution

Option prices are given by the integrals:

Pcall = N (0)

∫ ∞
K

(F − K )Q(0)(T ,F ) dF ,

Pput = N (0)

∫ K

0
(K − F )Q(0)(T ,F ) dF ,

(13)

which are calculated numerically.

The PDF is independent of the strike and can be used for pricing options of all
strikes.

The numerical solution is an arbitrage free model.
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Boundary layer

Arbitrage free approach yields nearly the same values as the explicit SABR
formulas σn(T ,K ,F0, σ0, α, β, ρ), except for low strikes and forwards.

Using asymptotic methods to solve the effective forward equation leads to the
same explicit formulas for σn as in the original analysis, unless the forward or
strike is near zero.

Explicit formulas for σn do not hold in a boundary layer around zero.

Boundary layer occurs where a significant fraction of the paths get absorbed at 0
before option expiration.
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Boundary layer effects

At the money vols decrease linearly for small rates (Figure 1).
As F0 decreases, an increasing percentage of the paths reach the boundary prior
to expiration, which reduces the ATM volatility. This creates a “knee” in the graph.

Figure: 1. ATM implied vol for small rates
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Boundary layer effects

Figure 2 shows the smiles σn(K ) obtained for different values of F0, using the
same SABR parameters.

Figure: 2. Smiles for different values of the forward
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Boundary layer effects

The knee is often attributed to market switching from normal to log normal
behavior in very low rate environments.

This is incorrect as, in fact, the decline in volatility is caused solely by the
boundary layer.

This phenomenon has its roots in the fact that the explicit implied volatility
formulas are used to calibrate the SABR model. Calibrating the explicit formulas
to observed smiles can lead to relatively high values of β and/or ρ for low forward
rates.

Since high values of β and ρ increase the volatilities for high strikes, this can
create mispricing for instruments, which are sensitive to high strikes such as
CMS caps / floors and swaps.

Historical analysis shows that for higher forwards, the ATM normal volatilities are
reasonably constant; for low forwards, they decrease linearly with the rate
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Historical market data
Figure 3 compares the historical data to the implied volatility from SABR with
σ0 = 0.65%, α = 0.75, β = 0.25, and ρ = 0.

Figure: 3. Historic swaption vols for 2002 through 2012
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Calibrating the SABR model

σ0 controls the at-the-money vol, α controls the smile, but both ρ and β control
the skew.
Figure 4 shows SABR calibrated to same market data with β chosen to be 0,
1/2, and 1.

Figure: 4. ATM implied vol for small rates
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Calibrating the SABR model

The calibrated parameters used in Figure 4 are summarized in Table 1 below.

σ 31.8% 32.9% 35.1%
β 0 0.5 1
ρ -18.3% -45.5% -64.4%
α 0.777 0.867 0.985

Table: 1. Calibrated SABR parameters corresponding to various choices of β

Although tails are somewhat different, all three sets of parameters fit the actual
market data well within market noise.

As already mentioned in Presentation II, ρ can largely compensate for β.
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Term structure modeling

One of the challenges in modeling interest rates is the existence of a term
structure of interest rates embodied in the shape of the forward curve. Fixed
income instruments typically depend on a segment of the forward curve rather
than a single point.

Pricing such instruments requires thus a model describing a stochastic time
evolution of the entire forward curve.

There exists a large number of term structure models based on different choices
of state variables parameterizing the curve, number of dynamic factors, volatility
smile characteristics, etc. We describe two approaches to term structure
modeling:

(i) Short rate models, in which the stochastic state variable is taken to be the
instantaneous spot rate. Historically, these were the earliest successful
term structure models. We shall focus on the Hull-White model and its
stochastic volatility extensions.

(ii) HJM style models, in which the stochastic state variable is the entire
forward curve. We shall focus on the LMM model and its stochastic
volatility extension LMM-SABR, which are descendants of the HJM
approach.
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Short rate models

Short rates models use the instantaneous spot rate r (t) as the basic state
variable.

In the LIBOR / OIS framework, the short rate is defined as r (t) = f (t , t), where
f (t , s) denotes the instantaneous discount (OIS) rate.

The instantaneous index rate (LIBOR) l (t) is given by r (t) + b (t), where b (t) is
the instantaneous LIBOR / OIS basis.

The stochastic dynamics of the short rate r (t) is driven by a number of random
factors, usually one, two, or three, which are modeled as Brownian motions.
Depending on the number of these stochastic drivers, we refer to the model as
one-, two- or three-factor.

The stochastic differential equations specifying the dynamics are typically stated
under the spot measure.
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Short rate models

In the one-factor case the dynamics has the form

dr (t) = µ(t , r (t))dt + σ(t , r (t))dW (t) , (14)

where µ and σ are suitably chosen drift and diffusion coefficients, and W is the
Brownian motion driving the process.

Various choices of the coefficients µ and σ lead to different dynamics of the
instantaneous rate.

In a multi-factor model the rate r (t) is represented as the sum of a deterministic
component and several stochastic components, each of which describes the
evolution of a stochastic factor. The factors are specified so that the combined
dynamics captures closely observed interest rate curve behavior.
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One-factor Hull-White model

The one factor Hull-White model is given by the following SDE:

dr (t) =
(dµ (t)

dt
+ λ(µ (t)− r (t))

)
dt + σ (t) dW (t) . (15)

Here µ (t) is the time dependent deterministic long term mean, and σ (t) is the
deterministic instantaneous volatility function. We assume that

µ (0) = r0. (16)

Solving (15) (using the method of variation of constants) yields

r (t) = µ (t) +

∫ t

0
e−λ(t−u)σ (u) dW (u) , (17)

and thus

EQ[r (t)] = µ (t) ,

Var[r (t)] =

∫ t

0
e−2λ(t−u)σ (u)2 du.

(18)
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One-factor Hull-White model

Note that (17) implies that

r (t) = µ (t) + (r (s)− µ (s))e−λ(t−s) +

∫ t

s
e−λ(t−u)σ (u) dW (u) , (19)

for any s < t .

The instantaneous 3 month LIBOR rate l (t) is given by

l (t) = r (t) + b (t) , (20)

where b (t) is the basis between the instantaneous LIBOR and OIS rates.

As usual, for simplicity of exposition we assume that the basis curve is given by a
deterministic function rather than a stochastic process.
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Multi-factor Hull-White model

In the multi-factor Hull-White model, the instantaneous rate is represented as the
sum of

(i) the deterministic function µ (t), and
(ii) K stochastic state variables Xj (t) j = 1, . . . ,K . Typically, K = 2.

In other words,
r (t) = µ (t) + X1 (t) + . . .+ XK (t) . (21)

A natural interpretation of these variables is that X1 (t) controls the levels of the
rates, while X2 (t) controls the steepness of the forward curve.
We assume the stochastic dynamics for each of the factors Xj :

dXj (t) = −λj Xj (t) dt + σj (t) dWj (t) , (22)

where σj (t) is the deterministic instantaneous volatility of Xj , and λj is its mean
reversion speed.
The Brownian motions are correlated,

E [dWi (t) dWi (t)] = ρij dt . (23)

In the two-factor case, the correlation coefficient ρ12 is typically a large negative
number (ρ ∼ −0.9) reflecting the fact that steepening curve moves tend to
correlate negatively with parallel moves.
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The zero coupon bond in the Hull-White model
The key to all pricing is the coupon bond P (t ,T ). It is given by the expected
value of the stochastic discount factor,

P(t ,T ) = EQ
t
[
e−

∫ T
t r(u)du], (24)

where the subscript t indicates conditioning on Ft .
Within the Hull-White model this expected value can be computed in closed form!
Let us consider the one-factor case. We proceed as follows:

EQ
t [e−

∫ T
t r(u)du ] = EQ

t [e−
∫ T

t (µ(u)+e−λ(u−t)(r(t)−µ(t))+
∫ u

t e−λ(u−s)σ(s)dW (s))du ]

= e−
∫ T

t µ(u)du−hλ(T−t)(r(t)−µ(t)) EQ
t [e−

∫ T
t

∫ u
t e−λ(u−s)σ(s)dW (s)du ],

where

hλ (t) =
1− e−λt

λ
. (25)

Integrating by parts, we transform the double integral in the exponent into a
single integral∫ T

t

∫ u

t
e−λ(u−s)σ (s) dW (s) du =

∫ T

t
hλ (T − s)σ (s) dW (s) .
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The zero coupon bond in the Hull-White model

Finally, using the fact that

Et

[
e
∫ T

t ϕ(s)dW (s)
]

= e
1
2
∫ T

t ϕ(s)2ds ,

we obtain the following expression for the price of a zero coupon bond:

P(t ,T ) = A(t ,T )e−hλ(T−t)r(t) , (26)

where
A (t ,T ) = e−

∫ T
t µ(s)ds+µ(t)hλ(T−t)+ 1

2
∫ T

t hλ(T−s)2σ(s)2ds . (27)

Generalizing (26) to the multi-factor case is straightforward:

P(t ,T ) = A(t ,T )e
−

∑
j hλj

(T−t)Xj (t)
, (28)

where,

A(t ,T ) = e
−

∫ T
t µ(s)ds+ 1

2
∑

i,j
∫ T

t ρij hλi
(T−s)hλj

(T−s)σi (s)σj (s)ds
. (29)
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Calibration of the Hull-White model

A term structure model has to be calibrated to the market before it can be used
for valuation purposes.

All the free parameters of the model should be assigned values, so that the
model reprices exactly (or close enough) the prices of a selected set of liquid
vanilla instruments.

In the case of the Hull-White model, this amounts to:
(i) Matching the current discount curve.
(ii) Matching the volatilities of selected options.
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Calibration of the Hull-White model

These two tasks have to be performed simultaneously. Note that today’s value
(in the one-factor model) of the discount factor is

P(0,T ) = e−
∫ T

0 µ(s)ds+ 1
2

∫ T
0 hλ(T−s)2σ(s)2ds . (30)

This implies that

−
∂ log P(0,T )

∂T
= µ (T )−

∫ T

0
e−λ(T−s)hλ(T − s)σ (s)2 ds, (31)

and so

µ (t) = f (0, t) +

∫ t

0
e−λ(t−s)hλ(t − s)σ (s)2 ds. (32)

As a result, the curve data (µ (t)) are entangled with the dynamic model data (λ
and σ (t)), and they require joined calibration. This phenomenon is typical of all
short rate models.
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Calibration of the Hull-White model

It is impossible to calibrate the Hull-White model in such a way that the prices of
all caps / floors and swaptions for all expirations, strikes and underlying tenors
are matched.

This is a consequence of:
(i) the volatility dynamics of the Hull-White model (normal, which implies that

its intrinsic smile is inconsistent with the market smile),
(i) the paucity of model parameters available for calibration.

Commonly used calibration strategies are:
(i) Global optimization, suitable for a portfolio.
(ii) Deal specific local calibration or autocalibration, suitable for an individual

instrument.
Global optimization consists in selecting the parameters σj so as to minimize the
objective function

L(σ) =
1
2

∑
all instruments

(
σn(σ)− σn

)2
, (33)

where σn and σn(σ) are the market and model prices of all calibration
instruments, respectively.
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Local calibration

Local calibration consists in selecting a set of instruments (swaptions or caps /
floors) whose risk characteristics match the risk characteristics of a particular
trade. This methodology goes back to [4] and [3].

For example, in order to model a Bermudan swaption (to be discussed later in
the course), one often selects co-terminal swaptions of the same strike (not
necessarily at the money) as calibrating instruments.

Co-terminal swaptions are defined as swaptions whose underlying swaps have
the same final maturities, e.g. 1Y→ 10Y, 2→ 9,. . ., 10→ 1.

Calibration to co-terminal swaptions is close to exact.

In addition to the co-terminal swaptions, other instruments are used to calibrate
the mean reversion speed(s).
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Local calibration

The advantages of an auto-calibrated short rate model are:
(i) The calibrating instruments (OTM swaptions) are repriced exactly to the

market, even though they are typically far from the money.
(ii) Its calibration and run times are fast, making it very suitable for trading

desk usage.

On the other hand, the risk sensitivities of an instrument are calculated based on
the model’s internal (i.e. normal) smile dynamics. These risk sensitivities are
incompatible with the market risk of vanilla options (such as calculated by SABR)
and among each other.

At the portfolio level, this may lead to:
(i) Inaccurate risk aggregation among various instruments.
(ii) Discrepancy between the securities portfolio and the hedging portfolio.
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Stochastic volatility Hull-White model

An alternative to a locally calibrated short rate model is a short rate model that
has a built in stochastic volatility dynamics.
As above, we let r (t) and l (t) denote the instantaneous discount and index
rates, respectively. We assume that these rates evolve around the
time-dependent deterministic functions µ (t) and µ (t) + b (t), but are driven by a
common finite dimensional diffusion processes X (t) = (X1 (t) , . . . ,XK (t)):

r (t) = µ (t) +
∑

1≤j≤K

Xj (t) ,

l (t) = r (t) + b (t) .
(34)

We assume that each Xj (t) is a mean reverting diffusion driven by a Brownian
motion Wj (t), with mean zero:

dXj (t) = −λj Xj (t) dt + σj (t) vj (t) dWj (t) ,

Xj (0) = 0.
(35)

Here, λj is the speed of mean reversion of factor j . The function σj (t) is the
deterministic component of instantaneous volatility of Xj , and the process vj (t) is
its stochastic component.
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Stochastic volatility Hull-White model

We assume that vj (t) follows the lognormal process:

dvj (t) = αj (t) vj (t) dZj (t) ,

vj (0) = 1.
(36)

The correlations between the Brownian motions are given by

dWi (t)dWj (t) = ρij dt ,

dZi (t)dWj (t) = rij dt ,

dZi (t)dZj (t) = ηij dt ,

(37)

where the block correlation matrix

Π =

[
ρ r
rT η

]
(38)

is positive definite.
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Stochastic volatility Hull-White model

The choice of vj (0) = 1 in (36) is no loss of generality, as the value vj (0) can be
multiplicatively absorbed in the deterministic instantaneous function σj (t).

Equation (36) has a closed form solution:

vj (t) = vj (t0) exp
(∫ t

t0
αj (u) dZj (u)−

1
2

∫ t

t0
α2

j (u) du
)

, vj (t0)Ej (t |t0).

(39)

This implies that equation (35) has the following solution:

Xj (t) = Xj (t0)e−λj (t−t0) + vj (t0)

∫ t

t0
e−λj (t−s)σj (s) Ej (s|t0)dWj (s) , (40)

for t ≥ t0.

Recall that the short rates r (t) and l (t) are sums of the Xj ’s and corresponding
deterministic functions.
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Remark

A simpler form of the specification could be considered. Namely, we could
assume that there is only one factor driving the stochastic volatility of the short
rate.

Specifically,

dXj (t) = −λj Xj (t) dt + σj (t) v (t) dWj (t) ,

dv(t) = α(t)v(t)dZ (t),
(41)

where
dWj (t) dZ (t) = rj dt , (42)

and Xj (0) = 0, v (0) = 1.
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Price of a zero coupon bond

Let P(t ,T ) denote the risk neutral price of zero coupon bond defined as:

P(t ,T ) = EQ
t
[
e−

∫ T
t r(s)ds]. (43)

We find that

P(t ,T ) =e
−

∫ T
t µ(s)ds−

∑
j hλj

(T−t)Xj (t)

× EQ
t
[
e
−

∑
j vj (t)

∫ T
t hλj

(T−s)σj (s)Ej (s|t)dWj (s)]
.

(44)

The integral in the exponent inside the expectation involves integration of Ej (s|t)
with respect to the Brownian motion Wj . Since Ej (s|t) is a lognormal process,
the expectation cannot be calculated in closed form (as was the case for the
classic Hull-White model).
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Price of a zero coupon bond

Let us introduce the notation:

E(t ,T ) = EQ[e−∑
j vj (t)

∫ T
t hλj

(T−s)σj (s)Ej (s|t)dWj (s)]
, (45)

so that

P(t ,T ) = e
−

∫ T
t µ(s)ds+µ(t)

∑
j hλj

(T−t)−
∑

j Xj (s)hλj
(T−t)

E(t ,T ). (46)

Notice that ∂/∂T log E(0,T ) is a convexity term that depends on both the
deterministic and stochastic components of volatility.

As a consequence, the initial curve can be expressed in the following way in
terms of E :

f (0, t) = µ (t) +
∂

∂t
log E(0, t). (47)

This formula can be made practical, after an approximation to log E(0, t) is
derived [6].
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