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We define and study the properties of the infinite-dimensional quantized Kronecker
flow. This C* -dynamical system arises as a quantization of the corresponding flow
on an infinite-dimensional torus. We prove an ergodic theorem for a class of quan-
tized Kronecker flows. We also study the closely related, almost periodic quantum
field theory of bosonic, fermionic, and supersymmetric particles. We prove the
existence and uniqueness of KMS and super-KMS states for theC* -algebras of
observables arising in these theories. ©1997 American Institute of Physics.
@S0022-2488~97!01911-7#

I. INTRODUCTION

In this paper, we introduce and study the properties of quantized infinite-dimensional
necker flows. Very much like its classical counterpart, a quantized Kronecker flow is defin
terms of an infinite sequenceV of frequencies satisfying certain genericity assumptions. We de
a naturalC* -algebra of observables and show that it can be identified with an infinite te
product of standard Toeplitz algebras. A quantized Kronecker flow is a one-parameter gro
automorphisms of thisC* -algebra.

Our work has been inspired by a recent preprint.1 The structures studied in Ref. 1 can b
interpreted as an example of a quantized Kronecker flow with the set of frequenciesV equal to
$log p:p prime number%.

The infinite tensor product of standard ToeplitzC* -algebras referred to above arises natura
when one quantizes the infinite-dimensional Kronecker flow on a Bohr compactificationR.
Even though there is no parameter in this theory which would play the role of Planck’s con
one can introduce a natural concept of the classical limit.2–4 We prove that, under additiona
assumptions onV, the classical limit of the quantized Kronecker flow exists. The proof of
theorem relies on an Ingham-type Tauberian theorem. Furthermore, we study the ergodic
ties of that quantum Kronecker flow. We show that whenever the classical limit exists, the
tized Kronecker flow is quantum ergodic in the sense of Zelditch.4

Infinite-dimensional Kronecker flows lead to models of free quantum field theory in one s
dimension. In these field theories, the field operators are almost periodic functions of the
coordinatex. There is a natural notion of a mean in the theory of almost periodic functions
Bohr mean, which plays the role of the integral. Using it, we carry over much of the formalis
quantum field theory to the almost periodic setup. The construction of an almost periodic
theory requires ‘‘doubling’’ the Hilbert space of the Kronecker flow. On this Hilbert space
define the field and momentum operators, which are fundamental objects in canonical qu
field theory. It turns out that the dynamics of the quantum Kronecker flow and the almost pe
wave equation are essentially the same. We focus our discussion on the theory of free
Interacting~i.e., nonlinear! field theories exhibit some new striking phenomena and will be
cussed in a future publication.

Furthermore, we extend the construction of almost periodic field theory to incorporate f
onic and supersymmetric~i.e., Z2-graded! fields. The supersymmetric extension leads to a nat
0022-2488/97/38(11)/5605/21/$10.00
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construction of a Fredholm module over the algebra of observables associated with the
periodic quantum field and the corresponding super-KMS functional. Super-KMS function5,6

appear naturally in theZ2-graded entire cyclic cohomology theory, but have been studied
intensively than their nongraded antecedents, namely KMS states. We prove the uniquenes
super-KMS functionals for the supersymmetric model of an almost periodic quantum field th

The paper is organized as follows. In Sec. II we introduce the notation and recall basic
from the theory of almost periodic functions. We then study the ergodic properties of the
tized almost periodic Kronecker flow. The main technical input is a variant of Ingham’s Taub
theorem proved in Appendix A. As it turns out, ergodicity of the quantized Kronecker
depends on the growth properties of the setV. Examples of ergodic Kronecker systems are giv
in Appendix B. We start Sec. III with a discussion of the canonical formalism of the alm
periodic classical field theory and illustrate it with an analysis of the almost periodic wave e
tion. Then we show how to formulate the quantum version of the almost periodic wave equ
Free fermionic and supersymmetric models are introduced in Sec. IV. Finally, in Sec. V, we
the uniqueness of the super-KMS functionals for the free supersymmetric almost periodic qu
field theory.

II. KRONECKER FLOWS

In this section we introduce the central concept of this paper, namely the infinite-dimen
Kronecker flow. After a brief summary of the classical theory, we present its quantum-versio
study the properties of the resulting dynamics.

A. Almost periodic functions

First, we review some facts from the theory of almost periodic functions onR and fix our
notation.

Definition II.1: A countable ordered subsetV of R is called aKronecker systemif it satisfies
conditions~1!–~4! below.

~1! 0¹V.
~2! Let V5V1øV2 , whereV1 andV2 are the subsets of positive and negative elements oV,

respectively. ThenV is even, i.e.,V252V1 .
~3! Let vn , n51,..., be the elements ofV1 listed in increasing order. Thenvn→`, asn→`.
~4! The elements ofV1 are algebraically independent overZ.

Two natural examples of a Kronecker system arise as follows.
Example 1:Let K be an algebraic number field andB the the set of its prime ideals. Set

V5$6 log NP:PPB%,

where NP denotes the norm ofP. Then V is a Kronecker system. In particular, the uniq
factorization property of ideals implies thatV1 consists of numbers algebraically independe
over Z. This example is taken from Refs. 1 and 7–9.

Example 2:Let m be a transcendental real number, and let

V5$6An21m2:nPN%.

Then V is a Kronecker system. This example is motivated by two-dimensional quantum
theory.

Let V̄,R be the set of linear combinations of elements ofV with coefficients inZ. In other
words,V̄ is the free Abelian group generated byV1 :

V̄5Z@V1#.
J. Math. Phys., Vol. 38, No. 11, November 1997
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We will use the notationAP ~V! for the vector space of continuous almost periodic functions
R with frequencies inV. This means that a functionf PAP (V) has the following uniformly
convergent Fourier expansion:

f ~x!5 (
vPV

f veivx.

Likewise, AP (V̄) will denote the space of continuous almost periodic functions onR with
frequencies inV̄. Unlike AP ~V!, the spaceAP (V̄) forms a unital commutativeC* -algebra.
This C* -algebra can be identified with theC* -algebra of continuous functions on the followin
Bohr compactification ofR.

Let R̄V denote the infinite Cartesian product of unit circles,R̄V5PvPV1
S1, equipped with

the Tikhonov topology. The embedding

R{x→ )
vPV1

exp ivxP )
vPV1

S1 ~II.1!

induces an isomorphismC(R̄V).AP (V̄) ~see Ref. 10!.
The product of Lebesgue measures onS1 defines an integral*ap on C(R̄V) and, consequently

on AP (V̄). Explicitly, in terms of Fourier series we have

E
ap

(
hPV̄

f heihx dx5 f 0 . ~II.2!

For later reference, we note that the almost periodic Dirac’s delta distributiondV defined by

dV~x!5 (
vPV

eivx ~II.3!

is the Schwartz kernel of the projection

AP ~V̄!{ f→E
ap

dV~x2y! f ~y! dyPAP ~V!.

This projection ‘‘forgets’’ all terms in the Fourier series whose frequencies are not inV.
The embedding~II.1! defines a Kronecker-type flowa t on R̄V given by

a tS )
vPV1

eixvD 5 )
vPV1

eixv1 i tv. ~II.4!

As a consequence of our assumptions onV, this flow is ergodic.

B. Quantum Kronecker flow

We will now construct a quantization of the classical dynamical system„AP (V̄),a t…, and
study the ergodic properties of the resulting quantum Kronecker flow. The quantization w
given in terms of an algebra of operators on a Hilbert space, the ‘‘algebra of observables.

Set H15 l 2(V1), and consider the bosonic Fock spaceF bH1 defined as the symmetri
tensor algebra overH1 ,
J. Math. Phys., Vol. 38, No. 11, November 1997
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F bH15 %

n50

`

SnH1 ,

where SnH1 is the nth symmetric tensor power ofH1 ~with S0H15C!. The vectorv0

5(1,0,0,...)PF bH1 is called thevacuum. The Hilbert spaceF bH1 can be naturally identified
with l 2(N@V1#), whereN@V1# is the non-negative cone in the latticeZ@V1#. In the example of
an algebraic number fieldK, the setN@V1# can be identified with the set of all ideals ofK.

Alternatively, there is a natural isomorphism ofF bH1 with an infinite tensor product

F bH1. ^

vPV1

l 2~N@v#!. ~II.5!

In von Neumann’s terminology, ifen(v), n50,1,2,..., is the canonical basis inl 2(N@v#), then the
above tensor product is the incomplete tensor product associated with the sequence of
„e0(v),e0(v),e0(v),...…. Furthermore, the Fourier transform allows us to identify the sp
l 2(Z@V1#) with L2(R̄V), and the Fock spaceF bH1. l 2(N@V1#) with the closed subspac
L1

2 (R̄V) of L2(R̄V) consisting of functions with non-negative frequencies.
Let P be the orthogonal projection ontoL1

2 (R̄V),L2(R̄V). Every f PC(R̄V) defines a
Toeplitz operator T( f ) on L1

2 (R̄V).F bH1 by

T~ f !5PM~ f !P,

whereM ( f ) is the operator onL2(R̄V) of multiplication by f . Recall thatT( f ) is continuous inf ,
iT( f )i<i f i` , wherei f i` denotes the sup norm off .

Let A1 be theC* -algebra generated by the Toeplitz operators. It is not difficult to see
A1 coincides with the~reduced! C* -algebra of the semigroupN@V1#. For hPN@V1#, let e(h)
denote the canonical basis element inl 2(N@V1#).F bH1 . Let H1 be an unbounded, self
adjoint operator inF bH1 defined by

H1e~h!5he~h!, ~II.6!

and let U(t)5eitH 1 be the corresponding one-parameter group of unitary operators. The
„A1 ,U(t)… is a quantization of„C(R̄V),a t… which we call thequantum Kronecker flow.

Recall that the standard ToeplitzC* -algebraI is theC* -algebra generated by a single ge
eratoru satisfying the relationu* u5I . The following proposition can be proved by the meth
used in the proofs of Propositions 7 and 8 in Ref. 1.

Proposition II.2. (1) TheC* -algebraA1 is an infinite tensor product of ToeplitzC* -algebras
Iv ,

A15 ^

vPV1

Iv ,

whereIv is generated by the unilateral shift uv5T(eixv).
(2) For everyb.0 there exists a unique KMSb state for„A1 ,U(t)….

C. Ergodic theorem

We will show now that the quantum dynamical system constructed above is in fact a q
zation of the classical Kronecker flow. Even though there is no Planck’s constant in this th
one can still introduce a natural concept of itsclassical limit. Such a construction of the classic
limit was originally proposed in Refs. 2–4, and consists in the following. Ifa is an operator on
F bH1 andE.0, we set
J. Math. Phys., Vol. 38, No. 11, November 1997
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5609S. Klimek and A. Leśniewski: Kronecker flows

Downloaded 2
tE~x!:5
1

N~E! (
N@V1#Ph<E

„e~h!,ae~h!…, ~II.7!

whereN(E) is the number of eigenvalues ofH1 less than or equal toE. The theorem which we
are about to formulate describes the classical limit of„A1 ,U(t)….

We will need additional assumptions on the setV1 to guarantee the existence of the classi
limit. Specifically, assume that for everys.0,

u~s!:5 (
n51

`

e2svn,`. ~II.8!

This implies that the followingz-type function,

zV~s!:5 )
n51

`

~12e2svn!21, ~II.9!

converges for alls.0. Expanding each term ofzV(s) in a power series and multiplying out th
terms, we can expresszV(s) as the following Lebesque–Stietljes integral:

zV~s!511E
0

`

e2sx dN~x!,

where, as above,N(x) is the counting function for the eigenvalues ofH1 . Equivalently, we can
write this formula as

ef~s!511E
0

`

e2sx dN~x!, ~II.10!

where f(s):52(n51
` log (12e2svn). In Appendix A we study~II.10! recast in the following

form:

ef~s!

s
5E

0

`

e2sx
„N~x!11… dx. ~II.11!

Theorem II.3: In addition to the assumptions above, letf(s) satisfy conditions (1)–(3) and
(a)–(g) of Appendix A. Then,

(1) For every fPC(R̄V),

lim
E→`

tE„T~ f !…5E
ap

f ~x! dx.

(2) For every f,gPC(R̄V),

lim
E→`

tE„T~ f !T~g!2T~ f g!…50.

(3) For every aPA1 , the limit

lim
E→`

tE~a!5:t~a!.

exists.
J. Math. Phys., Vol. 38, No. 11, November 1997
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(4) Let pt be the GNS representation ofA1 with respect to the statet. Then,

pt~A1!.C~R̄V!,

and for every aPA1 we have

pt„U~ t !aU~2t !…5a t„pt~a!….

Proof: We first introduce some notation. As before,uv5T(eixv) denotes the unilateral shift
We set

uv~n!:5H uv
n , if n>0,

~uv* !2n, if n,0.

It is easy to verify that

U~ t !uv~n!U~2t !5einvtuv~n!. ~II.12!

If f PC(R̄V) is a trigonometric polynomial,

f S) eixvD5 (
$nv%

f nv
einvxv,

then the corresponding Toeplitz operatorT( f ) is explicitly given by

T~ f !5(
nv

f nv
uv~nv!.

It follows that for anyh,

„e~h!,T~ f !e~h!…5 f 05E
ap

f ~x! dx.

This and the continuity ofT( f ) in f prove part~1! of Theorem II.3.
For later reference, notice also that as a consequence of~II.12!,

U~ t !T~ f !U~2t !5T„a t~ f !…. ~II.13!

The structure of the standard Toeplitz algebra implies that operatorsT( f )T(g)2T( f g) gen-
erate the commutator idealI of A1 . The quotientA1 /I is isomorphic toC(R̄V), and the
quotient mapp:A1→C(R̄V) is called the symbol map. We claim that

t~a!5 lim
E→`

tE~a!5E
ap

p~a!~x! dx, ~II.14!

for all aPA1 . In other words, the statet is trivial on the commutator ideal, and it coincides wi
the Lebesgue integral on the abelian quotient. Parts~2! and~3! of Theorem II.3 are straightforward
consequences of~II.14!. Formula ~II.14! implies also thatpt(A1) is isomorphic the algebra
C(R̄V). The last statement of the theorem follows now from~II.13!.

To prove~II.14!, it is enough, in view of part~1! of Theorem II.3, to show that

lim
E→`

tE~a!50, if aPI .
J. Math. Phys., Vol. 38, No. 11, November 1997
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The structure of the standard Toeplitz algebraI implies thatI is generated by the operators of th
form

a5av1
^ av2

^ ••• ^ avN
^ I ^ I •••, ~II.15!

where at least one of the operatorsav1
...avN

, sayavk
, is compact. By a density argument, it is n

loss of generality to assume thatavk
is a finite rank operator whose range is spanned by fini

many elements of the canonical basis. LetP be the orthogonal projection onto this subspace. T

tE~a!<
iai

N~E! (
N@V1#{h<E

„e~h!,Pe~h!….

Since the spectrum ofH1 is the set$( nvv:nv>0%, we have to show that for any integerM ,

#$nv>0,nvk
<M :( nvv<E%

#$nv>0:( nvv<E%
→0, as E→0. ~II.16!

The numerator of the lhs of~II.16! is equal toN(E)2N„E2vk(M11)…, and so we have to show
that

N~E!2N„E2vk~M11!…

N~E!
→0, as E→0.

Formula ~II.11! and Corollary A.3 yieldN(E11)5N(E)(11o(1)). Consequently,~II.16! fol-
lows, and the theorem is proved. h

Remark:If V15$ log p:p prime number%, then it is easy to see thatN(E);eE and ~II.16! is
not true. It would be interesting to determine the classical limit in this case. Note also tha
prime number theorem implies thatf(s) is divergent fors<1, and so the Tauberian theorem
Appendix A does not apply.

It follows now from the general results in Ref. 4 that the quantum Kronecker flow„A1 ,U(t)…
is quantum ergodic in the following sense.

Theorem II.4: Under the assumptions of Theorem II.3, for every aPA1 ,

lim
M→`

1

M E
0

M

U~ t !aU~2t ! dt5t~a!I 1A,

where A is in the weak closure ofA1 , and

lim
E→`

tE~A* A!50.

In other words, the time average of a quantum observable is equal to its spatial average
correction which vanishes in the classical limit.

III. ALMOST PERIODIC BOSE FIELD

In this section we define the free almost periodic quantized field. It arises as the res
canonical quantization of the classical almost periodic wave equation. Using Bohr’s mea
propose a canonical formulation of the latter, and apply the standard quantization procedu
resulting quantum dynamical system is a ‘‘double’’ of the Kronecker dynamics studied in
previous section.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. Wave equation

We first introduce some notation. For a smooth functionH:AP (V)→C we let ¹ fH denote
the Frechet derivative ofH in the direction of f PAP (V). The functional derivative
dH(f)/df(x) is, by definition, the distribution onAP ~V! such that

“ fH~f!5E
ap

dH~f!

df~x!
f ~x! dx.

The canonical complex structure onAP ~V! defines a symplectic structure onAP ~V! for which
positions are real functions and momenta are purely imaginary functions. The respective c
nates will be denoted byf(x) andp(x) so thatdH(f,p)/df(x) is the functional derivative in
the real direction, anddH(f,p)/dp(x) is the functional derivative in the imaginary directio
The symplectic spaceAP ~V! is the phase space for almost periodic field theory.

Every smooth functionH:AP (V)→R defines a Hamiltonian flow onAP ~V! by

df~x,t !

dt
5

dH

dp~x!
,

dp~x,t !

dt
52

dH

df~x!
. ~III.1!

The Poisson bracket of two functionsF andG on AP ~V! is defined by

$F,G%5E
ap

S dF

df~x!

dG

dp~x!
2

dF

dp~x!

dG

df~x! D dx,

and so the flow~III.1! can be written as

dF„f~ t !,p~ t !…

dt
5$F,H%. ~III.2!

A straightforward calculation shows that

$f~x,t !,p~y,t !%5dV~x2y!, $f~x,t !,f~y,t !%50, $p~x,t !,p~y,t !%50. ~III.3!

We will now formulate the almost periodic free field theory. The dynamics is given by
wave equation,

]2f

]t2 2
]2f

]x2 50. ~III.4!

Equation~III.4! can be written in the form~III.1! with the Hamiltonian

H~f,p!5
1

2 E
ap

~p~x!21„]xf~x!…2! dx.

For this Hamiltonian, Eqs.~III.1! read

df

dt
5p,

dp

dt
5]x

2f, ~III.5!

and lead to~III.4!. The most general solution of~III.5! can be written in the following form:

f~x,t !5 (
vPV

~f1,veiv~x1t !1f2,veiv~x2t !!,

~III.6!
J. Math. Phys., Vol. 38, No. 11, November 1997
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p~x,t !5 (
vPV

iv~f1,veiv~x1t !2f2,veiv~x2t !!.

The reality condition impliesf̄1,v5f1,2v andf̄2,v5f2,2v . In quantum field theory it is conve
nient to parametrize the above solutions slightly differently. We set

av5A2uvu1/23H f1,2v if v.0,

f2,2v if v,0.

The new variablesav have the following Poisson brackets:

$av ,āv8%5dv,v8 , $av ,av8%5$āv ,āv8%50. ~III.7!

Equations~III.6! can then be recast in the following form:

f~x,t !5
1

A2
(

vPV
uvu21/2~ āveit uvu1a2ve2 i t uvu!eivx,

~III.8!

p~x,t !5
1

A2
(

vPV
uvu1/2~ āveit uvu2a2ve2 i t uvu!eivx.

B. Quantum bosonic field

We shall now describe a quantization of the algebra of functionsAP ~V! and of the dynamics
~III.5!. We will follow the procedure of canonical quantization which is adopted in quantum
theory.

The standard rule of quantization consists in replacing classical observables by operato
Poisson brackets by (1/i )3commutators. For simplicity we set\51. More precisely, quantization
of the almost periodic wave equation proceeds as follows. We find almost periodic, Herm
operator-valued distributionsf(x,t) and p(x,t) such that~III.5! is satisfied. Furthermore, w
require that@see~III.3!#

@f~x,t !, p~y,t !#5 idV~x2y!,

@f~x,t !, f~y,t !#50, @p~x,t!, p~y,t!#50. ~III.9!

The quantum HamiltonianHb determines the time evolution of the field operators given by
Heisenberg equations of motion,

df

dt
5

1

i
@f, Hb#,

dp

dt
5

1

i
@p, Hb#. ~III.10!

We construct operatorsav andav* as in ~III.8!, satisfying the commutation relations

@av , av8
* #5dv,v8 , @av , av8#5@av* , av8

* #50, ~III.11!

and such thatav* is the Hermitian conjugate ofav . Operatorsav andav* are called annihilation
and creation operators, respectively.

If one additionally assumes the existence of a cyclic vectorv0 such thatavv050 and some
natural domain restrictions, it is known that the algebra~III.11! has a unique representation
terms of a Fock space which we will describe now.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Let H5 l 2(V) and consider the bosonic Fock spaceF bH. As before, the vectorv0

5(1,0,0,...)PF bH is called the vacuum. The Hilbert spaceF bH can be naturally identified with
l 2(N@V#), whereN@V# is the set of non-negative, integer, finite combinations of elements oV.
Alternatively,

F bH. ^

vPV

l 2~N@v#!, ~III.12!

as in ~II.5!.
Let e(h), hPN@V#, be the canonical orthonormal basis inl 2(N@V#).F bH. The setN@V#

is, in a natural way, a semigroup with respect to addition. Writing

N@V#{h5( nvv, vPV,

where almost all numbersnv are zero, we define the creation operatorsav* by

av* e~h!5Anv11e~h1v!. ~III.13!

The field operatorsf(x,t) andp(x,t) are then defined by means of formula~III.8!.
The Hamiltonian of the free almost periodic quantum field theory is given by the fam

expression

Hb5 (
vPV

uvuav* av5
1

2 E
ap

:~p~x!21„]xf~x!…2!: dx, ~III.14!

where : : means Wick ordering. The canonical basis$e(h)% is the basis of eigenvectors forHb ,

Hbe~h!5S ( nvuvu De~h!. ~III.15!

Let D be the dense subspace ofF bH consisting of finite linear combinations of the bas
elementse(h). It is an invariant domain forav andav* , and is a core forHb .

Proposition III.1: With the above definitions, the operator-valued distributionsf~x,t! and
p~x,t!, and the Hamilton operator Hb satisfy Eqs. (III.5), (III.9) and (III.10) onD .

Proof: The proof is a direct calculation following essentially the similar argument in stan
quantum field theory,~see, e.g. Ref. 11!. h

The quantum dynamics described in this section is very closely related to the quantum
necker flow. Indeed, denotingH2 :5 l 2(V2), we have a natural decomposition

F bH.F bH2 ^ F bH1 .

With respect to this decomposition, the HamiltonianHb can be split into the positive and negativ
frequency parts:

Hb5 (
vPV

uvuav* av5 (
vPV2

uvuav* av1 (
vPV1

vav* av5H21H1 .

SinceH2 is unitarily equivalent toH1 , the almost periodic free field theory is a double of t
quantum Kronecker flow.

Consider the family of operatorsUv(t) andVv(s), s,tPR, vPV, defined as

Uv~ t !5eit ~av1av* !, Vv~s!5es~av2av* !.
J. Math. Phys., Vol. 38, No. 11, November 1997
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TheC* -algebra generated byUv(t) andVv(s) is an example of a CCR algebra.12 It is a nonsepa-
rableC* -algebra which is usually studied in quantum field theory. It is, however, not well su
for our purposes and, following Ref. 1, we define the bosonic algebra of observablesAb to be the
C* -algebra generated by the canonical unilateral shifts in each factor of~III.12!. The Hamiltonian
Hb defines a dynamicss t

b on Ab by

s t
b~A!5eitH bAe2 i tH b, APAb .

We have the following analog of Proposition II.2.
Proposition III.2: (1) TheC* -algebra Ab is an infinite tensor product of standard Toepli

C* -algebrasIv :

Ab5 ^

vPV

Iv ,

whereIv is generated by the canonical unilateral shift in l2(N@v#).
(2) For everyb.0, there exists a unique KMSb state on(Ab ,s t

b).
Proof: This follows from Propositions 7 and 8 of Ref. 1. h

IV. ALMOST PERIODIC FERMIONS

In this section we will define the almost periodic fermionic quantum free field.

A. Quantum fermionic field

Let, as before,H5 l 2(V), and consider the fermionic Fock spaceF fH. The Hilbert space
F fH is defined as

F fH5 %

n50

`

`nH,

where`nH is thenth exterior power ofH with `0H5C. The vectorv05(1,0,0,...)PF fH is
called the vacuum. The Hilbert spaceF fH can be naturally identified withl 2(Z2@V#), whereZ2

is the group$0,1% with addition modulo 2.
Let f (h), hPZ2@V#, be the canonical orthonormal basis inl 2(Z2@V#).F fH. The set

Z2@V# has a natural group structure with respect to addition modulo 2. Writing

Z2@V#{h5 (
vPV

nvv,

where almost all numbersnv are zero, we define the creation operatorsbv* and the annihilation
operatorsbv by

bv* f ~h!5A~nv11!mod 2f ~h1v!,

bv f ~h!5Anv f ~h2v!.

It easy to verify the following anticommutation relations:

@bv , bv8
* #15dv,v8 , @bv , bv8#15@bv* , bv8

* #150, ~IV.1!

where@x, y#1 :5xy1yx is the anticommutator. Unlike in the bosonic case, the operatorsbv are
bounded. LetA f be theC* -algebra generated by the fermionic creation and annihilation op
tors. This algebra is called in the literature the CAR algebra.12

Fermionic field operatorsc1(x) andc2(x) at time 0 are then defined by
J. Math. Phys., Vol. 38, No. 11, November 1997
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c1~x!5 (
vPV

„U~v!bv* 1U~2v!b2v…e2 ivx,

~IV.2!

c2~x!5 i (
vPV

„U~2v!bv* 1U~v!b2v…e2 ivx,

whereU is the Heaviside function. One can directly verify the following anticommutation r
tions:

@c i~x!, c j~y!#152d i j dV~x2y!.

The fermionic almost periodic free HamiltonianH f is then given by

H f5 (
vPV

uvubv* bv ,

so that

H f f ~h!5S (
vPV

nvuvu D f ~h!.

It defines a dynamicss t
f on A f by

s t
f~A!5eitH fAe2 i tH f , APA f .

B. Supersymmetry

The supersymmetric almost periodic quantum free field theory is defined as the tensor p
of bosonic and fermionic field theories. This means that the Hilbert space of that theory
tensor productF bH ^ F fH with the naturalZ2 gradingG5I ^ (21)F, where

F f ~h!5S (
vPV

nvD f ~h!.

The relevantC* -algebraA is then the tensor productA5Ab^ A f . The supersymmetric Hamil
tonianH is defined by

H5Hb^ I 1I ^ H f ,

and the corresponding dynamics onA is denoted bys t . The new feature of the supersymmetr
theory is the existence of a supercharge, namely a self-adjoint operatorQ which is odd under the
Z2 grading, and has the property thatQ25H. The operatorQ can be defined in the following way

Q5
1

A2
E

ap
c1~x!~„p~x!2]xf~x!…1c2~x!„p~x!1]xf~x!…! dx

5 (
vPV

Auvu~av* bv1avbv* !. ~IV.3!

The system (A,G,s t ,Q) is an example of a quantum algebra to be discussed in the next se
J. Math. Phys., Vol. 38, No. 11, November 1997
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V. SUPER-KMS STATES

In this section we construct and prove the uniqueness of super-KMS functionals for th
supersymmetric almost periodic quantum field theory. Super-KMS functionals areZ2-graded
counterparts of KMS states and play an important role in index theory.

A. Super-KMS functionals

We will recall the definitions of quantum algebras and the super-KMS states on qua
algebras.5,6

Definition V.1: A quantum algebrais a quadruple (A,G,s t ,d) satisfying conditions~1!–~4!
below.

~1! A is a C* -algebra.
~2! G is aZ2 grading onA, i.e., a* -automorphism ofA such thatG251. ForaPA we denote

aG:5G(a).
~3! s t :A→A is a continuous, one-parameter group of even, bounded automorphisms ofA. s t

do not have to be*-automorphisms.
~4! Let Aa be the subalgebra ofA such that for everyaPAa the functiont→s t(a) extends to

an entireA-valued function. It is known thatAa is norm dense. OnAa we set

D:52 i
ds t

dt U
t50

.

Hered is a superderivation onAa , i.e.,

dG52d, d~ab!5dab1aGdb,

such thatd25D.
In the theory of the previous section setda:5@Q, a#s , andDa:5@H, a#s , where@a, b#s is

the supercommutator, i.e.,@a, b#s5@a, b#, if at least one of the operatorsa,b is even, and
@a, b#s5@a, b#1 , if both are odd. Then (A,G,s t ,d) is a quantum algebra. In the following, th
quantum algebra will be referred to as thealmost periodic quantum algebra.

Definition V.2: Let (A,G,s t ,d) be a quantum algebra. A continuous linear functionalm:
A→C is called a super-KMSb functional if for a,bPAa ,

~1! m(da)50,
~2! m(ab)5m„bGs ib(a)….

If, for a Z2-gradedC* -dynamical system (A,G,s t), a linear continuous functionalm satisfies only
the condition~2! above, then it is called apre-super-KMSb functional.

Unlike for KMS states, no positivity assumptions are or can be made for super-KMSb func-
tionals. It follows from the definition that a super-KMSb functionalm: A→C satisfies

m„s t~a!…5m~a!, mG5m, m~a db!5m~da bG!.

In our example of the almost periodic quantum algebra, assuming additionally that tr (e2bH)
,`, set

mb~a!:5Str ~ae2bH!, ~V.1!

where Str is the supertrace, i.e., Str (a)5tr (Ga). It is then easy to verify thatmb is a super-
KMSb functional.
J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Uniqueness theorem

The remainder of this section is devoted to the proof of the uniqueness of the super
functional for the almost periodic quantum algebra. We start with two propositions of indepe
interest.

Proposition V.3: Let V be a finite-dimensional Hilbert space, G aZ2-grading on V, Q an odd
self-adjoint operator on V, H:5Q2, and A:5L(V) the algebra of linear operators on V. Fo
aPA, we set da:5@Q,a#s ands t(a):5eitHae2 i tH . Then, for everyb.0, there is a unique, up to
a multiplicative constant, pre-super-KMSb functionalmb on (A,G,s t) given by

mb~a!5Str ~ae2bH!.

Moreover,mb is automatically a super-KMSb functional on(A,G,s t ,d).
Proof: Let mb be any pre-super-KMSb functional on (A,G,s t ,d). Consider m̃b :

5mb(GaebH). Using condition 2 of Definition V.2, one easily verifies thatm̃b(ab)5m̃b(ba),
and som̃b is proportional to the trace and the claim follows. h

Proposition V.4: Let(Ai ,G i ,s t
i),i 51,2 be twoZ2-gradedC* -dynamical systems which hav

unique, up to a multiplicative constant, pre-super-KMSb functionals mb
i . Then mb

1
^ mb

2 is a
unique, up to a multiplicative constant, pre-super-KMSb functional on the tensor product(A1

^ A2,G1
^ G2,s t

1
^ s t

2).
Proof: Let mb be any pre-super-KMSb functional on the tensor product. The statement f

lows easily from the fact that for anybPA2 the following functional onA1:

mb,b~a!:5mb~a^ b!

is a pre super-KMSb functional. h

The following theorem can now be easily deduced from Proposition V.3, Proposition V.4
Proposition 8 of Ref. 1.

Theorem V.5: For everyb.0, there exists a unique, up to a multiplicative constant, sup
KMSb functional on the almost periodic quantum algebra(A,G,s t ,d).

Proof: We are going to prove that there is a unique pre-super-KMSb functional on the
Z2-gradedC* -dynamical system (A,G,s t). It will follow from the construction that functional is
in fact, a super-KMSb functional.

It follows from Proposition III.2 and the structure theorems forA f ~see Ref. 12! that the
C* -algebraA is isomorphic with the following infinite tensor product:

A5 ^

vPV

Iv ^ Uv ,

whereIv is the Toeplitz algebra andUv is generated by the fermionic creation and annihilat
operatorsbv* , bv , and is isomorphic withM2(C), the algebra of 232 matrices. Additionally, both
the gradingG and the dynamicss t factor with respect to the above decomposition,

G5 ^

vPV

Gv , s t5 ^

vPV

s t,v .

It is easy to verify thatGv is trivial on Iv , so thatGv5I ^ Gv
f . The generator ofs t,v is the

supersymmetric harmonic oscillator HamiltonianHv5uvu(av* av1bv* bv), and so we have a fur
ther decomposition:s t,v5s t,v

b
^ s t,v

f . The system (Uv ,G f ,s t,v
f ) is finite dimensional, and thus

by Proposition V.3 it has a unique pre-super-KMSb functional. The uniqueness of a pre-supe
KMSb functional on (Iv ,Gb5I ,s t,v

b ) follows from Proposition 8 of Ref. 1 since the proof of th
proposition does not require any positivity assumptions on the functional. Moreover, any
super-KMSb functional onIv ^ Uv is proportional to
J. Math. Phys., Vol. 38, No. 11, November 1997
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a→Str ~ae2bHv!,

and consequently is a super-KMSb functional. The theorem now follows from Proposition V.4.h
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APPENDIX A: AN INGHAM-TYPE TAUBERIAN THEOREM

In this Appendix we prove a technical result used in Sec. II to establish the quantum e
icity of the quantized Kronecker dynamics. This result is a variant of Ingham’s Tauberian the
~Ref. 13, see also Ref. 14!, and differs from the original theorem in some of the hypotheses.

Let N(x) be a nondecreasing function of bounded variation satisfying the following ass
tions:

~1! N(x)50, for all x<0;
~2! for all s.0, *0

`e2sx dN(x),`;
~3! for all s5s1 i t , s.0, tPR, the functionf(s) defined by

ef~s!5E
0

`

e2sx dN~x! ~A1!

is holomorphic.
The functionf(s) will play a fundamental role in the following analysis. Ingham’s origin

theorem requires detailed knowledge of the asymptotic off(s) ass approaches 0 within an angle
Such an asymptotic is usually difficult to obtain. Somewhat different assumptions onf(s) lead to
a result which is well tailored for our purposes. Specifically, we require that

~a!

2sf8~s!↗`, and s2f9~s!↗`, as s↘0; ~A2!

~b!

Usf-~s!

f9~s!
U5O~1!, as s↘0; ~A3!

~g! for any D.0, there iss0.0 such that the triangle

T~D,s0!5$s1 i t :0,s,s0 ,utu,Ds%

does not contain nonreal roots of Imf8(s).
We can now formulate the main result of this Appendix.
Theorem A.1: Under the above assumptions (1)–(3) and (a)–(g),

N~E!5„2psE
2f9~sE!…21/2esEE1f~sE!

„11o~1!…, as E→`, ~A4!

wheresE is the unique solution to the equation

f8~s!1E50. ~A5!

Proof: The existence and uniqueness of the solution of~A5! follows from assumption~a!.
Integrating by parts on the right-hand side of~A1! we obtain the identity
J. Math. Phys., Vol. 38, No. 11, November 1997
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ef~s1 i t !

s1 i t
5E

0

`

e2~s1 i t !xN~x! dx. ~A6!

Let g be an integrable function. Multiplying~A6! by eE(s1 i t )g(t) and integrating overt we obtain,
after a change of the order of integration,

E
2`

` ecE~s1 i t !

s1 i t
g~ t ! dt5A2pE

2`

`

es~E2x!ĝ~x2E!N~x! dx, ~A7!

where we have set

cE~s!5f~s!1Es. ~A8!

Shifting the integration variable on the right-hand side of~A7! we rewrite~A7! as the following
basic identity:

1

2p E
2`

` ecE~s1 i t !

s1 i t
g~ t ! dt5

1

A2p
E

2`

`

e2sxĝ~x!N~x1E! dx. ~A9!

We take the functiong to be of the formg(t)5 f (t/T), where f is continuous in the interval
@21, 1# and zero outside it,f (0)51, and whereT.0 is a number which will be chosen shortly
We let L(s) denote the left-hand side of~A9!, i.e.,

L~s!5
1

2p E
2T

T ecE~s1 i t !

s1 i t
f ~ t/T! dt.

For 0,d,T, we decomposeL(s) into two parts,

L~s!5
1

2p E
utu<d

ecE~s1 i t !

s1 i t
f ~ t/T! dt1

1

2p E
d,utu,T

ecE~s1 i t !

s1 i t
f ~ t/T! dt[L ~1!~s!1L ~2!~s!,

and analyze them separately.
So far the considerations have been quite general, and we will now start making sp

choices. Pick anyD.0 ~which we will eventually want to make arbitrarily large!, and choose
s0.0 such that the triangleT(D,s0) defined in assumption~g! does not contain nonreal roots o
Im f8(s). TakeE sufficiently large so thatsE,s0 . To simplify the notation,sE will be denoted
by s throughout the remainder of this proof. Furthermore, takeE large enough so that

D

As2f9~s!
<1, ~A10!

which is possible by assumption~a!. SetT5sD. The choice ofd will be made shortly.
To analyzeL (1)(s) we expandcE(s) arounds5s ~in the following the subscriptE in cE

will be suppressed!:

c~s1 i t !5c~s!21/2f9~s!t221/6f-~u!i t 3,

for a u belonging to the line segment which joinss2 id ands1 id. By assumption~b! we have

uf-~u!tu<Usf-~s!

f9~s!
Uds f9~s!5o~1!f9~s!,
J. Math. Phys., Vol. 38, No. 11, November 1997
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if d/s5o(1), asE→`. We now make the following choice ofd :

d5S s2

f9~s! D
1/4

. ~A11!

Then, by assumption~a!, d/s5„s2f9(s)…21/45o(1), and, consequently,

c~s1 i t !5c~s!21/2f9~s!„11o~1!…t2.

Therefore,

L ~1!~s!5
1

2p E
2d

d 1

s
f ~0!ec~s!e21/2f9~s!„11o~1!…t2

5
ec~s!

2pAs2f9~s!
E

2d„f9~s!…1/2

d„f9~s!…1/2

e21/2„11o~1!…t2 dt„11o~1!….

However, d„f9(s)…1/25„s2f9(s)…1/4→`, as E→`, and so the Gaussian integral above b
comes an integral over entireR in this limit. As a result,

L ~1!~s!5„2ps2f9~s!…21/2ec~s!
„11o~1!….

We now turn to the analysis ofL (2)(s). We wish to show that this term is much smaller th
the previous one. Indeed,

uL ~2!~s!u<T sup u f ~ t/T!u
1

s
sup

d,utu,T
uec~s1 i t !u5O~1!D sup

d,utu,T
eRe c~s1 i t !.

Assumption~g! implies that the above supremum is attained atutu5d. To see this, we consider th
function

t→Re c~s1 i t !5Re f~s1 i t !1Es.

The critical points of this function satisfy

05
d

dt
Re „f~s1 i t !1Es…5Im f8~s1 i t !.

Hence there are no critical points in the intervald,utu,T5sD, and the function attains its
maximum value at an endpoint. Consequently, using a Taylor expansion as in the analy
L (1)(s),

uL ~2!~s!u<O~1!DeRe c~s6 id!5O~1!Dec~s!21/2f9~s!d2
„11o~1!….

It is easy to see that, with our choices ofd andD, we have

De21/2f9~s!d2
!„s2f9~s!…21/2

and soL (2)(s)5o(1)L (1)(s). This concludes the analysis of the left-hand side of~A9!.
The asymptotic behavior ofL(s) turns out to be independent of the choice of functionf . In

the following we study the right-hand side of~A9! which will be denoted byR(s). We shall make
suitable choices off in order to get bounds onN(E) from above and from below.

Lemma A2: Define
J. Math. Phys., Vol. 38, No. 11, November 1997
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Ñ~E!:5„2ps2f9~s!…21/2esE1f~s!. ~A12!

Then

Ñ„E1O~1!/s…5Ñ~E!„11o~1!….

Proof: Let s1 be the unique solution of the equation2f8(s1)5E1O(1)/s. Taylor expand-
ing f8 arounds yields

s15s1
O~1!

sf9~s!
,

since 1/sf9~s!!s. It then follows readily thats15s„11o(1)…. In a similar fashion, we conclude
that f9(s1)5f9(s)„11o(1)…, and c(s1)5c(s)1o(1). Inserting these expressions into th
definition of Ñ„E1O(1)/s… completes the proof. h

Choice 1:Set

f ~ t !5H 12utu, if utu<1,

0, otherwise.

The Fourier transform off is

f̂ ~x!5
1

A2p
S sin ~x/2!

x/2 D 2

,

and thus the right-hand side of~A9! is

R~s!5
T

2p E
R
e2xsS sin ~Tx/2!

Tx/2 D 2

N~E1x! dx. ~A13!

The integrand of~A13! is positive and so, for anyL,

R~s!>
T

2p E
2L

L

e2xsS sin ~Tx/2!

Tx/2 D 2

N~E1x! dx>N~E2L!e2sL
1

2p E
2TL

TL S sin ~x/2!

x/2 D 2

dx,

where we have used the monotonicity ofN(x). Now takeL51/(sAD). With this choice,sL
51/AD, and the exponential term in the above formula tends to 1, asD→`. Similarly, TL
5AD and the integral over (2TL,TL) tends to the integral~equal to 1! over all ofR. This yields
the inequality

R~s!>N~E2L!„11o~1!….

ReplacingE by E2L and using Lemma A.2, we conclude that

N~E!<Ñ~E!„11o~1!….

Choice 2:Set

f 1~ t !5H 1

2im
~eimutu2e2 imutu!, if utu<1,

0, otherwise,
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherem52kp, 0,kPZ. Let

f 2~ t !5H 12utu, if utu<1,

0, otherwise,

and takef 5 f 11 f 2 . The Fourier transform off is

f̂ ~x!5
1

A2p
S sin ~x/2!

x/2
D 2 m2

m22x2
,

and sof̂ (x),0, for uxu.m. Consequently,

R~s!<
T

2p
E

uTxu<m
e2xsS sin ~Tx/2!

Tx/2
D 2 m2

m22x2 N~E1x! dx

<N~E1m/T!ems/T
1

2p
E

2m

2mS sin ~x/2!

x/2
D 2 m2

m22x2 dx,

by monotonicity. Now takek to be the integer part of@AD#. With this choice, the integral abov
tends to 1, asD→`. Also, ms/T;D21/2→0 and the exponential term tends to 1. Sincem/T
;1/sAD, we can use Lemma A.2 to replaceE by E1m/T. This yields

N~E!>Ñ~E!„11o~1!…,

and concludes the proof of the theorem. h

Corollary A.3: With the above assumptions we have

N„E1O~1!…5N~E!„11o~1!….

Proof: This follows directly from Theorem A.1 and Lemma A.2. h

APPENDIX B: SOME EXAMPLES OF KRONECKER SYSTEMS

The theorem below provides a source of examples of Kronecker systems satisfying t
sumptions of Theorem A.1.

Theorem B.1: Let vn5Ana(11mn), where A.0 and a>1 are constant, and wheremn

5o(1), as n→`. Thenf(s) satisfies the assumptions of Theorem A.1.
Proof: Assumptions~1!–~3! of Appendix A are clearly satisfied, and so it is sufficient

verify assumptions~a!–~g!.
Assumption~a! is a consequence of the following equalities:

2sf8~s!5 (
n51

`

f ~svn!, s2f9~s!5 (
n51

`

f ~svn!,

where the functionsf andg are given by

f ~x!5
xe2x

12e2x , g~x!5
x2e2x

~12e2x!2 .

Since bothf (x) andg(x) increase monotonically 1 asx↘0, the claim follows.
To prove~b!, we note that
J. Math. Phys., Vol. 38, No. 11, November 1997
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2s3f-~s!<u~s!,

and

s2f9~s!>Ceu„~12e!s…, for some 0,e,1,

whereu~s! is defined in~II.8!. Sincevn5Ana(11mn) implies thatu(s)5Cs21/a
„11o(1)…, as

s→0, we conclude that

Usf-~s!

f9~s!
U<O~1!

u~s!

u„~12e!s…

5O~1!,

ass→0.
Finally, assumption~g! is verified in the following lemma. h

Lemma B.2: Under the assumptions of Theorem B.1,

Im f8~s1 ixs!5CA,as2bx„h~x!1o~1!…, ~B1!

for xPR, ass→0, uniformly inuxu<D. Hereb511a21
, and h~x! is a function such that h~x!Þ80,

for all xPR.
Proof: Explicitly,

Im f8~s1 ixs!5 (
n>1

lne2sln sin ~xsln!

11e22sln22e2sln cos~xsln!
. ~B2!

We will analyze this expression in two steps.
Step 1:Assume first thatln5Ana, and setun5(As)1/an. Then

Im f8~s1 ixs!5A21/as2bx(
n>1

c~un ,x!Dun , ~B3!

where

c~u,x!5
1

2s

ua sin ~xua!

coshua2cosxua , ~B4!

and whereDun5un2un215(As)1/a. The sum in~B3! is a Riemann sum of the integral

1

s E
0

` ua sin ~xe2ua
ua!

11e22ua
22e2ua

cos~xua!
du5CA,ah~x!, ~B5!

whereCA,a5a21G(b)z(b), and where

h~x!5~11x2!b/2
sin ~b arctanx!

x
. ~B6!

Note thath(x)Þ0, if a>1. We claim that the difference of the Riemann sum in~B3! and the
integral ~B5! is o(1), ass→0. Indeed, this difference can be written as

(
n>1

E
un21

un
„c~un ,x!2c~u,x!… du,

which can readily be bounded by
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A1/asb (
n>1

max
un21<u<un

U ]

]u
c~u,x!U. ~B7!

Using the fact that, uniformly inx,

U ]

]u
c~u,x!U<H O~1!u21, if 0,u<1;

O~1!e2~12e!u, if u.1
~B8!

~with 0,e,1!, we can bound~B7! by

O~1!sb (
1<n<~As!21/a

~As!21/an211O~1!sb (
n.~As!21/a

e2~12e!~As!1/an

5O~1!s log ~As!21/a1O~1!s5o~1!,

and our claim follows.
Step 2:In the general case, we writesln5un(11mn), with un as before. We now claim tha

the difference

(
n>1

~c„un~11mn!,x…2c~un ,x!!Dun ~B9!

is o(1), ass→0. Indeed, using~B8! we can bound~B9! by

(
n>1

unumnuDun max
uP@un21 ,un#

U ]

]u
c~u,x!U

<O~1!s1/a (
1<L

11O~1!s2/a (
n.L

mnne2~12e!~As!1/anO~1!s1/aL1O~1! sup
n.L

mn ,

whereL.0 is arbitrary. Choosing, e.g.,L5s21/(2a), we conclude that the above expression
o(1), ass→0. h
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