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Abstract. We formulate the super-KMS condition suggested by Connes and Kastler, in the context of entire 
cyclic cohomology of quantum algebras. We show that the Chern character of Jaffe, Lesniewski, and 
Osterwalder - associated by Kastler to a super-KMS functional - satisfies the entire growth condition. 
Hence, a super-KMS functional defines a cocycle for the entire cyclic cohomology of quantum algebras. 
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1. Introduction 

The purpose of this note is to clarify the relation between the super-KMS property and 

entire cyclic cohomology of quantum algebras. Our  interest in super-KMS functionals 

was inspired by work of Kastler [4] and by private conversations with Alain Connes. 

This generalization is the natural framework for entire cyclic cohomology in the case 

that the Laplace operator has continuous spectrum. Such situations can arise if the 

cohomology is based on a noncompact  manifold. In intuitive terms, one would like to 
formulate this in terms of a noncompact,  'noncommutat ive manifold'. 

Just as in statistical mechanics where a KMS state generalizes the notion of a Gibbs 

state, a super-KMS functional generalizes the positive temperature supertrace 
functional. This allows us to deal with situations which occur in examples, such as 

supersymmetric field theory on a noncompact  manifold: the Laplace-Beltrami 

operator on loop space (the Hamiltonian of such a theory) is expected to have 
continuum spectrum, so the heat kernel it generates will not be trace class. 

This is characteristic of many examples. Besides, from a conceptual point of view, it is 
irrelevant whether the heat kernel is trace class; this assumption can be replaced by the 

super-KMS property. Such functionals are not necessarily positive and, hence, are not 
states, but estimates can be proved by expressing co as a linear combination of states. 

The usual KMS property relates the cyclicity of a state co to the analytic continuation 

of a group a t of automorphisms. The super-KMS property also involves the super 
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derivation d whose square generates the automorphism group ~t t. Translation 
invariance of 09 is a consequence of the super-KMS property. 

2. Quantum Algebras and Cyclic Cohomology 

Our present definition of a quantum algebra is more general than in [3]. We define it as 
a quadruple ( d ,  F, at, d) with the following properties: 

(i) Algebra. The algebra d = d +  ~) d _  is a Z2-graded, unital C*-algebra. Let 
a = a+ + a_ denote the decomposition of a ~ d into homogeneous components. The 
grading induces an automorphism F of d ,  defined by 

a ~ a  r = a +  - a _ .  (1) 

(ii) Group Action. The family t ~ a t, t ~ •, is a continuous, one-parameter group of 
�9 -automorphisms of d ,  even under the grading. Thus 

0~,(a)* = ~,(a*), at(a) r = at(at). (2) 

By standard smoothing arguments, see Section 8.12 of [5], there exists a norm-dense 
�9 -subalgebra ~r of d such that 

t ~ ~,(a), a e d ~  

extends to an entire, ~r function, which we denote by ct,(a). 
(iii) Even Derivation. The infinitesimal generator of ~, 

d 
D = - i ~ l , = o  

(3) 

(4) 

is an even derivation of d with domain including d , .  Since a t is a *-automorphism, it 

follows that II ~,(a)II = II a II. Hence a t is uniquely determined by the action of D on d , ,  
where one can construct ct~ by a convergent power series. It is therefore no loss of 

generality to assume that d ,  is the domain of D. 
The derivation D is even by virtue of (2). 

(Day = Da r, D(ab) = (Da)b + aDb. (5a) 

We define an adjoint derivation D* of an even derivation D by 

D* a = - ( D a *  )*. (5b) 

Since * and F commute, the adjoint D* is also even. In our case, since ~ is 
a *-automorphism, 

D* = D, (5c) 

or equivalently 

(Da)* = - D a * .  (5d) 



SUPER-KMS FUNCTIONALS 677 

(iv) Super (Odd) Derivation. We assume that d is a super (odd) derivation of 

d with a dense domain D(d). Assume that d ~  is a core for d and that d: d ~  - d~ .  

A super-derivation satisfies 

(day = - d a  r, d(ab) = (da)b + a r db. (6a) 

The natural adjoint of a super-derivation d is the super-derivation d + defined by 

d + a = (da*) *r. (6b) 

(v) Square Root Property. The square of any super derivation is an even derivation, 

(d2a) r = dZa r, dZ(ab) = (d2a)b + a(d2b). (7a) 

The fundamental assumption which makes the present structure useful is that d is 
a square root of D, namely 

D = d E. (7b) 

We call this the square root property of the quantum algebra: the generator of a t has 

a (super) square root. 

REMARKS. 1. It can be checked from (7) that 

~, o d = d o~,. (8a) 

This can be verified by power series expansion of a t in t on the domain d , ,  and 
extension to the domain of the closure of d by continuity. 

2. We claim that if d: d ,  ~ d ,  is a super-derivation, then 

(d +)2 = (d2),. (9a) 

In fact 

(d+)2a = (d(d+ a)*) *r = (d((da*)*r)*) *r = (d(da*)r) *r = - (d2a*)  * = (dZ)*a. 

In particular, since d 2 = D = D*, we have 

(d +)2 ~_ d 2 = D. (8b) 

It follows as in Remark 1 that 

a t o d + = d + o ~z t. ( 9 b )  

3. As a consequence of Remark 2, we see that: if ( d ,  F, a t, d) is a quantum algebra, then 

( d ,  F, a t, d § ) is also a quantum algebra. 

4. In general d § # d, even though their squares are equal. In case the graded derivation 
d is given by the graded commutator  with an operator Q, then d § is given by the graded 
commutator  with Q*. Thus, the condition d § = d is equivalent to the hermiticity of Q. 
In this case, d 2 =  Ad(Q z) and (d+)2 = Ad(Q*2). Thus D * =  D, which we assume, 
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ensures that H = Q2 is symmetric - while d + =  d, which we do not  assume, is 
associated with a spectral condit ion (positivity of Q2). 

In order to set up the analytic framework, we introduce the Sobolev norm 

flail, = Ilal[ + Ildall. (10) 

Let cg"(d) denote the space of(n + 1)-linear functionals on ~r which are cont inuous 

with respect to the norm II �9 II , .  Let  II f .  II, denote the norm off .  e cg"(d) with respect to 
the norm II" Ii,. Define c~(~r as the space of  sequencesf  = (fo, f l ,  �9 �9 �9 ), wheref ,  ~ ~"(~ ' )  
and which satisfy the entire analyticity condit ion [1], 

hi~2 II f .  II ~,/n __, 0. (11) 

The space of cochains cg(~r can be decomposed into components  which are even or 
odd under the action of F, 

cg(~r = cg+ (~1) ~ cg_ (zr (12) 

We use the s tandard coboundary  operators  b and B, defined separately on cg + (~r and 
on cg_(~/), and which extend linearly to cg(~r [1]. These operators  define the 

creation-annihilat ion complex 

b: cg.(~r ~ cg.+ l ( d ) ,  

and satisfy 

b 2 = 0, B 2 = 0, 

n: ~e "+ l ( d )  --, ~e"(d) (13) 

Bb + bB = 0. (14) 

The cobounda ry  opera tor  3 = b + B is used to define entire cyclic cohomology.  

Explicitly 

n--1 

(Bf.)(ao . . . .  , a . _ i )  = ~ (-1)~"-i)J(f .(1,a.~-j  . . . . .  a~.-1,ao . . . . .  a . _ j _ i )  + 
j=0 (15) 

+ ( -  1)"- l f , , (a~_ j , . . . ,  a~_ l, ao . . . . .  a,_~_ l, 1)), 

and 

( b f . ) ( a o , . . . ,  a.+ 1) = ~, (-- 1)Jf.(ao, . .-  , aiaj+ 1 . . . . .  a.+ i) + 
j=0  

+ ( -  1)"+lf.(a~.+lao, al  . . . .  , a.). 
(16) 

a ~ = (~a v, if f .~cg~_(d),  (17) 
(a,  if f .  ~ cg._ (d ) .  

Here 

3. Super-KMS Functionals 

We consider a cont inuous linear functional e9 on ~/. It is natural  to restrict at tention to 
the subalgebra d .  on which d is defined and ~t t is entire. 
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D E F I N I T I O N  3.1. A continuous linear functional co on d has the sKMS property 
with respect to the quantum algebra ( d ,  F, ~,, d), if for all a, b �9 d ,  and for all z �9 ~, 

co(o~=(a)b) = co(br ccz+ i(a)) (18) 

and 

co o d = 0, on D(d). (19) 

REMARKS. 1. The assumption (18) extends to all complex z � 9  by analytic 

continuation. 

2. One could introduce a positive parameter 0 < fl and define a fl-sKMS property 

c J ( a z ( a ) b  ) = c J ( b r  ctz + ia(a)). 

Replacing cr t by a,/p reduces fl-sKMS to sKMS. 

3. We also use the notation, consistent with [3] defining 

a(t) = ai,(a), a �9 d ~ .  (20) 

4. Clearly, cot = co, namely co(a r) = co(a), as a consequence of (18). 

T H E O R E M  3.2. A n  s K M S  f u n c t i o n a l  on  a q u a n t u m  a lgebra  ( d ,  F, at, d) sa t i s f i es  

co o cr = to on d ,  f o r  t �9 ~, (21) 

co o cr z = co on d ~ ,  f o r  z �9 C, (22) 

and f o r  a, b � 9 1 4 9  

co(adb(z)) = co((db)r a(1 - z)). (23) 

P r o o f  Since d 2 = D is the generator of ~tt, convergent power series on d ,  show that 
for z �9 C, co o ~z = co on the subalgebra d , .  This extends to d by continuity for all z �9 R, 
and hence (21)-(22) follow. Equation (23) is a straightforward consequence of 
Definition 3.1 and (22). [] 

Let us finish this section with an example which provides motivation for the 
definition of sKMS functionals. Assume that d is represented as an algebra of 
operators on a Hilbert space ~ .  We assume that cr is spatial, so there exists 
a self-adjoint operator H on ~ which generates cot, 

at(a) = e x p ( i t H ) a  exp(- i tH) .  

Thus D = Ad(H) is the generator of the automorphism. We also assume that there is 
a self-adjoint operator Q which is a square root of H, H = Q2, and which is odd: 
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Qr = FQF = - Q .  We can define da = (Qa+ - a+Q) + (Qa_ + a _ Q )  as the graded 

derivation. We also assume that e x p ( - H )  is a trace class. 
The super-trace functional provides an elementary example of an sKMS functional. 

Define 

co(') = Str(-e-U) = Tr(F. e-n).  (27) 

It is easy to verify that (27) has the sKMS property, and the graded derivation satisfies 
d = d + , yielding 0 ~ H. This formula is very similar to the standard example ofa  KMS 

state 

Tr(. e-  u) 
co~MS(')- ~r(-eTU) �9 (28) 

(Note that (28) does not satisfy the sKMS property.) In general, a KMS functional 
cannot be expressed in the form (28), but often one obtains a KMS state as a limit of 
states of the form (28). Likewise, an sKMS functional can often be obtained as a limit of 
functionals of the form (27), though it may not have such a representation. 
Furthermore, note that (27) is not normalized; in fact it may not be positive. For  the 
example (27), if we define Q+ = �88 (1 - F)Q(1 + F), then the index of Q+ is given by 

co(l) = Ind(Q + ), (29) 

which in different examples may be positive, negative or zero. 

4. T h e  Chern  C h a r a c t e r  

Let co denote an sKMS functional on a quantum algebra. For  ao , . . . ,  a, ~ d~ ,  we define 

r,n(ao, al  . . . . .  an) 

= i~, f co(ao~is,(dar)~176 �9 . .  ~is.(da.r.))dsx . . . ds, ,  (30) 
d a  n 

where 5, = n mod 2. Here a. denotes the simplex 

{ s e ~ " : 0  ~< s 1 ~<s 2 ~< ... ~<s. ~< 1}. 

We claim that z is an entire cyclic cocycle: 

T H E O R E M  4.1. The  cochain 

satisfies the cocycle  condit ion 

8~ = O. 

Moreover ,  

Icol(1) f i  
IZn (ao , . . . , a . ) l  <<.--~-(--. II ajll,. 

j=0  

(31) 

z = (Zo, Z , . . . . .  T . . . . . .  ) is an e lement  o f  ( g ( d )  and 

(32) 

(33) 
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REMARK.  An sKMS functional is not necessarily positive. Hence for doing estimates 
we have to replace co by the positive functional Iogl, which according to the general 
theory, see e.g. [5], is defined as follows. For  (̀ 0 there is a unique decomposition 

0) = (O91+ - -  c-o1-) + i(o92+ - -  0 ) 2 - )  (34) 

with COk_+ >~ 0 and COk+ _L o9k-" Then 

1(`01 = 0 )1+  -~- (`01 _ "F 0 )2 +  -~- (-02_ (35) 

is positive and satisfies 

]o9(a)l ~< 1(`01(1)II a II. (36) 

Notice that  in general o9k• are not sKMS functionals. 

Proof. The identity (32) can be established using the identities of Section 4 in 
a fashion similar to the proof of Theorem V.4 of [3] or of [4]. We need only prove that 
r is entire and in fact satisfies (33). 

We claim that  

o9(ao (Iot~tj(daj)) <.,,10)[(1)llaoll f I  Wldajll, (37) 
j = i  j = i  

from which we conclude that (33) holds. To prove (37), we use induction on n. We call 
the inequality (37) (i,). Clearly (io) holds as 

!(̀ 0(Oo)1 ~< 1(`01(1)II ao tl. 

To prove (i,+1) we use the Phragm6n-Lindel6f  theorem. The function 

f(z) = 0)(a o o~it 1 (da l ) . . .  ~it.(da,)~z(da . + 1 )) (38) 

is holomorphic for 

z �9 f~t. '= {z  �9 C: t .  < I m  z < 1} (39) 

and continuous and bounded for z �9 ~t.- In fact using (i,), 

lf(s + it, + l) I = I o 9 ( a o ~ i t l ( d a i )  . . .  ~it.(dano~s+ i(t.+l-t.) (da,+ i)) [ 

~< 1(`0[(1)[I ao I[ II dal II... II da,~s+i(t.+l-t~ 

<--, ' og l (1)( ll ao ll ( l  ll daj ll) ll ~,(,.+~_t.,(da,+ ~) l,, 
j = l  

which is bounded, since 0 ~< t, + 1 - t, ~< 1. In particular, 

n + l  

[f(s + it,) l <~ 1(`01(1) II ao [I I ]  II daj [I. 
j = l  
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Furthermore, using the sKMS property (23) for z = 1, as well a s  (in) , 

Iris + 1) l = I a ~ ( a o ~ i t l ( d a t )  . . . ~  l(da.+ 1))1 

= i og(ot~(darn+ ~)ao~,t~(dat)... o~t.(da,,))[ 

~< I ~o [ (1) I[ ~s(dar+ 1)ao 1[ f i  II daj II 
j = l  

n + l  

~< I ~o1(1)II ao II I-1 II daj II. 
j = l  

Therefore, by the Phragm6n-Lindel6f theorem, 
n + l  

If(z) l <~ I ~o I(1)II ao II I-[ tl daj ][ 
j = l  

for z ~ ~t. ,  and the proof of (i.+1) is complete. 
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