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A construction of the Hermitian symmetric superspaces which are the super- 
manifold analogs of the Cartan domains of type IV is presented herein. Natural 
generalizations of the Jordan triple product and Bergman operator for the su- 
perdomains are defined, and their properties are studied. 

1. INTRODUCTION 

Cartan superdomains are natural &-graded (super)generalizations of Cartan domains. 
The latter arise in the theory of Hermitian symmetric spaces:’ each irreducible Hermitian 
symmetric space of noncompact type is equivalent to a Cartan domain. Cartan domains form 
four infinite series of “classical domains” and two “exceptional domains.” Each Cartan domain 
is a symplectic manifold and thus the phase space of a mechanical system. A general frame- 
work for quantization of all Cartan domains was presented in Ref. 2. 

Explicit constructions of the Cartan superdomains of types I-III (“the matrix superdo- 
mains”) were presented in Ref. 3. This work also contained a general framework for the 
quantization of these domains. It was based on a class of deformed measures on the superdo- 
main which satisfied a positivity property similar to the reflection positivity of Euclidean field 
theory and statistical mechanics. 

We consider in this work a family of homogeneous supermanifolds based on the type IV 
Cartan domains, which we call the Car-tan superdomains of type IV. Our goal is to present an 
explicit construction of these superdomains and to exhibit their properties as analogs of the 
ordinary domains. We base our discussion on the supergeneralizations of the Jordan triple 
product, the Bergman operator, and the Jordan triple determinant. These objects are deter- 
mined by applying the constructions based on ordinary Lie algebras to the appropriate Lie 
superalgebras. We believe that there is a rich theory behind the concept of a super-Jordan triple 
product which should lead to a general theory of Cartan superdomains, just the way the theory 
of ordinary Jordan triple products provides a natural framework for studying the Cartan 
domains4 We should remark here that the type IV superdomains do not satisfy the positivity 
property of Ref. 3, and so their quantization is an open problem. 

The definition of a supermanifold which we adopt in this work is that of Kostant-Berezin- 
Leites,5-7 enhanced by the use of the projective tensor products as in Ref. 8. Recall that a 
smooth supermanifold 4 is a ringed space (4&H,), where M is an ordinary smooth manifold 
(called the base of &), and where 8, is a sheaf of supercommutative algebras (over Pa) 
satisfying the following conditions: 

(i) the quotient sheaf Blcr/[BM,t+ (8M,,)2], where 8,, is the odd part of 8,, is iso- 
morphic to the sheaf of smooth functions on the base M; 

(ii) every point of M has a neighborhood U such that 

8,1 UrP(U) 0 A (lx), (1.1) 
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where A (E) is the Grassmann algebra over a finite-dimensional real vector space E. We let 
C”(d) denote the superalgebra of global sections of ~9~ and refer to its elements as smooth 
functions on &. A set of generators of C”(d) will often be referred as the coordinates of a 
“point on A.” The definition of a complex supermanifold is analogous to the real case. The 
pair (no 1 n t ), where no = dime M, n t = dim, E, is called the (complex) dimension of A. We 
equip each 8,( U) with the usual topology of a Frechet space. Then BM becomes a sheaf of 
nuclear Frechet algebras. A morphism in the category of supermanifolds is a pair (q,p#) 
where qxM+N is a smooth map of the base manifolds and where ~#:bv+q*B~ is a con- 
tinuous map of sheaves of algebras over N (q*BM denotes the direct image of dM under q). 
A direct product &Xx of two supermanjfolds is a prodfct object in the category of super- 
manifolds. Clearly, d XN= (MX N, dw Q ?r6’N), where Q a is the completed projective ten- 
sor product. 

This article is organized as follows. In Sec. II we give a brief review of our conventions for 
superlinear algebra. Section III contains the basic construction of the noncompact type IV 
superdomains, including the super-Harish-Chandra map, the super-Jordan triple, and the 
super-Bergman operators. In Sec. IV we compute the triple determinant and the basic prop- 
erties of these objects. In Sec. V we discuss the alternatives available in defining type IV 
superdomains, involving two possible kinds of involution for the complex conjugation. 

II. SOME SUPERLINEAR ALGEBRA CONVENTIONS 

This article involves a good deal of explicit computations with super-matrices, and so it is 
useful to review here our conventions. For the most part we follow the conventions of Ref. 6. 
For ordinary matrices, which will typically be denoted by lower case Roman letters, we use the 
standard notations of 5 and at to denote the complex conjugate and transpose. Matrices with 
purely odd entries will be denoted by lower case Greek letters, and conjugation and transpo- 
sition will be defined just as for ordinary matrices. Note, however, that 

crp= -f$* (a~)‘= -f&t. (2.1) 

Capital Roman letters will denote super-matrices. We use * to denote the Hermitian adjoint for 
these cases. 

An m 1 n X k 1 I supermatrix has the form 

k I 

A= (2.2) 

where a and b are ordinary matrices and a and p have purely odd entries. If I=0 we will write 
m I n X k for the dimension, and if n =0 the dimension will be m X k I i, i.e., single dimensions 
always refer to an even component. The superanalogs of conjugation and transposition are 
defined as follows: 

z --d 
AC:= s 5 ’ ( ) (2.3) 

A=:= (2.4) 
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Note that T’#l. The Hermitian adjoint of a supermatrix is given by A*:= (AC) T. We use the 
same symbol as for ordinary matrices because the same transformation is performed 

The Berezinian6 of a square supermatrix is defined by the formula 

det(a-ab-‘P) 
det b 

Sometimes we find it convenient to write supermatrices in a nonstandard form 

nlq m 

Y= 

(2.5) 

(2.6) 

(2.7) 

where A, B, C, and D are subsupermatrices. In this case the Berezinian is 

Ber y=det D Ber(A- BD-‘C). (2.8) 

For convenience we state here a formula for the inverse of a (super)matrix which we will 
use frequently. For any ordinary matrix or supermatrix in block form, we have 

(Z E)-l=( (A- BD-‘C)-’ -A-‘B(D-CA-‘B)-’ 

-D-‘C(A-BD-‘C)-’ (D-CA-‘B)-’ (2.9) 

III. EVEN SUPERDOMAINS OF TYPE IV 

In this section we describe the main object of our study, namely, the type IV Cartan 
superdomains. The ordinary n-dimensional Cartan domain of type IV is defined to be the 
following space: 

D,:=(zeMat,t(C):l--z*z>O,l-2z*z+ IZ’z12>O)~S0,(n,2)/SO(n)xS~(2), 
(3.1) 

where the subscript o on SO denotes the identity component. The covering group of Aut ( D,), 
the group of holomorphic automorphisms of D,, is SO(n,2). We will write yGSO(n,2) in 
block form 

n 2 

with a, b, c, and d real matrices of dimensions as indicated, such that 

a’a-c’c=I,, a’b=c’d, d’d-b’b=I,. 

(3.2) 

(3.3) 
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For ZE D, we define an n-vector cl(z) and a two-vector c2(z) by 

C1(z):=z, 

The action of y on D, is 

a61 (4 +M&) 
‘: ‘I--+ (L~)[c~~W+dh(dl - 

(3.4) 

(3.5) 

This action can be understood best in terms of the Harish-Chandra embedding $: D, + @ P ‘+ ‘, 
where C P”+’ is the complex projective space, defined as the composition of maps 

z-t&) + [&I I, 

where 

C(z):= ;:I;; ( 1 
and where [f(z)] denotes the equivalence class of c(z). The first of these maps takes D, into 
the set {~EC”+~: ,$~1-~~{2=0>, which is invariant under the natural action of SO(n,2). 

A type IV Car-tan superdomain is a supermanifold 9 ,, I 4. - *-(De,@), where 8 is thesheaf 
of super-algebras on D, whose space of global sections is 

C=‘(=G&,J:=CYDJ o A (Cq), (3.6) 

where the integer q is even. We organize the standard generators of A ( Cq) into q X 1 matrices 
0={0j} and G={Gj}. The “points” of gnlq are then represented by the supermatrices 

We require that 6j+Gj defines an involution of the first kind (i.e., its square is the identity 
map). The adjective “even” in the section title refers to this property. Observe that gnlq has 
a natural structure of a complex super-manifold. Let Aut ( 9,,Jq) denote the supergroup of 
superholomorphic automorphisms of g n I q. 

The type IV superdomain admits an action of the Lie supergroup SO( n I q,2), which is 
defined as follows. The base manifold is SO(n,2) X Sp(q,R) and the structure sheaf is generated 
by Yjk, 1 (j, k<n + 2 + q, with the following parity assignments: 

0, 
P(Yjk) = 

if l<j,k<n+2 or n+2<j,k<n+2+q, 
1, otherwise (3.8) 

and with the following relations. We write y as a block supermatrix 
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, (3.9) 

where a, b, c, d, and e are even matrices and a, #I, p, and S are odd matrices of the dimensions 
indicated. We require that y be real in the super-matrix sense 

f = y. 

In addition, we have the requirements that 

Ber y= 1 

and that 

y=My = M, 

where 

M= 

and r4 is given by 

( 0 iI 
rq:= -il 

912 ) 0 . 

Note that r=7*=r-‘. Equation (3.12) is equivalent to the following set of relations: 

a’a-c%+a’ra=I,, atb-ctd+atrfl=O, 

a’p -26 + a?e = 0, b’b-d’d+@$= -12, 

b’p-d%+@re=O, -p’p+fSS+e’re=r 

and Eq. (3.10) is equivalent to the relations 

a=& b=&, c=F, d=J, .F=e, 

E=a, p=f$ p=-p, F=-6. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The Hopf algebra structure is defined in the obvious way. 
In order to connect with the framework of ordinary type IV domains, we will find it 

convenient to write y in the nonstandard form 

(3.17) 

where 
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A=(; I), B=(i), C=(c,S), D=d. (3.18) 

In terms of these submatrices, the conditions (3.11)) (3.12), and (3.10) are expressed as 

Ber(A - BD-‘C)det D= 1, 

A=SA-C=C=S, A=SB=C=D, D=D-BTSB=12, (3.19) 

A==A, E=B, cC=C, Dc=D, 

where 

1, 0 s:= o 
i 1 

. r 
4 

(3.20) 

Note that S=P=S-‘. 
To define the action of this supergroup on 9 n I q, we construct the super-Ha&h-Chandra 

embedding. This is a morphism 

(3.21) 

where C P”+l I4 denotes the projective superspace.’ Since SO( n 1 q,2) acts naturally on UT+’ 19, 
we will then define the action of yeSO(nlq,2) on gnlq by the composition of morphisms of 
supermanifolds $-‘oyo$. 

Let g denote the Lie superalgebra of SO (n I q,2). We decompose g = t 8 p, where t is the Lie 
superalgebra of the isotropy subsupergroup of the origin, SO(n I q) xSO(2). An arbitrary 
element xeg is represented by a real matrix 

where AT= -SAS and DT= -D. For yEp we have 

(3.22) 

(3.23) 

We identify the supervector space Cnlq in which 9 nlq k embedded with p by the map p:Z~y, 
where y is of the form (3.23) with B=(Z+Z, i(Z-Z)). 

The superalgebra p is naturally identified with TOQaIq, the tangent space at 0. Thus the 
almost complex structure of g R I ~ acts as a transformation J:@-+p. For y as in Eq. (3.23) this 
J takes B= (b, ,b2) to ( b2, - bl ), corresponding to ZHiZ in the supermanifold. The complex- 
ification pc decomposes into f i eigenspaces of .J, pc= p _ $ p + . There is a canonical isomor- 
phism $r@+, which takesp(Z top+(Z) given by 

B=(Z, iZ). (3.24) 
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The Lie subsuperalgebra j.~+ acts on Cn+‘lq 
choose a base point x~EUY+~~~ 

and C.P+‘lq through the exponential map. We 
such that [x0], the class of x0, is preserved by the action of p- . 

Following the usual convention for ordinary domains,’ we set 

(3.25) 

We now define the Harish-Chandra map as 

W? = [expp+ Wx01 (3.26) 

and we can easily compute its explicit form. The exponential of p+ (Z) has the form 

1 B 
ewp+(Z) = B=S l+$B=SB 

where B=(Z, iZ) (note that BBT=O). Thus 

da) = K(Z) I, 
where 

(3.27) 

(3.28) 

(3.29) 

The inverse of $ is given by 

g1 ~-1’[~l’=(~,i)~2’ (3.30) 

The action of SO(n lq,2) on gnlq by superholomorphic automorphisms is thus given by 

AC,(Z) + BC,(Z) 
Lz”=(l,i)[C~l(Z)+D~2(Z)] * 

(3.31) 

For future reference, we note that 

ACl(Z) +&$2(Z) 
E1(z’)=(l,i)[C{l(Z)+Dg2(Z)] ’ 

(3.32) 
C6, (Z) +%2(Z) 

52(z’)=(l,i)[C{1(Z)+Dg2(Z)] * 

Proposition III.1. The above morphism (3.31) defines a transitive action of SO(n 14~2) on 
G ,, 1 q. Furthermore 

-@~lq=S00(nIq,2)/SO(nlq)xS0(2). (3.33) 

P~Lx-$ Clearly SO( n I q,2) acts transitively on the base of 9,, lq, since it contains the 
subgroup SO(n,2) which acts as the group of holomorphic automorphisms on the base. The 
covering space in Cn+2lq of the image of 9 in C.Pn+‘lq is defined by the algebraic condition 
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{=M{=O. (3.34) 

This is the only condition satisfied by the fermionic generators, and it is clearly preserved under 
the action of SO (n I q,2) because of Eq. (3.12). The relation (3.33) holds because the isotropy 
group of 0 consists of matrices 

(3.35) 

where AC=A, ATSA=S, A’=A, ti= D, and DTD=12. cl 
Since the superdomain is a homogeneous superspace, it is naturally parametrized by ele- 

ments of the group. That is, to each y~S0(n I q,2), we associate the point y(O). If 

(3.36) 

then the relation between the group coordinates and our parametrization in terms of Z takes 
the form 

Z=& B 

where 

(3.37) 

Note that the parametrization is not bijective; group elements which are related by conjugation 
with the isotropy group of zero will correspond to the same point Z. 

Remark: The usual duality between Hermitian symmetric spaces of compact and 
noncompact-type carries over to the case of Hermitian symmetric superspaces. Corresponding 
to the type IV superdomain we have defined is the homogeneous super-manifold 

(3.39) 

which has compact base. Defining 4+ as above, the orbit of x0 under the action of exp( ip+ ) 
generates a super-manifold isomorphic to Eq. (3.39). 

We now discuss the super-Jordan triple product for the type IV Car-tan superdomains. We 
view the Lie superalgebra $I as the space of holomorphic vector fields on gnlq. Under this 
identification, we associate to the element of 4 

where B=(Z+z, i(Z-z)), the super-vector field Xz~p which is the infinitesimal transfor- 
mation determined by the action of expp(Z). From formula (3.3 1) we see that, to the leading 
order, 

expp(Z) Y= 
Y+ B(2 ( Y> 

1 + ( l,i) ~Tsy= Y+ Ed Y> - Y( l,i) BTsY (3.40) 
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and thus 

Xz=Bg2( Y) - Y( l,i)B=SY=Z+ ( YTSY)Z-2(z*SY) Y. (3.41) 

We now follow the procedure familiar from the theory of Car-tan domains.4 From the 
supervector field X, (which is defined by the property that it is equal to Z at the origin), we 
define &( Y):=Z--X,, which is quadratic in Y and antilinear in Z. The super-Jordan triple 
product is defined as the polarization of Qx( Y) 

C~z*Y):=4[Qz(W+Y,-Qez(W>-QzCY>l (3.42) 

[note that Q,( Y) = { YPY)]. Explicitly, from Eq. (3.41) we read off that 

{YPy)=2(z*SY) Y- (YT!TY)Z (3.43) 

and thus 

{Zw*Y-j= (w*sY)z+ ( w*SZ) Y- (ZTSY) iv. (3.44) 

The super-Jordan triple product has the familiar properties of a Jordan triple product: 
Theorem 111.2: { Wz* y) has the following properties: 

{Wz*r)={Yz*w) (3.45) 

and 

~ZyY{UY*w)~-~CuyY{ZY*w))=[{ZY*u)v*W)-~C{Yz*v)*W). (3.46) 

Furthermore, the reduction of { Wz* y) to D, coincides with the ordinary Jordan triple product. 
The proof of this theorem is straightforward and we omit the details. 
Associated with { WPY) is the super-Bergman operator B(Z, W) which is defined by the 

exponential of the adjoint action of the vector field Q, on the constant vector field Y, evaluated 
at the point Z (Ref. 10) 

B(Z, W) Y:=exp adp,( Y) Ix. (3.47) 

Using Eq. (3.46), we find 

B(Z, W) Y= Y-2{Zw*y)+ {Z( WPw)*Z). (3.48) 

From Eq. (3.44) we obtain the explicit expression 

B(Z, W) Y= Y-2( w*SY)Z-2( w*SZ) Y+2(Z=SY) F+ ( W=SW) (Z’SZ) Y-2( W=SW) 

x (YTSZ>Z-2( w*SY) (z=sz> P+4( w*SY) ( w*SZ)Z. (3.49) 

The significance of the Bergman operator for ordinary domains lies in its transformation 
properties. We will demonstrate in the next section that the super-Bergman operator has 
analogous properties. 
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IV. PROPERTIES OF THE SUPER-BERGMAN OPERATOR 

In this section we study the properties of the super-Bergman operator. In particular, we 
compute its Berezinian and find that it has the form N(Z, W)R-q, where N(Z, W), the “su- 
pertriple determinant,” is a polynomial in Z and @‘. We can thus associate to a Cartan 
superdomain its genus p which turns out to be the difference of the genus of the underlying 
Cartan domain (p,,=n) and the “fermionic genus” (p, =q). 

We start with the following computational result. 
Theorem IV.1: If y~S0( n I q,2), then 

Ber y’(Z) = [ ( l,i)(Ccl(Z) + D~2(Z))]-‘“-q’. 

Prooj We compute the matrix of left derivatives at Z=O as follows. We have 

(4.1) 

-& (AZh=A=,k (4.2) 

and 

1 
-& (1,i)CZ B i 

I IO1 k 
=(-l)‘~(l,i)C],[B(~)]k=[B(t)oCITii~ (4-3) 

Thus the derivative of y(Z) at zero is 

with h defined as in Eq. (3.38). 
Since the Berezinian is invariant under the supertranspose, for Ber y’(0) we have 

Ber y’(O)=Ber[&$ B( ~i)(l,i)C]=h”-~BerABer[InIq-~A-lB( !i)(l,i)C] 

1-k (l,i)CA-‘B 
1 ( )I -i 

=5h”-q-‘BerA(l,i)(D-CA-‘B) (4.4) 

From the conditions (3.19) we extract the fact that 

A=S(A- BD-‘C) =S, (4.5) 

which implies that Ber A = Ber (A - B D- ‘C) -’ = det D. We also see directly from Eq. ( 3.12) 
that 

D=C= B=SA. (4.6) 

Using this together with Eq. (3.19), we find that 

D-CA-‘B=(D=)-l. (4.7) 
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Returning to Bq. (4.4), we can now write 

4827 

Ber y’(0) =ih’-q-’ det D( 1,i) ( IIT)-’ 
1 

( 1 
-i . 

Since D is just a 2X2 matrix, it is easy to check by direct computation that 

(4.8) 

which yields 

Ber y’(0) =h”-Q. 

To study the Berezinian at a point W#O, we decompose y= y2eyl, where 

n(Z) =Q y2m = w. 

We write the corresponding matrix blocks as 

(4.13) 

so that 

( 
A2Al+Wl AzBl+&Dl 

‘= &41+&C, CzBl+DzDl . 

Note that Eq. (3.32) and the first condition of Eq. (4.11) imply 

A,iTl(Z) +B,C2’,(Z) =Q 

C,~l(Z) +D1~2‘2(Z) =~ !i 
( ) 

(lti>[C1~1(Z)+Dl~2,(Z)1. (4.14) 

(4.14) and (4.13) and applying the result (4. lo), we can evaluate 

‘I(~>+D~~(Z))I~-~=[(~,~)((C~AI+D~C~)~~(Z)+(C~B~+D~~~)~~Z(Z))I~-~ 

Using Bqs. 

[(WWE 

Y=(G z), yi=(: :), i=1,2 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

=[i (lsi)&( ‘i) 1 n-9 (l,Wl~l(Z> +DMZ)) 

=Ber y;(O) [ ( l,i)(D1-ClA~1B1)~2(Z)]“-q. (4.15) 

The lower right matrix block of yrl, which we denote by El, is given by ( D1 -CIA; ‘B1) -‘. 
Because yrl(0) =Z, we see from Eq. (3.32) that 
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By applying ( I,i) El1 to this relation we find that 

Applying Eq. (4.10) again we reduce Eq. (4.15) to 

Ber y;(O) 
Ber(y;‘)‘(O) 

(4.17) 

(4.18) 

and since by the chain rule r; (Z) (71’ ) ’ (0) = I, we conclude that 

(4.19) 
cl 

We conclude from the preceding theorem that the superholomorphic polynomial 

satisfies 

a,(z>:=(l,i)[C~,(Z)+D~~;(Z>l (4.20) 

Ber y’(Z) =u~(Z)-(‘-~). 

We now define the super-triple determinant 

N(Z,W):=l--2W*SZ+ w*swzTsz. 

Lemma IK2: We have the equality 

(4.21) 

(4.22) 

N(Z WI = -2& w>*M&z), 

where c(Z) is de$ned in Eq. (3.29). 
Prooj We must check that 

(4.23) 

swzm =M w)*&;(z) -(I( w)*st$1(z). 

To this end we compute 

~~(w)*~~(z)=~{(z?sz+1)(w=Sw+1)+(z=sz-l)(w?sw-l)} 

=4( l+ZTSZW~SW). 

Proposition IV.3: For the type IV superdomains 

m(zLy( W>)=aywwwoq w>. 

Proof From Lemma IV.2, Eq. (3.32), and the fact that 

y*W=M, 

we see that 

(4.24) 

(4.25) 
0 

(4.26) 

(4.27) 
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N(Z’, W’) = N(Z, w> 
(l,i>I.C~l(Z)+~~~(Z>l(l,i)[C~~(W)+O~~2(W)l * 

The proposition then follows from Theorem IV. 1. 
Theorem IV.4: Let yZeAut(gnlq) be such that ~~(0) =Z. Then 

B(Z,Z)=y;(O)Sy,‘(O)*S. 

Proo$ If we write 

(4.28) 

0 

(4.29) 

then y will send 0 to Z provided that 

1 
hB -i ( 1 

=z, 

where h is defined in Eq. (3.38). We start by proving that 

1 h 1 -2= 1-2z*SZ+Z=SZZ=SZ. 

Letting 

we have 

jh12=; det D+; ,<T<,d; 

since D is real. Using the relation from (3.19) 

B=SB=D=D-I2 

and (4.31), we see that 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

ZTSZ=-$ (1,-i) BTSB =-$ [di+d:--dz-di-2i(dldz+d3d4)]. (4.36) 

We thus obtain 

z=szz=sz=& [ (d;+d:-d;-d:)2+4(d,dz+d3d4>21 

(4.37) 
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Similarly, we have 

1 
Z*SZ=m (1,i) BTSB (!i)=& [ -‘+ Fd?]’ 

Therefore, 

D+4-2xd;]=&-l, 
i 

which proves the assertion. 
Now for the theorem we have 

(4.38) 

(4.39) 

(4.40) 

Recall here that C=(c-g), B=(j), BT=(b’,@), C’=(JiJ. From the relation (3.12) we 
find 

ASA*=S+ BB*, CSc*= DD*-X2, CSA*= DB*. 

Hence we can rewrite Eq. (4.40) as 

(4.41) 

j+-~ (Qq+ BB=S) -1, B( U+ v*) B’S+1 B 4lhl 4lhI ( l,i> BTS, 

(4.42) 

U:=2 (4.43) 

where 

Observe now that 

=tr(DDT)=tr(DTD)=(l,i)DTD (4.44) 

We can thus use DTD- BTSB=I, to reduce Eq. (4.40) to 

+h,q++-a [B(41h12r,-U-u*)BTS]+-k B 4lhl 

Using the definitions of h and U, we easily compute that 

4~h~212-(U+U*)=41h~2 (p ii)-1 ( li)(l,i)DTD( :)(1,-i) 

-f ( :)(l,-i)DTD( !)(l,i). (4.46) 

This can be rewritten as 
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1 1 
-5 i ( 1,-i>BTSB 

0 
(4.47) 

We can apply Eq. (4.47) to express Eq. (4.45) solely in terms of B and h. After some 
minor simplification this yields 

1 
r,‘(O)Sr,‘(O)*S=~I +A B i (l,-i)BT-B 

IhI ‘lq 2lhl IO 
(!i)oBTs]-& 

XB ( !i)(lsi)+( !i) (l,i)BTSB(:)(l,-i)]BTS 

1 
+mB (4.48) 

From Eq. (4.31) we have 

1 - 
B =2hZ, B 

0 i 
=2hZ (4.49) 

and thus, using this together with Eq. (4.32), we can rewrite Eq. (4.48) solely in terms of Z 

yz’(o)sy,‘(o)*s= (1-2z*sz+z=szz=sz)1,,,+2Zz=s-2zz*s-2z(z=sz)z*s 

-2Z(Z=SZ)Z=S+4Z(z*SZ)~S 

= B(Z,Z). (4.50) 
0 

Using Theorems IV.1 and IV.4 we can immediately conclude the following. 
Theorem IV.% For type IV superdomains 

Ber B(Z, W) =N(Z, Wjneq. (4.51) 

The above results allow us to apply the results of Sec. V of Ref. 3 to construct an invariant 
super-Kiihler structure for the type IV superdomain. We state the result below and refer the 
reader to Ref. 3 for a full treatment. 

Theorem IV.& The form 

az 
WE= 1 (-l)“k+’ dgkAdZI- 1% N(Z,Z) 

kl az&fk 
(4.52) 

is an Aut ( 9 ,, , q) -invarian t super-Ktihler form on 9 n 1 q. 
In this final subsection we exhibit an explicit form for yz. Define the n I q X 2-dimensional 

matrix 
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x:= 1 -zTizzTsz (( 1 -Z’SZ)Z+ (1 -ZTSZ)Z, i( 1 +Z’SZ)Z-i( 1 +ZTSZ)Z) 

(4.53) 

and the 2X2 matrix 

(4.54) 

Choose a matrix A such that AC=A and 

ASA== (s-sxx=s) -’ 

and set 

%=(&A “D”) - 
It is easy to verify that y+SO(n I q,2) once we note that 

1 
XD=,(z,z) l/f (-i(Z-~),Z+z) 

and use the identities 

z=sz=z*sz, z=sz=z*sz. 
The action of yz is given by 

YA WI = 
Z- ( WTSW)z+iN(Z,Z)‘/2AW 

1 -ZTSZWTSW+iN(Z,Z)‘n( 1,i)X’SA W 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

SO that in particular y,(O) =Z. 

V. ODD SUPERDOMAINS OF TYPE IV 

The definition of the type IV superdomain in Sec. III is not unique. While some of the 
choices made in the definition simply amount to different conventions and lead to equivalent 
spaces, there is a fundamental distinction between domains, based on whether complex con- 
jugation is an involution of the first or second kind.6 We have been using an involution of the 
first kind thus far in this article, defining the_even Cartan superdomains of type IV. For such 
an involution the fermionic generators obey 8=8. An involution of the second kind satisfies 
‘e= - 19, i.e., its square is equal to the grading homomorphism r. Odd Cartan superdomains of 
type IV are superdomains with involutions of this type. 

To make clear the various choices which are involved in defining gnlq, in this section we 
will study the situation in general and review the possibilities. 

There are two conditions on group elements which define the group SO( n ( q,2). These are 
the orthogonality property and the reality condition 
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0 0 I, 0 0 
MC m 0 , N= 0 n 0 , (5.2) 

0 0 -I, 1 ( 1 0 0 I* 

where m and n are qxq matrices. The fundamental choice here is whether NNc=I or I. The - 
former choice defines the even Lie superspheres, and the latter the odd. For the bulk of this 
article we have set N=I. 
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y=My=M, y==NyN-? (5.1) 

In order to obtain the correct base group, the matrices A4 and N must have the form 

In terms of the submatrices of N, the choice of an involution of the first kind or of the 
second corresponds to the specification that nE=I, (first kind) or nE= -Iq (second kind). 
The remaining choices for m and n are essentially trivial. That is, they produce spaces which 
are isomorphic under a linear change of variables. The only requirements on m and n are the 
the following consistency conditions: 

m’= -m, m= -n%in, (5.3) 

which are determined by Eq. (5.1) . The first condition is obvious, and the second follows from 
taking the conjugate of the first relation of Eq. (5.1), observing that (~~)~=F”/cl?, and then 
applying the second relation of Eq. (5.1). 

The constructions of this article still apply, with only minor technical changes, for the 
construction of odd Lie superspheres. We can determine the possible forms of N(Z, W) very 
simply. We see from the proof of Proposition IV.3 that N(Z, W) = -2{( W>*Kc(Z), where K 
is the matrix appearing in the relation y*Ky=K. We see from the discussion above that 
K= (NT) -‘M. Thus we have 

- - 
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