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We present a general theory of non-perturbative quantization of a class of
hermitian symmetric supermanifolds. The quantization scheme is based on the
notion of a super Toeplitz operator on a suitable Z,-graded Hilbert spaces of super-
holomorphic functions. The quantized supermanifold arises as the C*-algebra
generated by all such operators. We prove that our quantization framework
reproduces the invariant super Poisson structure on the classical supermanifold as
Planck’s constant tends to zero. 11995 Academic Press, Inc.

I. INTRODUCTION

LLA. In this paper we continue our program of non-perturbative
quantization of Kihler supermanifolds by means of super Toeplitz
operators. This procedure was first applied in [4] to quantize the hyper-
bolic unit superdisc and the flat superspace, and it rested on a Z,-graded
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extension of the results of [13] and [7]. Our goal here is a similar exten-
sion of the results of [6], where a unified scheme for quantization of
Cartan domains was presented. The significance of Cartan domains lies in
their role in classification of Hermitian symmetric spaces of non-compact
type; every (irreducible) such space is equivalent to a Cartan domain. The
Cartan domains fall into four infinite series (called types I, II, III and IV
domains) as well as two exceptional cases. We use the term matrix domains
to refer to Cartan domains of types I-II1. The analysis of [6] relies on the
Jordan triple approach to symmetric domains [16], which provides a
unified framework for domains of all types.

IB. The definition of a supermanifold which we adopt in this work
is that of Konstant-Berezin-Leites {15, 3, 17], enhanced by the use of the
projective tensor products as in [11]. Recall that a smooth supermanifold
.# is a ringed space (M, (,,), where M is an ordinary smooth manifold
(called the base of .#), and where (), is a sheaf of supercommutative
algebras (over R) satisfying the following conditions:

(*) the quotiont sheaf €, /[ Oy, + (Cyy 1) ], Where €, , is the odd
part of ¢,,, is isomorphic to the sheaf of smooth functions on M,

(»*) every point of M has a neighborhood U such that
Oy | U= CHU)® \(E), (L1)

where A(E) is the Grassmann algebra over a finite dimensional real vector
space E.

We let C™(.# ) denote the superalgebra of global sections of ¢/,, and
refer to its elements as smooth functions on .#. The definition of a complex
supermanifold is analogous. The pair (n,|#n,), where ny,=dimc M,
n,=dim¢ E, is called the (complex) dimension of .#. We equip each
(,(U) with the usual topology of a Frechet space. Then (/,, becomes a
sheaf of nuclear Frechet algebras. A morphism in the category of super-
manifolds is a pair (¢, ¢* ) where ¢: M — N is a smooth map of the base
manifolds and where ¢*: ¢y — ¢, 0,, is a continuous map of sheaves of
algebras over N (¢, ,, denotes the direct image of (/,, under ). A direct
product .# x 4" of two supermanifolds is a product object in the category
of supermanifolds. Clearly, .# x A" = (M x N, 0,, ® , (), where &, is the
completed projective tensor product.

IC. In this paper we will be concerned with Poisson super-
manifolds, i.e., supermanifolds for which C*(.# ) is a Poisson superalgebra
[3, 15]. This means that C™ (.# ) is equipped with a bilinear mapping

[} CMYXC™ (MY EC™ (M), (12)
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called a super Poisson bracket, which satisfies the conditions

{fgt=(=1rnrert e f1, (13)
(=D g )+ (=17 (h {f )}

+ (=D {g {h f1} =0, (14)

{fighi=1{fg}h+ (=170 gl f h}, (L5)

where f, g, he¥” (.#), and where p(f)e{0,1} is the parity of the
(homogeneous) element fe C™(.# ). Conditions (1.3) and (1.4) say that
C™(.#) is a Lie superalgebra, while condition (1.5) says that the super
Poisson bracket obeys the super Leibniz rule. Poisson supermanifolds arise
in physics as phase spaces for classical systems involving both bosons and
fermions. In the examples discussed in this paper, .# is supersymplectic (in
fact, super-Kihler), ie., it comes equipped with a supersymplectic (by
which we mean even, closed, and non-degenerate) two-form w.

L.D. We plan to present a systematic approach to hermitian sym-
metric superspaces elsewhere. Here, we take a more modest point of view
and construct explicitly three infinite series of hermitian supermanifolds
which we call the matrix Cartan superdomains of types I, II, and III. Their
key properties are: (i) the base of a Cartan superdomain of type (1)-(1II)
is an ordinary Cartan domain of the corresponding type; (ii) each Cartan
superdomain is a homogeneous supermanifold [14]; i.e., it is a quotient of
a Lie supergroup by an appropriate Lie subsupergroup; (iii} the isotropy
supergroup of zero contains circular symmetry. Non-trivial super versions
of the two exceptional domains seem not to exist. On the other hand, it is
likely that a compilete list of hermitian symmetric superspaces will include
some “exotic” examples without classical counterparts.

The construction of superdomains in this paper can be extended to
superdomains based on the type IV Cartan domains. We present this
construction in a separate paper [5].

LLE. The paper is organized as follows. In Section I we explain the
concept of a super Toeplitz operator and illustrate it by briefly reviewing
the construction of [4]. Section III contains a brief review of some facts
from super linear algebra. In Section IV we present the explicit construc-
tions of the matrix superdomains. In Section V we describe the super
analog of the Jordan triple determinant and give the corresponding
Poisson structures for the Cartan superdomains. The two main results of
this section, namely Theorems V.1 and V.2, are proved in Section VI. In
Section VII we define the Bergman spaces of superholomorphic functions
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on Cartan superdomains and define the corresponding super Toeplitz
operators. We formulate a number of technical results and the two main
results of this paper, which are Theorems VIL.13 and VIIL.14. These
theorems state that the map assigning to a function f the Toeplitz operator
with symbol f'is a (non-perturbative) quantization of the Poisson structure
defined in Section V. Section VIII contains the proof of the positivity
property and some other technical facts from Section V, and Section IX
contains the proofs of Theorems VIL.13 and VIIL.14,

I1. SuPER TOEPLITZ OPERATORS

IILA. A central concept of the present paper is that of a super-
Toeplitz operator. A super-Toeplitz operator is a Z,-graded generalization
of a Toeplitz operator and arises in the following context. Let 2 = (D, ¢0,)
be a complex supermanifold whose base D is a domain in C*. We choose

global odd generators 6,,8,,..,0,,8,, and for a function fe C™ (%) we
write

f(z,0,,0,,..,0,0,)=Y f, ()06, (IL1)

o, 8
where o and § are multi-indices, 6% =07 ---8;", and each f,;€ C*(D). The
complex conjugation of a product of elements of C™(Z) reverses the order:

Tei=gf=(—1)" e g, (112)

We call a function fe C*(2) bounded if each of the components 1,
together with all its derivatives is bounded. The subspace of bounded
smooth functions on & is denoted by B*(2) < C™ (%). We give B*(2) the
topology of a Frechet space, which is defined by the following family of
norms:

Ifil= Y X sup|até:fap(2)l, (11.3)

I+ v <t = 8 ceD

where 120, and u,v are multi-indices of length »n, with |y|:=
#;+ -+ +u,,. The derivatives 0% are defined in the obvious way.

Let du be a volume form on 2 (a “measure”) such that |, du=1. The
integral

(£8):=] T(2)8(Z)du(Z) (114)

el

defines a sesquilinear form on B™ (Z). Unlike the usual forms of this type,
(11.4) does not need to be positive definite (in fact, in the examples that we
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study it is not positive definite). A function fe C* (%) is called super-
holomorphic if 0, f= 04, f=0, for all j and k. The basic assumption about
the measure du is the following positivity property (which resembles very
much the reflection positivity of Euclidean field theory and statistical
mechanics, see e.g. [9]).

The form (11.4) defines an inner product on the subspace
Hol(2) of B*(2) consisting of superholomorphic functions.

We let #(Z, du) denote the (Z,-graded) Hilbert space obtained as the
completion with respect to (I1.4) of Hol(Z) and call it the Bergman space.
Let P.B*(%)— # (Z,du) be a projection map. For fe B* (%) and
de A (Z, du) we set

T(f)¢:=PM(f)9, (IL5)

where M(f) denotes the operator (on B*(2)) of multiplication by /. The
linear operator T(f): #(Z, du) — # (Z, du) is called a super-Toeplitz
operator with symbol f.

ILB. To illustrate the above concepts we briefly review the con-
struction of super Toeplitz operators arising in the quantization of the sim-
plest hyperbolic supermanifold, namely the super unit disc (see [4] for the
details and proofs). This construction will be generalized in Sections TV
and V to arbitrary Cartan superdomains. The super unit disc # = U'!" is
a (1| 1)-dimensional complex supermanifold (U, ¢’,;) whose base is the
open unit disc U={zeC:|z|<1}. We denote the odd generators of
C* (%) by 0 and 0.

We will use a collective notation for the generators of C* (# ), namely
Z :=(z, 0). Consider now the following measure on %. For r= 1 we set

1 -
du(Z):=— (1 — ZZ) ' d*z d?6, (1L6)
n
where ZZ :=|z|>+ 00, d*z=(i/2) dz A dZ is the volume form on U, and
d?0 is the Berezin integral [3] with { #0426 = 1. Using the expansion
(I=1zP=00) "=(1—[z]®) "= (r—1)(1—1|z*) *68, (IL7)
we compute the integral

L, du,(Z)J;—lfU (1= |22y 2d?z=(r— 1)[0l (1=t 2di=1, (IL8)

i.e.,, the measure du, has mass one. Using (I1.7) it is easy to see that the
associated sesquilinear form (I1.4) is not positive definite. On the other
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hand, for ¢ superholomorphic we can write ¢(Z) = ¢o(z) + ¢,(z) 0, so that
for such a function,

-1
(4 8) =" [ o) (1= 1217y &z

1
= [ e a =Py ta, (1L9)
vy

which is clearly positive. The projection map P taking bounded elements of
C™ (%) to # (%, du,) is given by the integral operator

Pf(Z):= jy/ K'(Z, WY f(W)du, (W), (I1.10)

where
K(ZW)y=(1-2ZW) " (TL.11)

is the Bergman kernel for »# (#, du,). The super Toeplitz operator, whose
symbol is a bounded function fe C* (%), is then defined by

(T,(f)¢)Z) 2=L] K'(Z, W) (W) o(W) du, (W), (I1.12)

I11. SoME SUPER LINEAR ALGEBRA

IILA. Because this paper involves a good deal of explicit computa-
tion with both supermatrices and ordinary matrices, we review here our
conventions. These follow those of [3]. We call a matrix with entries in a
supercommuting algebra an ordinary matrix if its entries are purely even.
For ordinary matrices, which will typically be denoted by lower case
Roman letters, we use the standard notations of 4 and a' to denote con-
jugate and transpose. Matrices with purely odd entries will be denoted by
lower case Greek letters, and conjugation and transposition will be defined
just as for ordinary matrices. Note, however, that

WP=—af,  (2f)=—pa’ (11L.1)

Capital Roman letters will denote supermatrices. We use * to denote the
hermitian adjoint for these cases.
An m | nx k| I supermatrix has the form

k!

miia o
A=n<ﬂ b), (111.2)
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where a and b are ordinary matrices and o and f§ have purely odd entries.
If /=0 we will write m | n x k for the dimension, and if » =0 the dimension
will be m x k { [, 1.e., single dimensions always refer to an even component.
The superanalogs of conjugation and transposition are defined as follows:

(& —a
A "(5 p ) (111.3)
o a' ﬂl
y .-(_a, b,). (T11.4)

Note that 72 # 1. The hermitian adjoint of a supermatrix is given by A* :=
(A°)". We use the same symbol as for ordinary matrices because the same
transformation is performed:

A*:(“* ﬁ*>. (11L5)

IIL.B. The Berezinian [3] of a square supermatrix is defined by the
formula

a a) detla—axb 'p)
Ber<ﬁ b)._——«——detb . (I1L6)

We will often write supermatrices in a nonstandard form,

mnlqg

m (A B
= , 111.7
’ nlq(C D) (L.7)

where A, B, C, and D are subsupermatrices. In this case the Berezinian is
Ber y = Ber D det(4 — BD ' (). (I11.8)

For convenience we state here a formula for the inverse of a matrix
which we will use frequently. For any ordinary matrix or supermatrix in
block form, we have

A B\7'_ (A—BD ' C)! —4 'B(D-CA'B)’
<C D) _<—D‘C(A—BD'C)” (D—CA'B)~! >
(111.9)

The proof is obvious.
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IIL.C. We include the following useful technical fact to illustrate
the mechanics of dealing with Berezinians.

LemMma 111, For an mxn|q supermatrix A and an n|qgxm super-
matrix B, we have

Ber(/

nlg

— BA)=det(], — AB), (111.10)

where I

.| g denotes the dimension n | q identity supermatrix.

Proof. We write A =(a, ) and B=(}). By definition,

det(f, —ba— ba(1,— for) ' Pa)

Ber({,,,— BA)=
el = BA) det(1, — pa)
det(1,, —ab—abaf(I,—af) ")
= ) .11
det(/, — fa) ( )
Because the entries of « and f anticommute, we have
-
det(/,— px) =exp { Y 7tr([3a)’}
=0
=exp{— 3y —tr(ap)
1=0 [
=det(],—af) L (IT1.12)
Returning to (HI.11), this implies
Ber(/,,,— BA)=det((1,—ab)(I, — af) — abaf)
=det{{,— ba—aff)
=det(f,— B4) '. |} (IT1.13)

Note that an immediate consequence of Lemma III.1 is that (IT1.8) is
equivalent to

Ber y =det A Ber(D — CA~'B). (111.14)

IV. MATRIX CARTAN SUPERDOMAINS

IV.A. 1In this section we describe the main objects of our study,
namely the matrix Cartan superdomains. Recall (see e.g. [10, 16]) that all
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symmetric hermitian domains fall into four series of classical Cartan
domains, with two exceptional domains. The first three classes are the
matrix domains, which are defined as follows. In the formulas below, D
with suitable decorations denotes a Cartan domain and Aut(D) denotes the
Lie group of biholomorphisms of D. The definitions of all the Lie groups
involved can be found in [10], whose notation we follow.

Type 1. We let

D!  :={zeMat, ,(C):I,—z*z>0}

m.n

= SU(m, n)/S(U(m)x U(n)). (IV.1)

The group SU(m, n) acts on D! , by the holomorphic automorphisms in
the following way. We write 7y € SU(m, n) in the block form

m n
' b

y:m(a ), (Iv.2)
n\c d

where the submatrices a, b, ¢, and d have the dimensions indicated and
satisfy

a*ta—c*c=1,,
a*b=c*d, (IV.3)
d*d—b*h=1,.

1
m,on

The corresponding element of Aut(D, ) is
2y {az + bWz +d) . (IV.4)
Type 1I. We set
DY:={zeMat, ,(C)z'=z1,—z*z>0}
= Sp(n)/U(n). (IV.5)

The biholomorphic action of Sp(n) on D! is defined as follows. We write
y € Sp(n) as

y:n<cz [f), (IV.6)
n a
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where a, b satisfy

a*a—b'b=1,,
’ (IV.7)
a'b=b*a.
Then

p:z2v> (az 4+ b) bz + a) ! (IV.8)

is the corresponding element of Aut(D').

Type 1II. Let
D'":={zeMat, ,(C):z'=—z,I,—z*:>0}

= SO* (2n)/U (n). (1V.9)

The action of SO*(2n) is defined as follows. We write y€ SO*(2n) as a
block matrix,

non
b
r="( : _) (1V.10)
n\—b a
with a, b such that
a*a—b'b=1,
) (IV.11)
a'b= —-b*a.
The corresponding element of Aut(D!"') is then
yioe (az +b)(—bz+a)” . (IV.12)

IV.B. A Cartan superdomain Z is a supermanifold (D, ('), where D
is an ordinary Cartan domain, and where ¢ is a sheaf of superalgebras on
D which will be defined case by case below. We define the superdomains of
types I, Il and 111, denoted below by &), , .. 2} ., and @) | respectively.

“nlg

Type 1. We set

CADniy) = C7 (D), )@ NE™), (IV.13)

“monlyg

We organize the standard generators of A(C™*?) into m x g matrices
6=1{6,} and 6= {0,}, and represent the “points” of Z as the mxn|gq
supermatrices

Z=(z0). (IV.14)

The matrix dimension ¢ for the odd components is arbitrary.
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We define the supermanifolds &), and 2,/], as subsupermanifolds of

the type I superdomains. This is done by imposing constraints on the
generators of C* (2! ), as follows.

anlq

Type 1. We impose
z—z'+600"=0. (IV.15)

The fermionic dimension ¢ is again arbitrary for type II.

Type TII. We require
'+ z—07,0'=0, (IV.16)

where 7, is the ¢ x g matrix

0 il
= B 1V.17
" ( i, 0 ) (v.17)

Note that ¢ must be even for the type III superdomain.

Each of the above superdomains & admits an action of a Lie supergroup
Aut(2) of superholomorphic automorphisms. In all cases, Aut(Z) is an
intersection of an orthosymplectic supergroup with the supergroup
SU(m, n| q). This supergroup is defined as follows. Its base manifold is
SU(m,n)xSU(q), and its structure sheaf is generated by y, and 7,,
1< j, k<m+n+gq, with the following parity assignments:

0, if l<jk<m+norm+n<jk<m+n+y,
1, otherwise,

p(*/_;k)=p(7jk)={
(IV.18)

and with the following relations. We write y as a block supermatrix

m n g
m [fa b p

y=n ¢ d o1, (I1v.19)
q o B e

where a, b, ¢, d, and ¢ are even matrices and «, f, p, and J are odd matrices
of the dimensions indicated, and require that

Bery=1. (IV.20)
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The real structure on SU(m, n | q) is defined by setting

k= Jy 1], (TV.21)
where
I, O 0
J={ o -1, 0o | (IV.22)
0 0 —1

Equation (IV.21)} is equivalent to the set of relations:

a*a—c*c—a*a=1,,
a*b—c*d—a*f=0,
a*p—c*é—a*e=0,
b¥b—d*d—p*p=1,,

b*p —d*é — fi*e =0,

(IV.23)

p*p—06*5—e*e=—1,.

In view of (IV.14), we will find it convenient to rewrite (IV.19) in the
non-standard form

mn|gq

m /A B
y= Iv.24
y n|q<C D)’ ( )

where A =q, and B, C, and D are now supermatrices obeying the relations

A*4A—C*C=1,,
A*B=C*D, (1V.25)
D*D—B*B=1]

nig

Consider now the morphism C*(Z], , ,)—C*(SU(m, n|q)) ® .
C*(2,, ., ,) defined by

7. Z+—Z =(AZ+ B)(CZ+D) ', (1V.26)

where, for simplicity, we have suppressed the tensor product symbols
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(writing AZ in place of A® Z and so on). By the relations (IV.25) this
transformation is equivalent to

WZ)=(ZB*+ A*) '(ZD*+C*)

= (zb* + 0p* + a*) "' (zd* + 06* + c*, zf* + fe* + a*).  (IV.27)

Clearly Z’ defines a new set of generators for C"’“‘(@,’n_n‘q ).

PrOPOSITION [V.1. The above morphism defines a transitive action of

SU(m,n|q) on 2}, ,,,. Furthermore,
Drrn o 2ESUm, 0| q)/S(U(m)x Uln | q)). (IV.28)

Proof. The fact that z*z <[ implies that (ZB*+ 4*) is invertible,
because A is invertible and the non-nilpotent part of ZB* is zb*. The result
follows from the corresponding property of the underlying Cartan domain.

To prove (IV.28), we note that the isotropy subsupergroup of 0 consists
of supermatrices

A 0
IV.
(2 0) )
with
A*A=1,, D*D=1,,,. I (1V.30)

IV.C. We now turn to the type II case. The Lie supergroup acting
on ,@f}iq is denoted by Sp(n|g) and is defined as the intersection of
SU(n, n| ¢) with the orthosymplectic supergroup SpO(#n | ¢). The latter is
defined in terms of supermatrices of the form (IV.19), where m=n. We
require that Ber(y)=1, and

7Ky =K, (IV.31)
where K is the supermatrix
0o I, 0
K= I, 0 0| (IV.32)
0 0 1



MATRIX CARTAN SUPERDOMAINS 469

Solving the relations (IV.21) and (IV.31), we write the generators of
Sp(n| q) in the form

nn gq
n a b p
v=n (b a —p|, é=e, (1V.33)
q « a4 e
with the entries satisfying
a'h—b*a+a'a=0,
ada—br*b+a'g=1,,
(IV.34)

ap+b*p—ae=0,
p'p—pr*p+ee=1I,

Consider now the morphism C* (2}, ,) > C*(Sp(n| q)) ®,C(Z),,)
defined by

v Z+—2Z =(AZ+B)CZ+D) ", (IV.35)

where
b a —p
A:=a, B:=(bp), C:= , D:={_ . (IV.36)
o x e

ProrosSITION IV.2. The above morphism defines a transitive action of

Sp(n| q) on 2\, . Furthermore,

" ~Sp(n|q)U(n)xSO(q). (IV.37)

“nlg=

Proof. Clearly, (IV.35) is well defined by the same argument as that for
Proposition IV.1. Recall that the defining relation of 7}, was

z—z'+00'=0. (IV.38)

To show that this relation is preserved under the action of Sp(n | q), we
recast it as

a, Z)K(é",,)=0. (1V.39)

Now, from (IV.27) we can write

(1., Z')=(ZB*+ A4*) "' (1,, Z) y*, (IV.40)
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so that

(1,, Z') K<ZI7»,~> =(ZB*+4*) "' (I,, Z) }’*K’/*7‘<;}> ((ZB*+A4*)~ 1)

(IV.41)

Taking the adjoint and then the transpose of the relation " Ky = K gives
y*Ky*T = K, so that (IV.39) implies

1
1,,Z2)K <27T> =0. (IV.42)
To prove (IV.37), we note that the isotropy supergroup of 0 consists of

supermatrices

a 0 0
y={0 a 0], e=e, (IV.43)
0 0 ¢

satisfying a*a=1,, e'e=1,, and dete=1. |

IV.D. The type Il superdomains admit an action of the Lie super-
group SO*(2n | q), which is defined as the intersection of SU(x, n | q) with
the orthosymplectic supergroup OSp(n | g). The latter is defined again in
terms of supermatrices of the form (IV.19), where the submatrices have the
same dimensions as in the case of Sp(n | ¢). We require that Ber(y) =1, and

y"Ly=1L, (1v.44)
where L is the supermatrix
0 7, ©
L={1, 0 0] (IV.45)
0 0 =

with t, defined in (IV.17). Note that L=L*=L ' Solving the relations
(IV.21) and (IV.44) we write the generators of SO*(2n| g) in the form

n
n/ a b

y=n|l -b a pt}|, e =rtet, (IV.46)
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with the entries satisfying

a'h+b*a+a'ta=0,

a'a—-b*b+o'a=1,,
(Iv.47)
a'pt—b*p—a'te=0,
p'pt—tp*pte=1
We now consider the morphism C*(2)],)— C*(SO*(2n|q)) ®.,
C* (2™ ) defined by (IV.35), where

niqg
—b a pT

A:=a, B:=(bp), C:=< ), D:=< _ ) (1v.48)
x — T e

PROPOSITION IV.3. The above morphism defines a transitive action of
SO*(2n | q) on 2' . Furthermore

nlgs

"~ SO*(2n | ¢)/U(m) x Sp(q/2). (IV.49)

nlg—

Proof. The proof parallels the proof of Proposition IV.2. We write

(I, Z')=(ZB*+ 4*) "' (I,, Z) ™. (IV.50)
The defining condition of 2], is
T 1,
(I, Z) L o7 =0, (IV.51)

which is preserved because y*L7(y*)” = L. To prove (IV.49), we note that
the isotropy supergroup of 0 consists of supermatrices

a 0 0
y={0 a 01}, e =rtet, (1V.52)
0 0 e

satisfying a*a=1,, e'te=1, and dete=1. |

V. TRIPLE DETERMINANTS AND POISSON STRUCTURES

V.A. The construction of [6] rested on the framework of Jordan
hermitian triple systems. For the purposes of this paper, we extract from

580/127/2-15
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this framework the fact that the Bergman kernel of a Cartan domain is
given by

K(z,w)=4(z, w)™?, (V.1)

where 4(z, w) is a polynomial in z and w (called the Jordan triple determi-
nant), and where p is a positive integer called the genus of the Cartan
domain, see e.g. [6] (we plan to present the theory of Jordan triples for
Cartan superdomains elsewhere). We let Aut(2) denote the Lie supergroup
of superholomorphic automorphisms of 2. The circular symmetry is a
transformation of the form

(z,0) > (e'z, €'0), (V.2)

where ¢ is a real number.

V.B. For the quantization of superdomains, the central object will
be an analog of the triple determinant mentioned above. We define a total
genus p = p,— p,, where p, is the genus of the underlying ordinary domain
and p, is a non-negative integer which we call the fermionic genus. Also,
for ye Aut(2) we define

G,
'}',(Z)uv:—é-i—y(z)v' (V3)

In this definition, and throughout this paper, derivatives with respect to
odd variables are left derivatives, i.e.,

a
671(9192)=92- (V.4)

For future reference we note here that the chain rule takes the following
forms:

@ 2V =T o s .
62“]‘0)}(2)_%’}(Z)upazp())(z))!

: ey (V.5)
27D =T T2, 2 (2,

where ¢, :=p(Z,). The extra sign in the second relation occurs because

0 S
5 WZ), = (1) D 3(2),,. (V6)

"
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THEOREM V.1. For a Cartan superdomain there exists a polynomial
N(Z, W) in Z and W such that for all y € Aut(2),

N((Z), y(W)) =Bery(Z) N(Z, W)” Ber y' (W). (V.7)
Furthermore,

N(Z,W)=1-Y B, ' Z, W, + higher order terms, (v.8)

"
where B n ! are positive integers.

The polynomial N(Z, W) is the super analog of the Jordan triple deter-
minant. Note that N(Z, W) is invariant under the circular symmetry. The
theorem below states that N(Z, W) has a simple transformation property
under Aut(2), a fact which will play an important role in the following,

THEOREM V.2.  There exists a unique holomorphic polynomial a,(Z) such
that:

(i) The automorphy factor Ber y'(Z) is given by
Bery'(Z)=a,(Z)"; (V.9)
(i) we have the cocycle condition

a,,,(Z) = a,, (72(2)) a,,(Z); (V.10)

My

(iii) the polynomial N(Z, W) transforms according to

NGAZ), 7 (W))=a,(Z)N(Z, W) a, (W). (V.11)

We will prove Theorem V.1 and Theorem V.2 in the next section.
For the following we define the Lebesgue measure dz :=d*™z=

W (i/2)dz, A dz,. We also define the Berezin integral df :=d™0d™0
([3], see also [12]), which is normalized so that

fﬂ (6,0,)d0=1. (V.12)
I=1

Let dZ :=dz df. The Berezinian was defined precisely so that if Z'=y(Z),
then

dZ' =Ber y(Z) dZ. (V.13)
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COROLLARY V.3. The measure
du(Z) =N(Z,Z) " dZ (V.14)
is invariant under the action of Aut(2).

V.C. The superalgebra C*(2) of smooth functions on a Cartan
superdomain can be equipped with an Aut(Z)-invariant super Poisson
structure. This arises as follows. Let Q% /(9), k, le Z, denote the C*(2)-
modules of forms of type (k,/) on &, and let

8: Q% N(2)- Q@) (V.15)
and

3: Q- 1(2) - QK1+ 1(2) (V.16)

denote the natural generalizations of the usual ¢ and J operators. We
consider the even two-form defined by

a(Z) =00 log N(Z, Z)
A2

(4
0Z,0Z,

=Y (=)' dZ, A dZ, log N(Z,Z), (V.17)

v

where ¢, :=p(Z,). The parity conventions for forms and vector fields are
pldZ,)=¢,+ 1, p(¢/0Z,)=¢,.

PROPOSITION V.4. w is an Aut(Z)-invariant supersymplectic form on .

Proof. To see that o is Aut(Z)-invariant, we note that, as a conse-
quence of Theorem V.2,

log N(y(Z), y(Z))=1log N(Z, Z) +log a,(Z) +log a,(Z). (V.18)
Since a,(Z) is holomorphic,
ddloga,(Z)=00loga,(Z)=0, (V.19)

and so y*w = w, as claimed.

Since d=¢7+ ¢, it follows immediately that dw =0. It remains to show
that w is non-degenerate. Owing to that Aut(Z)-invariance, it is sufficient
to prove that w(0) is non-degenerate. This, however, is clear since (V.8)
implies that

w(0)=Y p,'dZ, ndZ,. |

m
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In components we write the symplectic form as

2

wuv(Z)=('—1) “azv azﬂ

log N(Z, Z)" !, (V.20)

so that w(Z)=%, ,dZ, A dZ, »,,(Z).

We now construct the super Poisson bracket associated to w. The
Poisson bracket is defined by the inverse of @ with respect to the natural
pairing

QM s, (v.21)
which sends
_ 0 G,
dZ“ AdZV@(‘;_ZaAa—ZpHémé“p. (sz)

We require w®e '+ 1. Note that this corresponds to 3, w,.(Z)

w lv (Z) =d,,. Then the Poisson bracket is defined by
14 Hp

According to Theorems 5.4 and 5.5 of [3], the bracket {-, -} defined in this
way indeed has the properties of a super Poisson bracket, as formulated in
the Introduction.

Using the invariance of w, we can write the Poisson bracket more con-
veniently. To each Ze % we associate an element y_,e Aut(Z) such that
y,(0)=Z. Let re 2"~ '(%) be defined by

0 d

= P(Z), — = V.
W2) =3 P2z N a7 (V.24)
where
P(Z) =), B,77(0),,77(0),,. (V.25)
P
THEOREM V.5. The Poisson bracket associated to w is given by
{f. g} =mnldf. dg). (V.26)

Consequently, the pair (C*(2), {-,-} is a Poisson superalgebra with an
Aut(Z@ )-invariant Poisson bracket.
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Proof. We make use of the invariance property by inverting w at the
origin and then pushing forward by the action of the supergroup Aut(2).
Clearly,

0 i
‘I(O)ZZﬁﬂﬁ A ﬁ’ (V27)
and so
_ g C.
g} O=T (=17, [J“O’a ‘0)‘(“”“5{(0’@2 }

Z
(V.28)

where &, :=p(Z,). From the invariance of w under Aut(%) we conclude
that

{f,gHZ):=0 (Z)df,dg)=0""(.0)d(fy2), d(g°7,))
=w "(ONd(foy,), dlgey,))
={f72,8°7-}0).

Consequently, using (V.28) we obtain that

(£ g}(Z)= % B,7%(0),,77(0),,

A1V

a é g

0z, az Z
(V.29)

In view of (V.25) we obtain
{£.8}(2)

[ 08
=3 P00 | G @ F @) e 2 @)

=n(Z)(d], dg),
as claimed. ||
COROLLARY V.6. The inverse of w is given by

w0, "Z)=P,(2), (V.30)

;u
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and as a consequence

Berw(Z)=N(Z,Z) "[] 8", (V.31)

where w,, is viewed as a supermatrix.

Proof. The first statement is the content of the previous theorem. The
definition of P, then implies that

Ber w(Z) = [Ber 7, (0)| ~ [T 8, (V.32)

Applying Theorem V.1 to y, yields
N(Z, Z)" = N(y,(0), 7,(0)) = |Ber y(0)|%, (V.33)

and the second statement follows. |

V.D. ForoeQ ' '(2) given by

¢ i
= Z)— = V.

o :Zlfm( )@Z‘, A iz, (V.34)

the map &: Q" ' (2) - Q% ~'(2) takes ¢ to
of 2
do=Y (—1yern a7y o V3
o :Z;( ) oz (Z)GZF (V.35)
THEOREM V.7. The two-vector field e Q" ~' defined by
ooy Ltwld) ¢ 0 (V.36)

SN(Z,Zyez, oZ,

satisfies 6o =0.

Proof. For convenience in this proof let @, := 8/0Z,, and likewise for d,,.
We start with the fact that P,,=w ', so that

apPu\' = - Z (_l)ep(e,ﬂre,) Pud(apwuli) P[iv' (V37)

x f

Thus

Z (— 1 )E“(C“+ b a\'P;n'= - Z (_ 1 )l:r'n’+ " Pux(a\'wjﬂ) Pﬂ\*' (V38)
v v, o, ff
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Now the statement that dw =0 means that 0, w,,=(—1)** d,w,4, so that

YA(=1)ErDa P ==Y (—1) P (0,w.) Py, (V.39)

vioa, 8

By the definitions of the supertrace and the Berezinian [3],

Z (=1~ (@wv,‘;)w,}f =J, Strlog w

v, fi

=0, log Ber w. (V.40)

By Corollary V.6 we see that Ber w is equal to a constant times N(Z, Z) *.
Thus

0, log Berw=—pd,log N. (V.41)
Returning to (V.39), we have

S (=)o P =pY P,a, logN. (V.42)

v

In view of the explicit formula (V.35), the statement that do=0 is
equivalent to

3 PlV
Z (_l)r.,‘(l,,,#»l)avﬁl’;:o’ (V43)

w

for all u. Using the results of the last paragraph we evaluate

ey (£ P v - -
(=1t e, = pN P Y Pl log N+ L PO N

v

=0. | (V.44)

VI. PrRoOOF oF THEOREMS V.1. AND V.2

VLA. In this section we define the “super triple determinant”
N(Z, W) for matrix superdomains and establish Theorems V.1 and V.2
We will prove these theorems after establishing a series of propositions.

LEMMA VI.1. For ye SU(m, n| gq),
det(4* + ZB*)=Ber(CZ + D), (VL1)

where A, B, C, and D are the matrix blocks of v.
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Proof. Using Lemma II1.1 we have
Ber(CZ + D)= Ber D Ber(1, ,+ D~ 'CZ)
=Ber Ddet({,,+ZD ' ().
Using (IV.25) we obtain
I,+ZD 'C=A*A—C*C+ ZD*C+ZB*BD'C

=A*A— A*BD 'C+ ZB*A+ ZB*BD'C
=(A*+ZB*}{A—-BD'C).

We now combine this with the fact that

Bery=det(4—BD 'C)Ber D=1
to see that

Ber(CZ + D) =det(4* + ZB*). |

ProposiTioN VI.2.  For ye SU(m, n | q) acting on &1, .,

1

Ber v (2) = qaiar v zBr

Proof. The matrix of derivatives can be evaluated explicitly,

oz
Y (ZB* 4+ A*Y ' (D* — B*Z") ..
s (2B A% )

In the matrix notation of (V.3) we write
V(Z)=[(ZB*+ A*)"']"®(D* - B*Z").
Using the relations (IV.25), we see that
D* — B*Z'=D*— B*(AZ+ B)(CZ+ D) !
=[D*CZ+D*D— B*AZ—- B*B(CZ+ D) !
=(CZ+D) .
Thus the matrix of derivatives becomes

Y(Z)=[(ZB*+4*) ' ]"®(CZ+ D)},

479

(V1.2)

(VL3)

(IV.4)

(VL5)

(VL6)

(VL8)

(V19)

(VL10)
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and its Berezinian is
Ber '(Z)=Det(ZB* + A*) " 9 Ber(CZ+D) ™  (VLI1)

The proposition follows from Lemma VL.1. [

PrRoPOSITION VL3, For yeSp(n| q) acting on 2)!, .

1

Ber v (D) = Gewar v zBry T

(VI.12)

Proof. First, we study the case when Z =0. Choosing coordinates Z;,
where either 1 <i<j <n or j > n, the supermatrix y'(0) is given by

, 0z,
7 (O)kl. ”:‘(?Z'—Aj,
i<j<n i>n
1
=k<i<n 170, [(A* )+ (A* 1)y ] 'l__;:—g;[(A*il)lkol[j-k(A*#l)ilak}]
I>n _(A*il’lkﬂlj ‘A*fl)ikl“g
(VL13)
where we have represented the block entries of D ' by
D*':(“ "). (VL14)
n v
Writing 7'(0) as
T, T,
3" (0) = , VL15
7'(0) <T3 T4> ( )
we need to compute
Ber T=det(T,— 1,7, 'T;)det T, " (VIL.16)

We start by observing that

[T471T3]k/.ij=5ik[vv_l’1]1ia (VL17)
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so that

1

{1,— T2T471T3]""‘-"'=m

[(A* " )a (u—ﬂvilﬂ)lj
+(A*71)il(u'—o.v\l’7)kj]
E[Zl ® (u—mflﬂ)] ,

5 ki, ij

where 4 ), B denotes the symmetric tensor product of the matrices 4 and
B. Now from (IV.36) we sece that

(u—ov tg)y=4"1, (VL.19)
so we have

1

U =TT )= 078 @)

=(det A*)~ "+ (VI.20)

To complete the calculation of (V1.16) we have
det T,=det(A*) “detov " (VI.21)

In terms of D, v=(e+ % '5) ", and one easily sees from the relations
that v‘v=1,. The result is thus

Ber y'(0) = (det A*) '*'~ ), (V1.22)

To complete the proof we consider the case where y maps Z to Z' #0.
Let y=y,-7,, where

n(Z2)=0, 70)=2" (V1.23)
We write
A, B,
*,’i=<C' D'_>, i=1,2, (V1.24)
and

y=<A B>_<A2A1+BZC1 AQB,+B2D,>. (VL25)

¢ D) \C,4,+D,C, C,B,+D,D,
Because of (VI.23),
ZD¥ + C¥ =0, (VI.26)
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so that
A*¥+ZB* = AT A¥+ C¥B¥ + ZBf A¥ + ZD¥ B¥
= (At + ZB¥) A%
=(A¥+ C¥(D}¥) ' BY) A%, (V1.27)

Applying the result (VI.22) and the fact that (4,—B,D;'C,) ' is the
upper right submatrix of y !, we have

_ Ber ;(0)
det(A* + ZB*) " =———212"" _ _ Ber y,(0) Ber y,(Z) = Ber y'(Z).
( ) Ber(7- 1) (0) y2(0) Ber 71 (Z) Y i
(V1.28)
ProposITION V1.4, For ye SO*(2n | ¢) acting on 2!},
1
Ber (Z) = ‘ (V1.29)

 det(A* + ZB*)" 9

Proof. The proof closely follows that of Proposition VI.3. In place of
Eq. (VL.18), we obtain

1
[T, -T,T, 1T3]kl,ij:—1T+_5_k[ [(A* "y (u—ov 1’7)1,'

—(A* )y (u—ov ')y ]

= |:A_l ® (u—ov"ln):l , (VL.30)

a ki, if

where 4 X, B denotes the antisymmetric tensor product of the matrices A
and B. Since det A* X, A* = (det A*)* !, we thus obtain

y(0) = (det A*) o1+ (VI31)

in place of (VI.22). The second half of the proof is then identical to that
above. |

Based on the preceeding four propositions, for all three types we define
the super triple determinant

N(Z, W) :=det(I, — Z*W)=Ber(/

nly

— W*Z), (Iv.32)
and the transformation factor

a,(Z) :=det(A* + ZB*)=Ber(CZ + D). (V1.33)
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ProOPOSITION VL5,  With the above definitions,

N((Z), /(W) =a (Z) N(Z, W)a,(W). (VL.34)

Proof. The statement is that

Ber(/,,,— 7(W)* %(Z))=a,(Z) Ber(I,, ,— W*Z)a (W).  (VL35)

nly nig

The defining property (IV.21) of SU(m, n | q) implies that
L, —7(WYp(Zy=(CW+D)y* "1, ,— W*Z)(CZ+ D) '. (VL36)
The proposition then follows from (VL.33). |

VI.B. Proof of Theorems V.1 and V.2. Theorem V.2 (i) is estab-
lished in Proposition V1.2, Proposition V1.3, and Proposition V1.4 for types
I, I1, and III, respectively (incidentally, the fermionic genus p, turns out to
be equal to g in all these cases). Part (iii} of Theorem V.2 and the first state-
ment of Theorem V.1 are proved in Proposition VL.5. The second statement
of Theorem V.1 is clear. In particular, we find that B;' =1or 2in (V.8)

It remains to prove property (ii) of Theorem V.2. Let

,=<fc’ ﬁ) (VL.37)
for i=1, 2. We have
a,,,,(Z)=Ber[(C, A, + D,C;) Z+(C, B+ D, Ds)]
—Ber[C,(4,Z+ B,)+ D,(C,Z + D))
= Ber(C,y5(Z)+ D, ) Ber(C, Z + D5)
—a,(2(2))2,(2). 1 (VL38)

VI.C. For future reference, we give here explicit formulas for the
group elements y,. For type 1, v, can be written as

1 Z A 0
=" , VI.39
=z o b) V132

for any A4 and D which satisfy
AA*=(,—ZZ*)"",
(VL.40)
DD*=(l,,~Z*Z)"",

and Ber D* det A =1.
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For type IT we have

I, z¢ o a 00
v.oo=lz* I, —a|l0 a 0], (VL41)
ox 0 1, 0 0 e
where
aa* =(I,~ ZZ*)" ',
o=(I,—zz)"" (6 —z0), (V1.42)
ee'=(I,+0'6—0*) "',
and where
—_ FT*
dete= dfi;e(tl(an—ZzZT))' (V1.43)
Finally, for type III,
I, -z ¢ a 00
y,o=tz¥ I, ¢t 0 a 0], (V1.44)
o* —10" I, 0 0 e
where
aa*=(I,—zz*—606%)"},
o= (I,+zz)" ' (0+ z01), (VL45)
ee*=(I,+10'6t1—0*0) ",
and where
dete= det(?, — 227) (V1.46)

det(l, + z5)

VII. QUANTIZATION

VILA. Our framework for the quantization of a Cartan super-
domain Z rests on the following perturbation of the invariant measure.
We will show later that there is ry(2)>0 such that the measure
N(Z, Z) du(Z) has a finite volume for r 2 r,(2). We set

au (Z):=A,NZ,Z) du(Z)=A,N(Z, ZY "7 d=z db, (VIL1)
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for r=ry(2), where du is the invariant meausre of Corollary V.3 and 4,
is chosen so that the total integral is normalized to one.
For f and ge B¥ (), we set

(/. 8), :=Ljf(Z)g(Z) du,(Z). (VIL2)

This form is not positive definite and so it does not define an inner product
on B*(2). The crucial property of (-, -}, is, however, that its restriction to
the subspace of superholomorphic functions is positive definite. In fact, a
more general property holds (which we will need). We consider the super-
space B (2) of functions f for which 6f/6§j= 0. Observe that this notion
is not invariant under superholomorphic changes of coordinates on &%. The
following theorem will be proven in the next section.

THEOREM VIIL.1. There exists ro(2) >0 such that for all r = ry(2), the
sesquilinear form (-, -), defines an inner product on B} (2).

Consider the space Hol(2) of superholomorphic functions in B~ (2). As
a consequence of the above theorem, (-, -), is an inner product on this
space. The completion of Hol(%) in the norm induced by this inner
product forms a Hilbert space, which we denote by #,(Z).

VILB. In this subsection we state some facts concerning the
measure du, that will be useful later.

ProposiTION VIL2. The form (VIL.1) has the transformation property

du,(y(Z))=[a,(Z)a,(Z2)] du,(2Z), (VIL3)
for and y € Aut(2).

Proof. This is a direct consequence of Theorem V.2. |

ProPOSITION VIL.3. There is a constant C >0 such that for r sufficiently
large

f N(Z,ZY PdO=CrA(z, z) ™ [1+ 0 ")), (VIL4)

uniformly in z, where A(z,z) is the triple determinant of the underlying
domain.

Proposition VIL3 will be established in Section VIIL
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ProrosiTiON VII.4. The normalization constant A, has the behavior
A,=Cre "1+ 0(r )], (VILS)

as r— .
Proof. The statement follows immediately from Proposition VIL3 and
Lemma 3.1(i) of [6]. |

VII.C. The Hilbert space (%) carries a natural projective
unitary representation of Aut(2). This is given by y — U(y), where

UGy~ $(Z) = a,(Z) $(1(2)). (VILG)

Clearly, each U(y ') is unitary because of Proposition VIL2. We see that
U is a projective representation as follows.

For notational convenience in the following argument, we write a(y, Z)
in place of a,(Z). For y,, y, € Aut(£), define the function

, 1 L - R
My 1N Z) =5 {loga(y, 'y;', Z)—logaly; ', Z)—log a(y; ', 7 "(Z))}.
(VIL7)

THEOREM VILS. The function A(y,,y,) defined above has the following
properties:

(1) A1, 72 NZ) does not depend on Z. Thus AMy,, v, ) is a function on
Aut(2) x Aut(2).

(1) We have the following cocycle condition:
AV y2ya) + A2, 73) — 47172, 73) — ALy, 72) = 0. (VIL8)
(i) A(y,,72)e {101}
Proof. (i) We take the gradient of i(y,, v, (Z) as follows:

1 1
= Vay; "1 L Z) - ———V
a(}’z Ia 71 1(‘Z) : : a(% ls Z)

1
Caly; Ly, (2)

27iVA(y,, 72 N Z) a(y; ', Z)

Va(y; ', v (2))- (VIL9)

By (V.10),

ay vy Z)=aly; Ly H(Z) aly L Z). (VIL.10)
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We thus see that

1 1
————=Va(y; 'y, Z)= ———=Va(y, ', 2)
a(y; v, L z) ay, L 2)

1

—————Va(y; ', 7, 1 (2)).
atrs L2y 2D

(VIL11)

(1) Consider the first two terms in (VIL8). In view of (i), we can
evaluate either 4 at any point. We choose to evaluate the first 2 at Z and
the second at y, '(Z). The sum of these terms is thus

A 1273 N2 + Ay, 13 H(Z))

1
T {loga(y; 'ys 'y, ', Z)—loga(y, ', Z)—loga(y; ', v, ' (Z))
—loga(y; ', vy (v "(Z2))}. (VIL12)

By adding and subtracting (1/2ni)log a((y,7,) ', Z), we see that (VII.12)
is in fact equal to

A172> 73) + Ay, 72)- (VIL13)

To prove (iii), we set Z=0 in (VIL.7) and use (V.10). |

CorOLLARY VIL6. Formula (V11.6) defines a projective unitary represen-
tation of Aut(2) on K. (2).

Proof. Set
o(71, 72) = exp{2miri(y,, 72)}. (VIL14)

As a consequence of Theorem V.2,
Ulriva)=0(r1,3:2) Uly) Uy2). (VILIS)
The cocycle condition,
a(72,73) 07172, 73) " 0, vavs) 0(vy,72) =1, (VILLG)

follows from Theorem VILS (i1), which shows that (VIL.6) is consistent
with associativity. The unitary is a consequence of Proposition VII.2. |

580:127;2-16
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VILD. A fundamental component of our construction is the
Bergman (or reproducing) kernel for the space #(%). Let

K(Z W)=N(Z W) " (VIL17)

ProposiTiON VIL7. The kernel function (VIL.17) has the reproducing
property, Le., for ¢ € #.(Z),

H2) = | K (Z, W) W) du, (W ). (VIL18)

Proof. We compute the right-hand side of (VII.18) by making the sub-
stitution W=1y_(Y), where 7. is an element of Aut(%) such that y_(0)=Z.
This yields

|| Kz W) () dye, (W)
=], K(Z2.(Y) $3.()) i, 3.(Y)
=], L4, 08,71 "4V a, (V) & (1T du,(¥)
=], @.(0) ", (Y)Y $r.(¥)) du, (), (VIL19)
We apply the simple fact that for y holomorphic,
J, ¥y di (W) =u(0), (VI1.20)
which is a consequence of circular symmetry, and obtain
|, a.0) "a, (Y)Y () du(Y)=4(Z). B (VIL21)
For ge B*(Z), we define the projection P by
Pg(Z) = L K'(Z, W) g(W) du,(W). (VIL22)

Clearly, Pge #.(2), and Pg=g for ge #.(2).



MATRIX CARTAN SUPERDOMAINS 489

ProprosiTiON VII.S.

f 2,7, du,(Z)=§f5yp, (VI1.23)
@
where B, is the constant of Theorem V.1.
Proof. Let
A,m=f 2,2, du,(Z). (VI1.24)
o

Because of Theorem VII.1 the matrix A ,, is invertible. Using Proposition

VIL.7 we can also write

Hp

jzuzpdu,(2)=j Z.K'(Z, W) W, du,(Z)du, (W), (VIL25)

A x G

The circular symmetry and the expansion of N(Z, W} in Theorem V.1
imply that the right-hand side of (VIL.25) is given by

zﬂl [ ZzWoWw, du(2)du, ). (VIL26)
y YA X G

v

In terms of A this implies

Allﬂ 22 A;w?}r—Av;}' (VH27)

We apply 4™ ' to both sides of this equation and obtain (VIL23). |

VILE. As described in Section II we define super-Toeplitz
operators T,(f) on #.(2), for fe B*(Z), by setting

T.(f)$(Z) = L KAZ, W) (W) ¢(W)du, (W) (VII.28)

The map f+— T,(f) will be the quantization map in our scheme. We first
establish some basic properties of the super-Toeplitz operators.
First of all, observe that

T.(fo7)=Uly) ' T.(f) Uly), (VIL.29)

where U(y) is defined by (VIL6).
Secondly, we have the following estimate on the norm of T,(f).
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ProrosiTion VII9. T,(f) is a bounded operator on #,(Z). Further-
more,

1T, (ON<C Y, r =21 . (VI1.30)

a, ff

In particular, a super-Toeplitz operator is bounded. We let 7,(2) denote
the C *-algebra generated by all super-Toeplitz operators.

The above proposition follows directly from the following lemmas
and proposition. To simplify the notation, in the rest of the paper we will
suppress the subscript r in |}-||,.

LemMma VIL10. For , g€ #(2), and ge B™(D) (an ordinary function)
we have

ngg(z)¢(2>du,<2)| <lgl. Il lgl.  (vIL3D)

Proof. Because of Theorem VIL.1, we can view (-,-), as an inner
product on the space of functions which are holomorphic only in the odd
coordinates. Thus we have

ng(-’) $(Z) dur(Z)l =¥, gd).1. (VIL32)

By the Schwarz inequality,

1/2
Wzt < Wil {] 1P F D i 2| v

Becuase ¢(Z) ¢(Z) du,(Z) is a positive measure, we can extract the sup
norm of g(z), giving

| W2 52)9(2) du,(Z)‘ <lglo Wl 19l B (VIL34)

Lemma VILI1.  For any odd generator 8,
IT, (0 <Cr 7, (VIL35)

Sfor r sufficiently large.

Lemma VII.11 will be proven in Section VIIL
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ProrosiTion VILI2.  For s, d € #(Z), and fe B* (D), we have

f V(Z)f(Z) }(Z) du,(Z)I SC Y, r W2l I igll. (VIL36)
@ «, B

In particular,

L, V(2 f(Z)4(2) du,(Z)} <Clifllo 1¥1 121, (VIL37)

where ||-||o is the norm defined in (11.3).

Proof. The statement follows immediately from Lemma VIL10 and
Lemma VIL11. |

VILF. To conclude this section, we make the statement that the
map B*(2)— 7,(2), given by T,, is a deformation quantization. This
statement consists of the following theorems, which will be proved in
Section V.

THeOREM VIL.13.  For fe B*(Z) bounded, we have

Tim [T ()= [loollo- (VI1.38)

In other words, the classical limit wipes out the fermions. This is not
surprising as fermions do not exist in classical mechanics.

THEOREM VIL.14. For f, g€ B*(Z), where the components f 5 are com-
pactly supported, there is a constant C = C(f, g), such that

-2
X )
r

1 :
1 r(NT(e)-T.(fe)+7 2 (=1 )T, <P

v

28 _‘7_8'_)
"oz, 0Z,

(VIL39)

Sor r sufficiently large.

As a consequence of this theorem, we conclude that 7,(%) is a quantum
deformation of the Poisson algebra B> (2), with r ! playing the role of
Planck’s constant. The assumption that f has compact support is certainly
not optimal, but some kind of decay of at least one symbol at the
boundary is clearly needed in our proof. On the other hand, it is easy to
verify that the estimate holds for any polynomial f and g.
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THEOREM VIIL.15.  Under the assumptions of Theorem VII.14,

LT () T 1+ T, ({fighl.<Cr (VIL40)

Jor r sufficiently large.

Proof. The proof follows immediately from Theorem VII.14 and from
the definition (V.29) of the super Poisson bracket. [

VIII. PosiTiviTy AND OTHER PROPERTIES

VIILLA. Theorem VIL1 will be proved after two lemmas are estab-
lished below.

DeFNITION VIILI. Let B, be the cone in B™ (&) generated by func-
tions of the form g=ff, with fe B ().
LemMMa VIIL2.

(1) B, is a multiplicative cone.
(i) expB,eB,.

(1) For ge B, nilpotent (i.e., g contains no term which involves only
the even variables), (1+g)* e B, for every i>n,.

Proof. Property (i) follows from the fact that
f]§g=(— 1 )”‘—’-”’(“”/—Efg =7§fg- (VIIL1)

For (ii) we see that for fe B, ,

expf=Y l'f (VII1.2)

nz=0"""

which is in B, by (i). For (iii) we note that

moMA=1) - (A—l4+ 1)
g.

(1 +g)":I§0 1 | (VIIL3)
LemMA VIIL3. For the matrix superdomains,
N(Z,Z)eB,, (VIIL4)

for Azn,.
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Proof. Using the properties of the Berezinian we can rewrite

N(Z, Z)=det(],, —zz* — 00*). (VIILS)

If we let X={(/,,—zz*)" 2, then
N(Z, Z)" =det X ~* det({,,— X00* X )*. (VIIL6)
The first factor on the right-hand side is clearly in B, . Since 8, is a multi-
plicative cone, and becuase of item (iii) of Lemma VIIL.2, we will be done

if we can show that

det(/,— X00*X)el+B,. (VIIL7)

To prove (VIIL.7) we make use of the fact that for any square matrix A,

(=1

det(f—A)=1+ Y ~—

n=1

tr(A" A). (VIIL8)

Now, for an odd matrix 7,

tr (A" p* )= (= 1" D2 [A" n* A" )]
= (=D tr[(A"D* (A" )] (VIIL9)

Applying this to (VIIL.7) we find

det(7,, — X00*X)=1+ i i,tr[(/\" X0)* (A" X0)].  (VIIL10)

n=1 :

Since tr A*A is clearly in B, for any matrix of functions in BZ (&), this
completes the proof. |

Proof of Theorem VIL1. From (V.12) it follows that |, gdZ >0, for
g€ B, such that g, (z) is integrable when a=(1,1,..,1). Thus Lemma
VIIL.2 (i) and Lemma VIIL3 establish that (-,-), is non-negative for r
sufficiently large.

It remains to show that the form is strictly positive. Suppose that there
exists fe By (2) such that

j F(Z)/(Z) det(l, — zz* — 0% )* dZ = 0. (VIILI1)
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If we change variables 8 — 6’ = (/,, — zz* )~ '/2 §, then this becomes
J FZOf(Z') det(I, — zz* Y9 det(l, — 0'0' * )" dZ'. (VIIL12)
@

We now perform the integral over z. Since the measure on z is strictly
positive we see that the existence of an f satisfying (VIIL.11) is equivalent
to the existence of ge A(C™) such that

f 200) g(8) det(1,, — 00% Y df = 0. (VIIL13)

We can assume that g is a homogeneous polynomial of degree &, since
homogeneous polynomials of different degree will be orthogonal. We make
the expansion g(0) =3, _, x,0%, where the sum ranges over multi-indices
of length k. If we let 4 be the matrix

A= j 0507 det(1,,— 00* )* df, (VIIL14)

then (VIII.13) s the statement that x*Ax =0. Consider the leading order
of the expansion of 4 in powers by A:

Azlgzjaiglfe)»lr()*ﬂ d6_+_ O(imqfkfl )

= f 7 (1 0%0)™ G
B (mg—k)!

=AMk 8, + O(1/2)]. (VIIL15)

do+0(m k- 1)

We conclude that for A sufficiently large, A4 is strictly positive definite.
Hence x*Ax =0 implies x =0, i.e., (VIIL.13) implies g=0. |

VIILB. In this subsection we establish some facts concerning
integration over purely odd matrices. These facts will be used to prove the
remaining technical assumptions of Section VII in the next subsection.

LemMa VIILA4.  Let y represent an mx 1 column vector of odd variables
and let S* denote the set of ordered subsets of {1, ..., m} of cardinality k. For
ae Sk and fe S’

. F(A+1)
P ri—m+k+1)

[ ot -+ (1 = %0 din = (VIIL16)
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where €,, =0 unless o is a permutation of B and in this case is given by the
sign of the relative permutation.

Proof. Tt is clear that § must be a permutation of  for the integral to
be nonzero, since (1 —n*n)* contains only pairs of the form #,5,. By per-
muting the set § into the set « and kepping track of the sign, we find

fm. M Mg Mg (L= n*n) dn=81pfnul-~-mmx. s (1= n*n) dn.
(VIIL17)

Now we can simply compute

fn,, MMy e (L= % 0) dn

rGi+1)

= *pym- kg
r(z—m+k+1)(m—k)!f"“‘ MMz = Mg (1711) "

TG+
T Tr(A-—m+k+1)

| (VIIL18)

LemMa VIILS. For mx q odd matrices 0, we have

IA—k+q)

0 (VIIL19)

j det(1,, — 00%) do =[]

Oshksm—1
which behaves as A™ for A — oo.

Proof. Decompose 6 into (8, p), where p is the last column of 0. We
have

I —00% =1, —0'6'*— pp*. (VIT1.20)
We next define w=(I,,— 8'0'*) ' p, so that

I, —00%=(I,—0'0*)I, —ww*). (VIIL.21)

m

The change of variables from p to w gives

det(I’" ~00*) o= J det(7,,—0'9"*)" ' db' fdet(lm — wo* )’ do.
(VIIL.22)
Applying this procedure recursively, and using the fact that

det(l,, — ww*)=(1 —w*w) ', (VII.23)
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we get

fde«/m—ww*)*dezz 11 J(l—wu*w) Gk g, (VIIL24)

O<ksm- 1
The result then follows from Lemma VIIL4 with a=f8=. |

Lemma VIILG.  Let a be an invertible m x m ordinary matrix, and let y
represent an m x 1 column vector of odd variables. For x € S* and fe S’ (the

n m

sets defined in Lemma V111.4), we have the integral formula

f Ny Nalp, -+ Mg det(aa* —nn* ) dn

S+ 1)
T T(A—m+k+1)

det(aa*)* ' det, (aa*), (VIIL.25)

where det,, is the determinant minor taken over the rows f§ and columns o.

Proof- The fact that & must be equal to / is clear. Let y = aw. Then
det{aa* —yn* )= (1 — w*w) det(aa*), (VIIL.26)

and the measure transforms to dw = det(aa*) dy. Thus under the change of
variables the left-hand side of (VIIL.25) becomes

det(aa* )" ' | (aw),, - (aw), (aw), ---(aw), (1 - w*w)* do. (VIIL.27)
1 & [l Bi

We now apply Lemma VIIIL4 to perform the integration over w. The resuit
is

rii+1)

% 32— |
dettaa™)"  F T E T )

Y g A g, g (VIIL28)

A4
1nove S

The sum in (VIL.28) can be rewritten as

z Z &(o) Do Qo Aoy " v,
;16.8“;’,, o€ Sk

= Z Z &(a) d%mm e dflatk)l‘k Apg " Ay

e Sk ae S,

= T H0)aa* ), - (@0* ), (VII1.29)

ae S
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where S, denotes the set of permutations of {1, .., k} and &(o) is the sign
of the permutation ¢. This final sum over o is precisely the definition of the
determinant minor detg, (aa*). |

VII.C. We turn now to the proofs of Proposition VIL3 and
Lemma VIIL.11. We can in fact replace Proposition VIL3 by the following,
stronger statement.

ProposiTiON VIIL7.

[ N(Z,ZY "d*™0=C,r"4(z, z) ", (VIIL.30)
where A(z, z):=det(,,—zz*) is the triple determinant of the underlying
domain and where

I'(r—po—k)
C,= —_ (VIIL31)
O<hk<sm |1 r(r_p_k)

Proof. The function N(Z, Z) has the form
N{(Z, Z)=det(l,, — zz* - 00*)

=det(l,,— zz* Y det(l, — (I,,— zz*) ' 00%). (VIIL32)

”

By changing variables 0 — 0" = (/,,—zz*)~ "? 0, we obtain

[ N(Z. 2y 7 do=deul, —z=*y s
Xj‘det(lm_([m_::*)il 0{)* )r pflz'”‘la

=det(],, —zz*) Jadet(l,,,—O’O’*)’ Py, (VIIL33)

The proof follows from Lemma VIILS. |

Proof of Lemma VILI1. We need to compare ||¢] to ||0,¢]l. To do this
we start by integraing over all of the odd variables except for the jth
column. Denote the jth column by #, so that ,=n,, and denote the
remaining odd variables by &'. Let 4 denote r — p. The integral over &' is

gl =4, [ do det(f —zz* — 0'0'* —nn* ) dO’ dn d:

=4, [ [ W) det(T—zz* —mn* ) dy iz, (VII1.34)
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Let C™ be given the inner product (u, v)=u*(l,,—zz*)v. The natural
extension of an inner product to an exterior algebra is simply the determi-
nant minor, i.e.,

My Ms My M )= detw.(lm —zz¥*). (VIIL41)
This means that we can write the integrand of (VII1.37) as

det(L,, —zz* ) ' T 1X, 1 2emyo (VIIL42)
J

and the integrand of (VIIL38) as

det(l,, —zz* V' T 10X ke 1oy (VIIL43)
i

The problem then reduces to computing the norm of the operator
e AF(C")—->A*"'(C™) which maps X+>nX. Let w=an where
aa* = (I,,— zz*). Then the w’s generate an orthonormal basis for A(C™).
The Hilbert-Schmidt norm of ¢, is easily computed:

))Ul”§= Z Hnia)/q"'(u;lk))i\"*’((?”’)
neSh

= Z Z dyay

neSh b

m—1
2( k )(]m_z‘?*)ii

m—1
<< K ) (VII1.44)

Since the estimate is independent of z, we can use it inside the integral in
(VIIL.38). We conclude that the kth summand of (VIII.38) can be bounded

by
m—1 1
—_— VIIL.45
( k >)t—m+k+l’ ( )

times the kth summand of (VIIL37). |

IX. PROOF OF DEFORMATION ESTIMATES

IX.A. In this section we prove Theorem VIL13 and Theorem
VII.14 for a generic Cartan superdomain of type I-111.
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Proof of Theorem VII.13. From Lemma VIL.10 and Lemma VII1.11 we
have

1T, (< fooll. + O 12, (IX.1)

as r— oo, le, limsup, |, . [T.(/) <|fowl ... We will show below that

[ Soollo. S UT (N + o(1), (1X.2)

as r— oo, le, iminf, | T, (/M = fool ., and the claim wili follow.
To prove (IX.2), we set Z=(z, 0) and write

f(Z)=foo(2)
=(po, T, (f>72) do) + {foo(z)_fyf(7’z(w)) d#,(W)}, (IX.3)

where ¢,=1 is the vacuum element. Using (VII.29), we rewrite the above
equation as

foolz)= (b0, Ulrz) ' T(1) Uly) o)
F o) =] inlo)d (91}

] L0200 = foo )T i (W), (1X.4)

where (w',n'):=7v,(W). The first term in (IX.4) can be bounded by
1T, (), as U(yz) is unitary. Using Proposition VIL3, we can apply the
proof of Theorem 2.1 in [6] to show that the second term is o(1) uniformly
in z, as r —» c0. For the third term, we use Proposition VII.12 to bound

’L Lf(yz (W) — foow')] du, (W)

< Z r—(lml+I/fl),"Z”(fO.})Z)Mj I (IX.5)
o B lal =B #0

and the claim follows. |

IX.B. In this subsection, we give two lemmas which will be needed
for the proof of Theorem VIIL.14. For the following lemma and its proof we
extend the norm | -||, to supermatrices by taking the supremum of the
norms of the elements of the matrix. We denote by y'*)(W) the kth com-
plex derivative of y(W).
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LeMMA IX.1. For each k, there exists constants s, s’ >0 such that
Iy (W)llo < CA(w, w)~* A(z,2) ", (IX.6)

where A(z, z) denotes the triple determinant of the underlying Cartan domain.

Proof. For type I superdomains, the first complex derivative y.( W) was
computed in the proof of Proposition VI.2 to be

Yo (W)=[(WB*+ A4*)"®(CW+D)] ', (IX.7)

where A, B, C, D are the matrix blocks of y,. For types 11 and 111 the com-
putation is essentially the same, although the tensor product will be
replaced by sme partially symmetrized or antisymmetrized tensor product.
This will not affect the bounds, so we proceed to analyze (I1X.7).

For the following discussion, we abuse notation slightly by letting || 4],,
for a supermatrix A4, denote the supremum of the |-|, of all the entries.
Each further derivative of (IX.7) will involve an extra factor of
(ZB* + A*) ' or (CZ+ D) !, times entries of B* and C, respectively. For
types Il and II1 there will be extra factors of two, but this will not make
a difference. By a conservative estimate we have

Iy (WMo < KLIBlo ICllo 1% TIKWB* + A*) ™", [(CW+ D) |, 1%,
(IX.8)

where K is some constant.

For the matrices B and C we have, by virtue of the conditions (IV.25),
the bounds || B, < [|4llo and | C|l, < || D]o- Now, for all domains, 4 and D
satisfy the relations (VI1.40), which implies A< |[(/,,—ZZ*) '||, and
I1Dllo< N4, (,—Z*Z)’1 lo. Furthermore, up to a constant matrix,
CW+D=D"'(1, ,+Z*W) and WB* + A*=(l,+ WZ*) A*. Thus the
proof will be finished if we can establish a bound

1L, ,+Z*W) o< Kd(w, w) > A(z,z) (IX.9)
(the case of (I,,+ WZ*)~! is similar enough that it need not be dealt with
separately).
To make this bound, we observe that
I —(I,+z*w) 'z*p
1 Z*Wy = ! "
x(l,,+z*(1m+n¢*) T 0 -!
0 1,+0*(1, +wz*) "y '

(1X.10)
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It is clear that the only divergent matrix elements in this expression come
from the matrix elements of (/,+z*w)~'. This is precisely the divergent
factor in the case of ordinary domains, and so the result follows from the
proof of [6], Lemma 3.2(i1). J

LEmMA IX.2. For u,ve B*(2), and ¢ € #,(2), we have

Jy W(W)v(W) $(W) du,(W)‘

172
<CILelo T =2 [ o, ()] (1x1)

x, f

Proof. We write

| u(W)v(W)qﬁ(W)du,(W)]

o

< ¥

a, fl, p, &

= 2 @0y n™n®, v,6(w) 0"’ @(W))]. (IX.12)

a f,p, o

[t 9) 7070 5 0) 0P B(W ) it W)j

@

By virtue of Theorem VII.1 we can apply the Schwarz inequality to this
expression to obtain

Ju(W)v(W)qs(W)du,(W)\s S 10yl g O0) 707 I InPn? 6OW )1

2 x fB.p. 6
(IX.13)
By Lemma VIL11 we then have
[ ww) o (w) g(w ) du, (W)
SC Y pm B2y | g (1]
% B.p.d
< Cligl vl Y r®™+1P02 44 ). 8 (IX.14)

« f

IX.C. Proof of Theorem VII.14. Our procedure will be to expand

(¢, T(/)T.(2) l//)=f HZ) [(Z) K'(Z, X) g(X) Y(X) dp,(Z) dp, (X),

Y x@

(IX.15)
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where i, g€ #.(2), f, g€ B* (2), in a power series in r [13]. We make the
substitution X'=7v,(W), and use the transformation properties of the
Bergman kernel to rewrite (IX.15) as

(6. T,(f) T.(g)¥)

[ 5@z Z)

o Wg(w(w))l//( Y2 (W) du (Z) du, (W).

(IX.16)

The next step will be to expand g(y,(W)) in a Taylor series. We will need
to expand out to order m, where m is an integer such that m>ny,+ 4. The
Taylor expansion for superfunctions is

gy (W))=¢gl +Z W.77(0),, 0,8(Z)+ W, 75(0),, ¢,8(Z))

+ % Z WK?)Z(O)K[A WVV’Z(O)\‘/) 6p6;1g(z)

v, K p
+% Z Wh‘ pku(Z) aug( )
oK, p
+ Y Wyz0),, W,72(0),,0,0,8(2)
MoV, KL p
% Z Wk/?(o) /1})/(0) ‘ug(Z)
v, Ko p
+3 Y W.W,T,,.(Z)0,8Z)
oK, p

+ terms of order 3 through m — 1

+G(Z, W), (IX.17)

where 6, := d/0Z, and

I Z) = (W), , (IX.18)

oW, oW, ” oo

and the mth order remainder term is given by

o d
G(Z, W) ;=——l-)—,fo ds(1 — )™=

(m— dmg(v L(sW)).  (IX.19)

Denote by I, , the contribution to the integral from the term in the
expansion of g with a powers of W and b powers of W, and let R denote
the contribution of the remainder term. In evaluating these terms we will

580/127,2-17
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make use of the following facts. Given a holomorphic function y on 2, we
have remarked before that

[ 2wy du,(w) =0 (1X.20)

Furthermore, using the circular symmetry and Proposition VIL.8 we obtain

H

f W (W) du, (W

_Bu Ox_

- oW, (0), (IX.21)

for any p.
For the lowest order term in the expansion, we have

B S K'(Z, Z) .
Io.o—Lw 9 )'f(Z)_d_K’(yZ(W), Z)g(Z) (- (W))du (Z) du, (W)
(IX.22)
The integrand is holomorphic in W, so apply (1X.20) to get
loo=] FDS2)2(2)$(2) . (2)
=(¢, T,(/8)¥). (IX.23)

The same fact (IX.20) also clearly implies that I, ,=0 for a>b.
The next nonzero term in the expansion is thus /7, ,, which is given by

) o 22y L)
Iy, _1;‘\— '[yx,j HNZL)f(Z) lez(o)n‘u &”g(z) K'(y, (W), Z)

x K'(Z, Z) du,(Z) du, (W). (1X.24)

We now apply (IX.21), to obtain

i =2 3 (= 1y 8, [ G212 77000 8,8(2)

[lh @

x[ ¢ (W)
W K (1,(W), 2)

] K'(Z,Z)du,(Z), (IX.25)
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where the sign arises from the permutation of elements of the integrand
(keeping in mind the fact that W = I'W). Applying the chain rule gives

1 -
10.1=; Y (—1)“‘”""”“'ﬁKL¢(Z)f(Z)7”2(0)“‘5,‘3‘(2)?’2(0)“
z
x a[—K—w((?—)Z—J K'(Z, Z)du,(Z)

1 -
z;z (___1)(E)‘+Ev|P(fi+r.‘.ll7|gi+cp]J ¢( )P,“,(Z)f(z) 5“g(z)

v @

W(Z) ,
x a[m] K'(Z,Z)du,(Z). (1X.26)

Noting that
K'(Z,Z)du (Z)=N(Z,Z) "dZ, (IX.27)

we integrate by parts as follows:

— __l N R PA RN CTES D P YR AN i P#“(Z) A :|
o= =, X (=1 |, 720 55 25D 82)
XW(Z) N(Z, ZY du,(Z)
— l _ eppl Y+ eeley+ 1 Ve AW —_P;g_(__{)__ )
=13 (aprneen [ Gz10, | S 1(2) 8,e2)

Hov

xY(Z) N(Z, ZY dp (Z)

1 — -
- 2 (—1 )““”“”L HZ) P, (Z2)0,/(2) 0, 8(Z)Y(Z) du,(Z)

v

1 . -
—~ T A== [ G(Z) P (Z)£(2) 0,8,8(2) U(Z) du, (Z),

uov 4

(IX.28)

Observe that, as a consequence of the assumption that r is sufficiently
large, no boundary terms are present. As a consequence of Theorem V.7,

Z (_ 1 )1:\‘15:,‘+ 1) 8‘ [—A%%} =0. (IX29)

Y

This leaves two terms in (IX.28).
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Now consider the term 7, , which is given by

K(Z2,2) —
f(2) — W,
“ Z pjfxf )K,(VZ(W)’ Z) 720,

X W,77(0),,8,0,8(Z)Y(y-(W)) du(Z) du,(W). (IX.30)

Using (IX.20) and (IX.21), we can perform the W integration to get
1
L= % | $Df(2)Pu2)2.8,82)¥(Z) du(2)

== (~1)‘““+"“"’"”f HZ) P, (2)f(Z)0,0,8(Z)Y(Z) du,(Z).

o

(I1X.31)

This exactly cancels the third term in (1X.28), so that we finally obtain

bt h=r 5 (=10 (T (P00 0). (X32)

My VK

All that remains to complete the proof is to bound the other terms as
r — co. Of the remaining second order terms, [, =0 and I, , is given by

Io,2=%j( j¢—(Z_)f(Z) K'(Z,Z)K (yz(W), Z)""

|

Q)

x[ S WL, W,5(0),, 8,

oV K

«8(Z)

+ Y WKWPFW(Z)alg(Z)] Yy (W) du, (Z) du, (W)
- (1X.33)

We want to bound this term for large r. To do this, we first evaluate the
integration over W using the principles of (IX.20) and (IX.21). For this
integral we obtain

| K GaW).2) W (W) di, (W)

y R L L)
W, OW, K (v2(W), Z)

u»

j W W, W, W, du,(W).

W=0

(I1X.34)
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The convergence factor comes from the integral on the right-hand side of
(IX.34). We can apply the positivity property of the measure and the
Schwarz inequality to give

[ WKWPW#W‘.dp,(W)*Sf (Z W!,W#>2du,(W). (IX.35)

I
Because of Proposition VII.3, we can apply the fact [6, Lemma 3.1 (ii)] that

fo Euw,?) Az, z) ™dz

<Cr ¥, IX.36
_fD A(z, z) ™dz 4 ( )
together with Proposition VII.12, to see that
_ k
j (Z W, Wﬂ> du,(W)< Cr*. (1X.37)
Z Ny

Substituting (IX.34) into (IX.33), we convert the derivatives with respect
to W at zero into derivatives with respect to Z using the chain rule. We
then integrate by parts to move these derivatives off of the (Z), as in the
analysis of 7, ;. These derivatives then act on the expression

fZYN(Z,Z) 7 [72(0),, 72(0),, 0,0,8(2) + T, (Z) €,2(Z)]. (1X.38)

The derivatives of N, y%,, and I" have potential singularities. In view of
Lemma IX.1 we can bound the absolute values of the components of these
terms by A(z, z)~* for some integer 5. Then, since the supports of the com-
ponents of the function f are restricted to some compact set S,, we can
bound the | -|l, norm of the derivatives of (IX.38) by

CllsI, gl sup 4(z, 2) 7, (IX.39)

Sy

for some ¢ Using this bound in conjunction with Proposition VIL.12, we
thus have

Ho 2| SCsr 21 £ N gl 1w 141, (IX.40)

where the r~* comes from the convergence factor (IX.37) and the constant
Cs, depends on S,.

The same reasoning applies to the cases /, , where 3<a+bh<m. The
convergence factor comes from (1X.37). The result is that

o sl <Cr=20 1 gl Iyl 4l (1X.41)

2

for some r and for 3<a+b<m.
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and X is the characteristic function of the compact set S, in which the
components of f are supported. Now, to bound the components of u, we
apply Lemma IX.2 to the W integration using the bound (IX.46). In this
way we find

(D < ClY N gl Az, 2) 1K(Z, Z)' 2

x ¥ i+ lo2 U ] 207 118D (0, ) 2 dy,(W)]
@2

¥é

1/2

(1X.49)

For the remaining integral over W, we have
[ e 00 A vy~ e (W)= [ w2 (W), (IX.50)
@2 o

where r' and r differ by a constant. We can apply [6, Lemma 3.1(i1)] to
bound this expression by a constant times r~"*!"*" Returning to
(IX.49), since N(Z, Z) = A(z, z) + nilpotent, the components of K (Z, Z)'?
can be bounded by A(z,z) ">~ for some s” (the s” occurs when we
Taylor expand (4 + nilpotent) ~'). We thus have

lug () S Cr="2 |l gll, Az, z) 727 (IX.51)
Applying these results to (I1X.47), we find that
- 12
IRI<Cr="2)gll 1 fNo g W] U X (2) Az, 2) 772V du (Z)] .
@
(IX.52)

The 0 integration in the remaining integral can be estimated using Proposi-
tion VIL3:

[ X5 a2 2w, (2)
.

=CmA [ Az [0 )] (IX53)
Sf

The integral over S, is finite and independent of r, so we can absorb it into
the constant. According to Proposition VII.4, the normalization constant
A, can be bounded by a constant times r ™ as r — ov. Applying all of this
to (IX.52), we have

IRIS Cgr =™ 2Nl AU NI Il (IX.54)

With the fact that m —n, > 4, this completes the proof. |}
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