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We construct families of non-commuting C*-algebras of “quantized functions™
for bounded irreducible Hermitian symmetric spaces. For this procedure, we use
algebras of Toeplitz operators defined with respect to a perturbation of the
ordinary Bergman metric. We prove the deformation quantization conditions for
these algebras. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

In non-commutative geometry, the algebra of continuous functions on a
manifold is replaced by a non-commutative C*-algebra [11]. A natural
scheme for constructing non-commutative spaces is deformation quantiza-
tion. This framework involves introducing a family of algebras depending
on a deformation parameter (“Planck’s constant”), which approach the
classical (commuting) algebra in a certain limit. One, in effect, studies the
“semi-classical” limit of the non-commutative algebra. The key relation of
this limit is that the commutator of two “quantized functions” approaches
zero, with a first-order correction given by the Poisson bracket on the
manifold. This scheme was originally proposed in the context of formal
power series in the deformation parameter [2, 4]. Recently, it has been
extended to the non-perturbative setup (see [23] for some recent results
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and references), fitting thus naturally into the framework of non-
commutative geometry.

In [16], this non-perturbative scheme has been applied to the Poincaré
disc. The approach of [16] is based on the ideas of [4-6] to use Toeplitz
operators as quantization maps (Toeplitz operators were also used in [24]
to quantize the sphere.). Among the results of [16], non-perturbative
estimates on the rate at which quantized functions and their products
approach the classical limits were established. A similar quantization proce-
dure has also been applied to the n-dimensional complex vector space
{107. The most important ingredient in the proof [16] of the deformation
quantization conditions was the transitive action of a group of
biholomorphic automorphisms. In the case of [10], these automorphisms
were translations of the complex vector space. Because all of the irreducible
Hermitian symmetric spaces of the non-compact type [14] possess such
groups of biholomorphisms, it is natural to try to extend the results of
[16] to these spaces.

In this paper, we present the general deformation quantization for such
symmetric spaces. Our approach uses the ideas of Berezin who first
proposed a quantization scheme of these spaces [5], and speculated on the
physical interpretation of this procedure in [7]. Other references devoted
to this subject include [21, 22, 25, 27, 28]. We define the non-commutative
C*-algebras, as in [16], by considering Toeplitz operators defined
with respect to a perturbation of the Lebesgue measure. The parameter
occurring in the perturbed measure is related to Planck’s constant. The
main result of this paper is the non-perturbative proof of the deformation
quantization conditions for the algebras so constructed.

There exists an extensive literature on the subject of Toeplitz operators
on Hermitian symmetric domains, chiefly concerning operators defined
with respect to the Lebesgue measure, see, e.g, [1, 3, 7, 8, 11]. The
monograph [30] will contain a general analysis of the structure of the
C*-algebras generated by the Toeplitz operators with continuous symbols
which are defined with respect to the perturbed measure (the case of the
unit disc was discussed in [16]). See also [26], for the structure of
C*-algebras generated by a similar (Wiener—Hopf) type of Toeplitz
operators.

The paper is organized as follows. In Section 2, we describe the quantiza-
tion procedure for a general irreducible Hermitian symmetric space of the
non-compact type and we state the main results (the deformation condi-
tions) in several theorems. In Section 3, we prove these results in the
general case, under several assumptions which are stated in the form of
lemmas. In Section 4, these lemmas are proven using the general theory of
Jordan algebras, while Section 5 outlines a more elementary argument for
the special case of the type I domain.
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2. DEFORMATION QUANTIZATION

Let D be an irreducible Hermitain symmetric space of the non-compact
type [12] which is realized as a bounded symmetric (Cartan) domain in
C". Recall that the standard Hermitian structure on D is defined as follows.
Let K,({, n) be the Bergman (or reproducing) kernel associated with the
Lebesgue measure d**{ on D. We choose to normalize so that
Kp(0,n)=1, for all ne D. Then the Bergman metric on D is defined by

2

av 6« = log Kp({, é)d{ ®d5k (2.1)

hg({):= Z

1<jksN
In fact, the associated (non-degenerate) two-form,

2

i )
wgl(l): =< = log K, (L, ) di; A dy, 22
s($) 215‘[@;sz~6€ P g Kp ¥ K (2.2)
is closed, and so (D, w) is a Kihler manifold. In particular, (D, wg) is a
symplectic manifold.

Let Aut(D) denote the Lie group of holomorphic automorphisms of D.
Under y € Aut(D), the Bergman kernel transforms according to

Kp(y(C), v(m) = {det 7'(0)} =" {dety'(m)} " Kp(L, 1), (23)

where 7' denotes the Jacobian of y. As a consequence, hy and wj are
invariant under Aut(D). Furthermore, the invariant measure on D is given
by

dup({) = Kp(L, )d*™C. (2.4)

For each (e D, let y,€ Aut(D) be chosen so that y.(0) = { (the existence
of ;. follows easily from the properties of symmetric domains [14]). As a
consequence of {2.3),

Kp({, {)=|det y:(0)] 2. (2.5)

It is easy to express the Poisson bracket {f, g} ({), f, ge C™ (D), associated
to wp, in terms of y,. Indeed, since wy is Aut(D)-invariant, {f, g}({)=
{f=7:, goy.}(0). From the definition (2.2) of wy, we see that

{£.8100)= 3 B;(6,/(0)0,8(0)—d, 8(0)¢, 1(0)), (2.6)

1</ N

where
) o*
ﬁj = ac ac logKD(C C)ls*(] (2.7)
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Thus we have

e = Y w00, g0)—8,8(0) 8, f10)), (2.3)
1<ji kSN
where the matrix () is given by

TTr(C),‘k= Z ﬂl?’&(0)113',;(0)7;(- (29)
I</I<N
The aim of this section is to construct a quantum deformation of D.
More specifically, we will define a family of C*-algebras .o/ (D), for
rzr(D)>0, and a linear continuous map T,:C,(D)— (D) (the
quantization map), where C,(D) denotes the space of continuous bounded
functions on D. As r — oo, T,(f) approaches its classical value fin such a
way that it reproduces the Poisson structure on D given by the Poisson
bracket (2.7). We formulate these properties precisely at the end of this
section.
We denote the deformation parameter by re R and set

du,(8) =4, Kp(L, 0) " dpup(D),
K’I)(C’ r’) = KD(C» r’)r*

where 4, >0 will be chosen momentarily. Let S denote the set of those real
numbers r for which [, du,({) < oc. It is proven in [5, 13] that if D is a
Cartan domain, then S contains the inverval [r(D), o), for some r(D) > 0.
We now choose A4, so that du, is a probability measure. Let £ (D) denote
the closed subspace of L*(D,du,) consisting of holomorphic functions.
Then K7,({,n) is the integral kernel of the orthogonal projection
P: L3(D, du,)— #(D), ie, K,({,n) is the Bergman kernel for D
associated with du,.
For ye Aut(D), we set

U) (L) = {det(y ') (D)} (v "(0),  deA(D), (2.11)

where {det(y ') ({)} is defined as exp{rlogdet(y ')’ ({)}, and where log
is a fixed branch of the logarithm (for concreteness: log z =log |z| + iarg z,
where —n <argz <) Then, as a consequence of (2.3), U(y) is unitary.
Furthermore, for y,, y.€ Aut(D),

Uly,v2)=6(71. 72) Uy ) U(72), (2.12)

(2.10)

where

(310 74) i {det((y.72) ') (D))"
PO {det(y Y (D)) {det(y, ) (vy (O}

(2.13)
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We verify easily that the right hand side of (2.13) is, indeed, independent
of {, and, furthermore,

IG(}\, }'2)' = 15
0(72, 73)6(71 72, ¥3) " '0(vy, 7273) 0y, v2) =1,

for all y,,7v,,7;€ Aut{D). As a consequence, y— U(y) is a projective
unitary representation of Aut(D) on #/(D).
For fe C,(D), we define a linear operator T,(f): #,(D)— #,(D) by

T.(f)¢=PM(f)§, (2.14)

where M(f) is pointwise multiplication by f. The action of T,(f) thus
consists of multiplication by f followed by projection back into (D).
Clearly, T,(f) is a bounded linear operator on (D). It is called a
Toeplitz operator with symbol f. Explicitly,

TANHO =] Ko(m) S (n)gln) di ) (2.15)

Let /(D) denote the C*-algebra generated by all such Toeplitz operators.

From now on, we assume that D is an irreducible bounded symmetric
domain. The main result of this paper is to show that the mapping
f—=T,(f) is a quantum deformation of D. The precise meaning of this
statement is given by the theorems stated below, which will be proven in
subsequent sections of this paper.

When unambiguous, we will denote the operator norm on #,(D) by |-,
and not state explicitly the dependence on r. We also denote by | /|, the
sup-norm of fe C,(D). Let C{(D) denote the space of functions in C,(D)
with continuous and bounded derivatives out to order p. On this space we
define the norm

P
llf”p. = Z Z “6/1 (Q)Af” P (216)

k=0 ji. ...
THEOREM 2.1.  For any fe C,(D),
,Ii"i 1T =111 (2.17)

The two theorems below state that, in a suitable sense, the product
T.(f)7T,(g) is a deformation of the ordinary pointwise product of
functions fg.

THEOREM 2.2. Let f, ge C, (D), with g having support in some compact
set K< D. Then

Lim T (/)T (8)—T,(f)l =0. (2.18)
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This theorem can be amplified, if we assume additionally that fand g are
sufficiently smooth.

THEOREM 2.3. There exists an integer my such that for all m>my and
Jor [, g€ CY (D), with f having support in some compact set K< D, we can
find a constant C (depending on K), such that

ITANTA8) =T, (fg)+r "TAmu(&, NG MSChr 1S N o 181 o s
(2.19)

Jfor sufficiently large r, where the matrix n({) was defined in (2.9).

As an immediate consequence of Theorem 2.3 and the form of the
Poisson bracket (2.8) we conclude that .« (D) is a quantum deformation of
the Poisson algebra of smooth functions on D. The ratio 1/r plays the role
of Planck’s constant.

THEOREM 2.4. Under the assumptions of Theorem 2.3,

LT (), T T+ T, g I < Cxr ™ 1Sl 181, r  (220)

Sfor r sufficiently large.

3. PROOF OF THEOREMS 2.1, 2.2, AND 2.3

In this section, we prove the main theorems stated in Section 2 under the
assumption that the lemmas stated below hold.

LEMMA 3.1.  There is an ro=ro(D) such that the measures du, satisfy the
Jfollowing conditions:

(1) There are constants C,,C,>0 such that the normalization
constant A, in (2.10) obeys

Cr¥<A,<Cyr”, (3.1)

Sfor all r = ry, where N is the dimension of D;
(1) For any integer q >0, there is a constant C such that
A ger q

flnlz” du,(n)<Cr 9, (3.2)

for all r=r,.
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LemMma 3.2, We can define the map D3 (s y e Aut(D), with y.(0)={(,
such that the following conditions are satisfied:
(i) The family {y.}..p is equicontinuous;
(ii) For 6 >0, sup 5, |det y:(0)| < 1;
(ii1) For any k, there are constants C and p, p' 20 such that

2

LA Iy /3

ﬁk'}';('? )i

< K , P v, v l"' 3.3
5;7/_1...(},7/_* CKp(n, 1) Kp((, {) (3.3)

Proof of Theorem 2.1. We note first that, for any r,
IT (<Nl (3.4)

because the orthogonal projection onto (D) has norm 1. We must
therefore prove that

(WA <,lifl 1T (3.5)

We can write

f@=| f(;';(n))du,(n)+(ftl)— J 160 du,(n))

= (1,2 o o)+ [ /G0N =S Geln) ] dit, )

Because
T, (y*)=Uy) ' T()U), (3.6)

with U(y) unitary, we have |7,(v* )| = T,(f], and so

1Al SIT +sup || LAGO) —/ 0T dustn)|. BT)
Suppose we are given an ¢ > 0. The function f is continuous and bounded,
and Lemma 3.2(i) gives us that {y.} is equicontinuous. Therefore, we can
choose 6 > 0 such that

sup ) —f((0))] <e/2, (3.8)
whenever {n| < 8. The integral on the right-hand side of (3.7) can be broken
into integration regions {|n| <3} and {|y| >4}, which we label by /, and
I,. We have

sup Il =sup | [ L/ G0N —fGrcm) ] die (1)
<sup sup |f(7:(0) /(7. ()| <572 (3:9)
{ Inl<é

SKO13 111
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For the second half of the integral, we have

sup ILI <20/ | du, (n)

Inl 23

=201, A,L L Koln T d™y
e

<2 1D If1., A,{sup Ko(n,m} (3.10)

Ini =8

where |[D| <o is the Lebesgue volume of D. Using Lemma 3.1(i),
Lemma 3.2(ii), and Eq. (2.5), we thus have

2(r— 1)
sup |[1,| < Cr? { sup |det yﬁ,(O)|}

[y =6

<C'rVe ™, (3.11)

with C'>0, x> 0. By choosing large enough r, we can make this bound
smaller than &/2. This proves (3.5) and thus establishes the theorem. |

Proof of Theorem 2.2. We start with the expression,

W AT(NT(8)—T.(J8)} ¢).
= Ko 0L /1 OHOT0) it () it (). (3.12)

and make the substitution n=7.(¢). Because of the transformation
property (2.3) of K,,, we see that

Ky (8), y:(8))
= {det y;(0)} " {det y;(£)}" du, (&)
K, 0)

=230 (&), 3.13
Kol 72() i, ($) (3.13)

Kp(y:(8), ) dp(y:(8)) dup(&)

We thus obtain
W A{T(NT.(g)—-T.(f2)}¢),

- fM L/(oE) = £ (0] g(O) ) B TTEN)

LYA(SYS)

——— d . .
s 7)) 1, (0) dp, (E) (3.14)
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Applying the Schwarz inequality to the ¢ integration yields

[ AT ()T (&) —T,(/2)}¢).|

W @®

<j 1g()g(O) K5(E ¢ { K0 y(é))lzdu,(é)} " du, (&)

1/2
x {Sl}p | 17Gsen s 0 dﬂ,(é)} . (3.15)
It follows from (2.3) and (2.11) that

W (y:(E)12 i
___"______ =K (L 1 . 5
oK@ N A =Ko O UGV

=Kp( 0 vln (3.16)

Thus we obtain, using the restriction on the support of g,

[, {T,(ST,(g)— T.(fg)} 4),]
<llgle hll JK 180 K'p(8, £)'7 dp, (0)

1,2
x{sup [ 700D =10 0001 du (01}

{

<lglo 10l gl | K D) di(0)

1/2

x {Sl}p | If(?;(f))—f(v:(O))lzdu,(é)} SN ERY)

The integral over the compact set K can be bounded, uniformly in », by a
finite constant, and we saw in the proof of Theorem 2.1 that

im fsup [ 17000~ OD dutDf =0 (18)

This concludes the proof of Theorem 2.2.

Proof of Theorem 2.3. Let m be an even number such that m — N >4,
where N is the dimension of D. Following [16], our technique will be to
evaluate

W TANTADS) = K ) g $n¥T) du (0 die fn). (319)
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We can change variables to n = y.(¢), as in the proof of Theorem 2.2, to get

W, TANTA2)9) = |

D x

Df(C) g(y(EN B AEN YD)

L Kplt0)
K78, 0)

The next step will be to perform a Taylor expansion on g(v,(£)), out to
order m. We will group the resulting terms according to the powers of ¢
and &, denoting by 7, , the contribution to the integral (3.20) from the term
in the expansion with p powers of ¢ and ¢ powers of £. We will make use
of the following two facts. For any holomorphic function ,

| xtm du,im=1(0)

du,(C) du,(S). (3.20)

(3.21)
[ 20 due, 00 = 2020) [ 12 dus ()
D D

This can be immediately seen for polynomials, because each domain has
the circular symmetry n — en, « real, and the result can be extended to all
holomorphic functions through the Runge approximation theorem.

Using the circular symmetry as in (3.21), one can quickly check that
1, ,=0if p>g. We obtain the first term in the expansion of (3.20),

- _ Kb )

lo o= C e = an, r
0=, SO EOBGADFTO o8 s di(0) )

=] SOOI dp )
=y, T,(fg)¢). (3.22)

The next non-zero term is (in the following formulas we use the summa-
tion convention where each repeated index is summed over from 1 to N)

Lo =f D.f(C)ﬁk 8()7:00),, &Py (ENY(D)

" Ky, 0)
Kp(7:(E1 D)
Using (3.21), we find

=t | A0E 80 TOWIDKE O 5

e ]
g {K})(v:(é), 5., O (3.24)

dp,({) dp, (S). (3.23)
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where
ei =] 1eddu @) (3.25)

From the standard definition of the Bergman kernel as a sum over an
orthonormal basis, one obtains the expansion

K& &=1+Y ¢, 2 [E)1+ - (3.26)

This implies that

. P&
Kp(E, ¢)=1 +- DI 1 S (3.27)
=1

Comparing this to the definition (2.7) of §,, we see that
ci=p,r " (3.28)
We can interchange & and { derivatives as

a { #(7:(£))

=5 =7:(0),[KH(L,0) 71 0,0(C
3, K;(v;(é),C)}::o 7i(0) LK 0 0,9(0)

— (KL 0) 6K (0]
=7:(0),; &; (K5 O (D] (3.29)

Substituting this into the expression (3.24) for /1, | and using (3.28), we get
Ioi=r"" | fO0 O nuOTDK 0,
x LKL, Q)" ¢(0)] dp, (£, (3.30)

which we can integrate by parts to give two terms,

loa= ="' [ /(008 ) mu( ST dit (0)

—r! fo(C)ajakg(C)n,-k(C)¢(C)\J/(C)dur(C) (3.31)
We now note that the next term in the expansion, /, ,, is given by

La=[ 02880300 617 66T

Kn( D)
Ko(7:(0.0)

=r! fD S(0)0,0, 8O mu (O)SOT) s, (). (3.32)
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Combining (3.31) with (3.32), we have

Iy + 11, 1 =—r ‘(lﬁ, Tr(njk(c)(a/f)(gk £))9). (3.33)

To complete the proof, all that remains is to bound the other terms as
r— 0. For 1 < p < ¢ <m, we want to rewrite the g powers of  coordinates
as derivatives with respect to ¢ coordinates, just as we did for the two sim-
ple cases in (3.21). In general, this results in a combination of derivatives
with respect to ¢ of order <m, evaluated at ¢ =0, multiplied by integrals
over the corresponding absolute values of ¢ coordinates. The derivatives
can be moved onto fand g by integration by parts, and the absolute values
appearing in the integrals can all be bounded by [£]?, since ¢ > 2. Thus we
have

1yl SC NSl e 1811m, o N 1] fD 1€1% du, (). (3.34)

By Lemma 3.1(ii), we can therefore bound

DIV AR @ Sy 3/ Py 4 s T T T4 (3.35)

Ilsp<g<m

The remainder term in the expansion of (3.20) is given by

- = _ Kb {)
R—waf(C)G(C, S)p(r.(S)) (g)K;,(y;(rf),g)dﬂ'@)dﬂ'(é) (3:36)
where, by Taylor’s theorem,
! d"
Gl &)= s [ (=1 S g0 337)

Each derivative with respect to s picks up a power of & and by
Lemma 3.2(iii), for every k there are constants C and p, p’ such that
¥ y:(8),
0 J1s o Jh aéfl e aéjk

Using these facts, it is straightforward to find constants C and ¢, ¢’ such
that

SCKp(& 8P Kp(L, D) (3.38)

G NS CNglm o Kpl& E)T KL, 0) (€™, (3.39)
Because of this bound on G, we have

IRISCgllm J'D . LSOO KoL 07 Kpl, &) 1€

190

K7 (rc(2), 0] “Hr8) el (3:40)
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Applying the Schwarz inequality to the ¢ integration, and using the
compact support of f, gives

1/2
RISC NS N, 18l {fo Ko(E &) 1€ du,(é)}

). 2 12
R % dﬂr(é)} du,({). (341)

Using Lemma 3.1(i)-(ii), we can show that

<[ WO KaG 0o |

A
[ e, o)

Ar»Za D

| Kote &y e due)=
<Crm (3.42)

We also have, as we saw in the proof of Theorem 2.2,

) 2
Dr[{%du,(é):|I¢||2K'D(C,C)". (3.43)

We thus obtain

IRISCr="2 | fllm, o 118l 18Il LIW(C)I Kp(L,0Y?* 7 du,(0)

172
<Cr | f o 12l 160 101 { | Kott.0y2 du,(f:)} .
The remaining integral is given by
[ K@ O du @) =4, [ Knll, 0 dun(0).
K K

This integral over K is independent of r, and can be absorbed into the
constant C,. Using Lemma 3.1(i), we obtain the bound

RIS Cxr= ™ 2| fll o N 8llm, e 161 11 (3.44)

Recall that we have chosen m so that (m — N) > 4. This concludes the proof
of the theorem. |

4. PrROOF OF LEMMAS 3.1 AND 3.2

In this section we complete the proof of Theorems 2.1-2.4 by proving
Lemmas 3.1 and 3.2 for all irreducible bounded symmetric domains. It is
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well known [14] that these domains can be classified into four infinite
series (the “classical” domains) and two “exceptional” domains of dimen-
sions 16 and 27, respectively. While Berezin [5] studied only the classical
domains on a case-by-case basis, 1t is more satislying to have a uniform
treatment applying also to the two exceptional domains, whose
holomorphic automorphism groups are closely related to the exceptional
Lie groups. Thus our proof of Lemmas 3.1 and 3.2 does not depend on the
classification of symmetric domains but uses the theory of Jordan algebras
and triple systems [20, 297]. In Section S, a direct and elementary proof is
sketched for the basic example of type I domains, which also serve as an
illustration of the Jordan theoretic concepts.

Let Z=C" be a finite-dimensional complex vector space. A Jordan triple
product [19,20] is a ternary operation

&l {in*ljeZ (4.1)

on Z which is complex bilinear and symmetric in &, { € Z, conjugate linear
in ne Z (indicated by the *-symbol), and satisfies the so-called “Jordan
triple identity.” Let Z be endowed with a (positive hermitian) Jordan triple
product [20], and define triple idempotents e € Z by the condition

{ee*e} =e. (4.2)

To ne Z, we can associate the positive operator which takes {+— {yn*(}.
By the spectral theorem, we obtain a decomposition

n= 3. ne. (4.3)

1<igsn
where ¢, ..., e,€ Z are (minimal, orthogonal) triple idempotents, and the
“singular numbers,” n,> --- =14, 20, are uniquely determined by . The
number # is called the rank of Z. One can show that

Inl:=n, (44)
defines a norm on Z, whose open unit ball
D:={neZ:n <1} (4.5)

is a bounded symmetric domain. Conversely, every such domain can be
realized in this way [20, 29]. The group

K:={yeAut(D):y(0)=0} (4.6)
consists of linear transformations which leave the norm (4.4) invariant.

Assume from now on that D is irreducible. Let
Z= @ 2z (4.7)

O0<si<j<n
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be the Peirce decomposition [20, Theorem 3.14], where

61’/{ + 5

Z,-,-:={CEZ:{eke,’fC}=—2-—L"C,V1<k<n}. (4.8)

Here e, .., e, are as in (4.3). Then Z,,= {0}, Z,=Ce, (for 1 <i<n), and
the numbers
a:=dimg. Z; (1<i<j<n) (4.9)

and
b:=dimc Z, (1<j<n) (4.10)

are independent of i, j and of the choice of ¢, .., e,. Applying (4.7), we
obtain

N=n+gn(n—1)+nb. (4.11)

We now introduce an important class of linear operators on Z, namely
the Bergman operators

B(E, =0 =20&n* ) + {E{n{*n ¥}, (4.12)

depending on &, ne Z. Note that (4.12) is complex linear in { and “sesqui-
holomorphic” in (&, n). By [19, 27] the determinant

det B(E, n) = 4(&, n)” (4.13)

is the pth power of a sesqui-polynomial function 4(&, n) (a polynomial in
¢, a conjugate polynomial in n), which is called the Jordan triple determi-
nant. The integer power p is given by

p=24+an—1)+b (4.14)
and is called the genus. Moreover, the Bergman kernel of D satisfies
Kp(l, ny=det B, n) ' =4, )" (4.15)

In terms of singular values (4.3), we have

Amomy= I (1—nj). (4.16)

Ilsisn
For r>1—1/p, the measure

o —N FD(pr) plr- 1) J2Ny
du,({)=mn -—————rb(pr_N/n)A(C,C) d=*{ (4.17)

SRO EIR I-12
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is a probability measure on D [17, 30]. Here d"{ is the Lebesgue measure
for the K-invariant inner product ({|#n) on Z which satisfies (e;|e,)=1 for
all 7, and

rp(d) =)™ "2 ] F(i—%(j»l)) (4.18)
1</€n

is the Koecher-Gindikin /-function associated with (the “radial part” of)
D. Comparing with (2.10) and (4.15), we see that

I'p(pr)
A=n N =L (4.19)
I'p(pr—N/n)
Applying Stirling’s formula to each factor of (4.18), we obtain
N
4,00 (4.20)
T

as r — oo, where ~means that the quotient of both sides tends to 1. This
proves Lemma 3.1(i). Since du,(n) and [n| are K-invariant, the integral in
Lemma 3.1(ii) is given in polar coordinates [ 18, Proposition 3.2.7] as

J int duim=a, | ni T1 (—ndyre "

lzmz - 29,20 1<i<n
2 2 2 1
x [I i=n)* I1 ni** " dn---dn,. (421)
I<i<jgn 1<ign

Here a and b are the characteristic multiplicities defined in (4.9) and (4.10),
and we use (4.4) and (4.16). Putting y, := 5?2, the integral becomes

[ i dwon=24, y T =y
D lzyz - 2zm=20 I<i<n
X H (yi_yj)" l_[ }’761}’1'“61'}',,
I<i<j€n 1<i<n
<2’"A,J yi
Oy ISl

x [T (A=yp)ro=Dysn=nsbgy ...dy,

1<ign

=2 A B(pr— N+ 1, q+aln—1)+b+1)

x [] Bplr—=D)+1,a(n—i)+b+1), (4.22)

2<ign
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where B is the beta function. Applying Stirling’s formula again, and using
(4.20) and (4.11), we see that this upper bound has the asymptotic value

Y Mg+aln—1)+b+1) 1 INaln—i)+b+1)
TZN [p(r_l)]q+a(n—l)+h+l [p(r__l)]a(n iY+bh+1

2isn

~ CriN-lg+atn -1} +b+1]1-Facicalatn =D +b+11} =Cr ¥, (4.23)

as r — oo, This proves Lemma 3.1(ii).
For every { € D, the transformation [20, Proposition 9.8 ]

ye(m) =+ B O (n ) (4.24)
defines an element in Aut(D) with y.(0)={. Here
n= =B, =+ (nl*n}) (4.25)

denotes the so-called “quasi-inverse.” If ne D, £€ Z, and te C is small, we
have the “addition formula” [20, A3]

(m+1&) "=n"+B(n - ([ (4.26)
This implies that the complex derivative
ye(n)=B(, ) B(n, =) ', (4.27)

since for every e Z,

(té)gl

B(1£, 9)~' (E—1{E9*¢}) ¢ (4.28)

as t— 0. It follows that

lye(n)—7:(0) = |B(, )P Y
= ly:(m(n+ {nl*n})
<yl -1n+ {nl*n}

-C 4.
<55 C Ml (4.29)

since Cauchy’s inequality [29, Corollary 1.13] implies

sup [y.(¢)l = (4.30)

lyz(n)l < .
— 11l 1z <1 1 —|n|

This proves Lemma 3.2(i). By (4.27), we have
v:(0)=B((, ()", (4.31)
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so that (4.13) implies
det y:(0) =det B((, {)"* = 4({, ()7

=[] =< =[PP <1—g, (4.32)

I<ign

whenever [{|>d>0. Here {, are the singular values of {. This proves
Lemma 3.2(ii).

Finally, for each &, the kth complex derivative of y.(n) can be estimated
by

[y < C 1B, =0) 1T (4.33)
as follows from (4.27). Another application of Cauchy’s inequality shows
|BO7, m)' 2 B(y, =) "B O =1r,(Or: O = (3, 7) (O} < 1. (4.34)
It follows that

|B(n, =C) 'I<|B(n,m) "2 [B(LC) 2. (4.35)

Now, [20, Corollary 3.157 implies that B(n, n) is a diagonal operator with
respect to the Peirce decomposition (4.7),

B(n,n)z;=(1—n})1 —n])zy, (4.36)

where z;€ Z,. Since

(1—=n7) "2 (1—n}) '2< (1—n3) '=4mn) ' (437)

Ishk<n

for all 4, j (even for i=j), we conclude

|B(n,n) "2 <4n,n) '=Kplnn)', (4.38)
and therefore

1B(n, =) '[<Kp(n, m)'7Kp(L, 0" (4.39)

This proves Lemma 3.2(iii).

5. Type | DOMAINS

In this section, we consider the important special case of the “type I”
domains and give direct proofs of Lemmas 3.1 and 3.2, thereby illustrating
the abstract Jordan theoretic concepts used in Section 4. The vector space
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Z=C""" of all complex m x n-matrices has dimension N=mn, and the
Jordan triple product

{En*(} = 3(En* + %), (5.1)

for all & n, {eC™*" Note that this “anti-commutator” product makes
sense even for non-square matrices. The triple idempotent condition (4.2)
becomes ee*e=e and characterizes the partial isometries. Thus (4.3)
becomes the familiar singular value decomposition for matrices and the
norm (4.4) is the operator norm of the matrix #, regarded as a Hilbert
space operator from C” to C”. The open unit ball (4.5) becomes the
domain,

D, ,={{eCm":I,-{*>0}, (5.2)
of type I [14]. For 1 <i< min(m, n), the m x n-matrices ¢, with 1 at the
i, ith place,

[e.]y:=6,0,, (5.3)

where 1<j<m, | <k<n, form a maximal system of orthogonal triple
idempotents. The corresponding Peirce decomposition (4.7) is a sym-
metrized version of the usual matrix units, and we have ¢=2 and
b= [m—n|, so that »=0 for square matrices.

Th Bergman operators (4.12) have the form

B, )l =, —n*), —n*¢), (5.4)
and satisfy

det B(E, n)=det(], —n*E)"*" (5.5)

Thus A(¢, n) :=det(l, —n*E) is the triple determinant and p=m+n. The
Bergman kernel is

Kp, (L ny=det(£f, —n*) "7+, (5.6)
The invariant measure on D, , is

dup, (C)=det(1,—*) " md?mg, (5.7)

and thus according to the prescription of Section 2, we define
du,(C) = A, det(]n — C*g)("' + ”dZmHC,

(5.8)
K%, & n) =det(,—n*() (it myr
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The normalization factor, 4,, is given by

“I(o+m+k)

A Zn—mn l—[
r

iey Tlo+k)y 7’ (59)

where o =(m+n)(r—1).
The group U(m, n) acts on D,, , by holomorphic automorphisms. Let y
be an element of U(m, n), i.e.,

A B
}'=(C D), (5.10)

where the submatrices A4, B, C, and D have dimensions m X m, m x n, n X m,
and n x n, respectively, and satisfy

A*A—C*C=1,,
A*B=C*D,
D*D—B*B=1,.
The corresponding element of Aut(D,,,,) is
e (An+ BY(Ch+ D). (5.11)
For {eD,, ,, we define y, by

T\ e u- )

As an automophism of D, ,, 7, is given by

ve(m)y= (L, —{C*) 2 (n + O, + ) 1 (1, = ¥
=0+ (L, =) 2L, + ) (L, =02 (5.13)

(5.12)

Proof of Lemma 3.1 for D, ,. For condition (i), we see immediately
from (5.9) that A, ~r™ as r - oc. Condition (ii) is proven as follows. Let
g, be the jth column of #, and let Z; be the m x (j — 1) matrix formed from
the first (j—1) columns of n. Then define w,=(I,,—Z,Z*) '*q,. The
change of variables from n to the w/s gives (see [15])

j. d/‘lr(rl):ArH {j (I_IW'J'IZ)(”,+")"‘)+"jd2mwj}. (5.14)
Dy, j=1 Ulml2<t

We clearly have
=3 lgl’< Y Iw,l> (5.15)

j=1 i=1
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Therefore, by changing variables as above, we get the inequality,

n q
f In|* du, (n) < CA,fdz”’w; —ed ¥, < 2 Mf-lz)
o i=1

x [T (1 =1lw;?y ", (5.16)
/=1

where g = (m + n)(r — 1). Changing variables again to u;= lu'jlz yields

1 n q
[, s sca w3 )
(4]

m.n ji=1
Xn (l_uj)(m«rn)(r l)+n~l' (5[7)

I=1

This multiple integral can be broken up into a product of one-dimensional
integrals. These all have the form of beta functions,

3
f (1—u)'u** " du=Blp+ 1, k+m), (5.18)
(4]

which we can bound by Cp *~™ as p— cc. Using this bound in the
expression (5.17) and counting up the powers of r gives us

fD 12 du, (1) <Cr . § (5.19)

Proof of Lemma 3.2(i) for D, ,. We show that there exist constants
C,, C,, and 8 such that

C
fy:(n)—7:(0) <7 Il (5.20)

‘Cz"ﬂ’

provided |nj <d. Note first that if 4 and B are /xm and m x n matrices,
respectively, then

|AB| < Imn |A] |B|. (5.21)
Thus for
[e(m) = v () = (4, = LC*) 2L, + ) (L= C*0, (5.22)
we obtain a bound,

e () =700 < C Iyl J(L, +{*m) ). (5.23)
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To complete the proof, we observe that

*

(2, +3*n) 7 '1P= Y o[(C*n)* (n*0)]
k. t=0

o

<no 3 (Clphe!
k=0
n

. 5.24
a=cm b (>24)

Proof of Lemma 3.2(1i) for D,, ,. First, note that
[det y;(0)|* =det(], — {*{)" +. (5.25)

Let 2 be the largest eigenvalue of {*{. The condition that {{| = implies
that i > ud?, with some u depending only on n. Thus we have

|det y1(0)|* < (1 — pd?)m+m, (5.26)

for & suffiiently small and all {. §

Proof of Lemma 3.2(ni) for D, ,. The only potentially unbounded
factor in y.(n) or its derivatives is the (/,+{*f) appearing in the
denominator. Since each derivative will give a term with an extra such
factor in the denominator, we see that we can bound

3y(&),
|Z ix aé./l 08

. <cunren )

sup
$ Qg

Tk

Assume for the moment that m > n. Let ¢ be an eigenvalue of {*¢, and let
22 be the largest eigenvalue of £*£. We can argue that |6]? < 42, as follows.
Let x be an eigenvector associated to a, then

lo]? = (C*Ex, {*x) = (Ex, {T*Ex) < (Ex, Ex) < A% (5.28)

Using this fact, we obtain

12

Sup [(1,+*6) | <7
2n'?
< (5.29)

Noting also that

det(Z,— E*&) = (1 —A%)", (5.30)
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we have
sup (£, +{*¢) ' <2n'? det(l, — E*E) ' (5.31)
If n2m, then n is simply replaced by m in this formula. We complete the

proof by combining (5.31) with (5.27). |}
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