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We define and study the properties of the infinite-dimensional quantized Kronecker
flow. This C*-dynamical system arises as a quantization of the corresponding flow
on an infinite-dimensional torus. We prove an ergodic theorem for a class of quan-
tized Kronecker flows. We also study the closely related, almost periodic quantum
field theory of bosonic, fermionic, and supersymmetric particles. We prove the
existence and unigueness of KMS and super-KMS states fofthaigebras of
observables arising in these theories. 1897 American Institute of Physics.
[S0022-248807)01911-7

I. INTRODUCTION

In this paper, we introduce and study the properties of quantized infinite-dimensional Kro-
necker flows. Very much like its classical counterpart, a quantized Kronecker flow is defined in
terms of an infinite sequende of frequencies satisfying certain genericity assumptions. We define
a naturalC*-algebra of observables and show that it can be identified with an infinite tensor
product of standard Toeplitz algebras. A quantized Kronecker flow is a one-parameter group of
automorphisms of thi€* -algebra.

Our work has been inspired by a recent preptiffthe structures studied in Ref. 1 can be
interpreted as an example of a quantized Kronecker flow with the set of frequéh@gsal to
{log p:p prime numbe}.

The infinite tensor product of standard Toeplifz-algebras referred to above arises naturally
when one quantizes the infinite-dimensional Kronecker flow on a Bohr compactificatiBn of
Even though there is no parameter in this theory which would play the role of Planck’s constant,
one can introduce a natural concept of the classical fiffiwe prove that, under additional
assumptions o#f), the classical limit of the quantized Kronecker flow exists. The proof of this
theorem relies on an Ingham-type Tauberian theorem. Furthermore, we study the ergodic proper-
ties of that quantum Kronecker flow. We show that whenever the classical limit exists, the quan-
tized Kronecker flow is quantum ergodic in the sense of Zelditch.

Infinite-dimensional Kronecker flows lead to models of free quantum field theory in one space
dimension. In these field theories, the field operators are almost periodic functions of the space
coordinatex. There is a natural notion of a mean in the theory of almost periodic functions, the
Bohr mean, which plays the role of the integral. Using it, we carry over much of the formalism of
quantum field theory to the almost periodic setup. The construction of an almost periodic field
theory requires “doubling” the Hilbert space of the Kronecker flow. On this Hilbert space, we
define the field and momentum operators, which are fundamental objects in canonical quantum
field theory. It turns out that the dynamics of the quantum Kronecker flow and the almost periodic
wave equation are essentially the same. We focus our discussion on the theory of free fields.
Interacting(i.e., nonlinear field theories exhibit some new striking phenomena and will be dis-
cussed in a future publication.

Furthermore, we extend the construction of almost periodic field theory to incorporate fermi-
onic and supersymmetric.e., Z,-graded fields. The supersymmetric extension leads to a natural
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construction of a Fredholm module over the algebra of observables associated with the almost
periodic quantum field and the corresponding super-KMS functional. Super-KMS functibnals
appear naturally in thé&,-graded entire cyclic cohomology theory, but have been studied less
intensively than their nongraded antecedents, namely KMS states. We prove the uniqueness of the
super-KMS functionals for the supersymmetric model of an almost periodic quantum field theory.
The paper is organized as follows. In Sec. Il we introduce the notation and recall basic facts
from the theory of almost periodic functions. We then study the ergodic properties of the quan-
tized almost periodic Kronecker flow. The main technical input is a variant of Ingham’s Tauberian
theorem proved in Appendix A. As it turns out, ergodicity of the quantized Kronecker flow
depends on the growth properties of the @eExamples of ergodic Kronecker systems are given
in Appendix B. We start Sec. Il with a discussion of the canonical formalism of the almost
periodic classical field theory and illustrate it with an analysis of the almost periodic wave equa-
tion. Then we show how to formulate the quantum version of the almost periodic wave equation.
Free fermionic and supersymmetric models are introduced in Sec. IV. Finally, in Sec. V, we prove
the uniqueness of the super-KMS functionals for the free supersymmetric almost periodic quantum
field theory.

IIl. KRONECKER FLOWS

In this section we introduce the central concept of this paper, namely the infinite-dimensional
Kronecker flow. After a brief summary of the classical theory, we present its quantum-version and
study the properties of the resulting dynamics.

A. Almost periodic functions

First, we review some facts from the theory of almost periodic function® @nd fix our
notation.

Definition I1.1: A countable ordered subsét of R is called aKronecker systerif it satisfies
conditions(1)—(4) below.

(1) 0€Q.
(2) LetQ=0,UQ_, whereQ), and() _ are the subsets of positive and negative elements, of
respectively. Thelf is even, i.e.)_=—-Q, .

(3) Let w,, n=1,..., be the elements 61, listed in increasing order. Thed,— %, asn—o,
(4) The elements of) , are algebraically independent oviér

Two natural examples of a Kronecker system arise as follows.
Example l:iLet & be an algebraic number field af the the set of its prime ideals. Set

Q={*log NP:P e B},

where NP denotes the norm oP. Then () is a Kronecker system. In particular, the unique
factorization property of ideals implies th&, consists of numbers algebraically independent
overZ. This example is taken from Refs. 1 and 7-9.

Example 2:Let m be a transcendental real number, and let

Q={*yn*+m?%neN.

Then Q is a Kronecker system. This example is motivated by two-dimensional quantum field
theory.

Let QCR be the set of linear combinations of elementdoWwith coefficients inZ. In other
words, () is the free Abelian group generated 8y, :

Q=7[0.].
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We will use the notationZ>°(Q}) for the vector space of continuous almost periodic functions on
R with frequencies inf). This means that a functiohe . Z27°(Q)) has the following uniformly
convergent Fourier expansion:

f(x)= > f,e“x
we()

Likewise, .Z7°()) will denote the space of continuous almost periodic functionsRowith
frequencies in). Unlike .Z22(Q)), the space77°(Q) forms a unital commutativ€* -algebra.
This C*-algebra can be identified with tH& -algebra of continuous functions on the following
Bohr compactification oR. o

Let R, denote the infinite Cartesian product of unit circIB§b=HwEQ+Sl, equipped with

the Tikhonov topology. The embedding

Rox— [] expioxe [[ St (1.1)

wel) wel)

induces an isomorphism(ﬁ)):xzy(ﬁ) (see Ref. 1D .
The product of Lebesgue measuresrdefines an integrdl,, on C(Rq) and, consequently,
on ._7z7°(Q). Explicitly, in terms of Fourier series we have

f >, fe 7 dx=f,. (1.2)
ap

ne)

For later reference, we note that the almost periodic Dirac’s delta distribdtotefined by
So(x)= gﬁ glox (1.3)
is the Schwartz kernel of the projection
JZ.W((T)afHJ'aPSQ(X—y)f(y) dye. Z7(Q).

This projection “forgets” all terms in the Fourier series whose frequencies are ot in
The embeddingdll.1) defines a Kronecker-type flow; on R, given by

at< 11 e‘xw)= [T exotite (1.4)

wel) wel),

As a consequence of our assumptions(hrthis flow is ergodic.

B. Quantum Kronecker flow

We will now construct a quantization of the classical dynamical systef®’(Q)),«;), and
study the ergodic properties of the resulting quantum Kronecker flow. The quantization will be
given in terms of an algebra of operators on a Hilbert space, the “algebra of observables.”

Set. 77, =12(Q,), and consider the bosonic Fock spagg 7, defined as the symmetric
tensor algebra over7 . ,
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Tolr=® ST,
n=0

where S".77, is the nth symmetric tensor power of7, (with S°.7%,=C). The vectorv,
=(1,0,0,...)e. 77 is called thevacuum The Hilbert space7, 7, can be naturally identified
with 12(N[Q..]), whereN[Q . ] is the non-negative cone in the lattiZeQ) , ]. In the example of
an algebraic number field, the setN[(), ] can be identified with the set of all ideals &f
Alternatively, there is a natural isomorphism.@}, 77, with an infinite tensor product

ToTe= @ 13(No]). (I1.5)

wel)

In von Neumann'’s terminology, &,(»), n=0,1,2,..., is the canonical basisIf{N[ w]), then the
above tensor product is the incomplete tensor product associated with the sequence of vectors
(ep(w),e9(w),e9(w),...). Furthermore, the Fourier transform allows us to identify the space
12(Z[Q,]) with L?(Rg), and the Fock spacer, 7, =I?(N[Q,]) with the closed subspace
Li(RQ) of L2(R,) consisting of functions with non-negative frequencies.

Let P be the orthogonal projection onlbi(RQ)CLZ(RQ). Every f e C(Rp) defines a
Toeplitz operator Tf) on L2 (Rq)=.7, 7%, by

T(f)=PM(f)P,

whereM(f) is the operator oh?(Ry,) of multiplication byf. Recall thafT(f) is continuous irf,
IT(H=<|fll.., where|f]|.. denotes the sup norm éf

Let.#Z, be theC*-algebra generated by the Toeplitz operators. It is not difficult to see that
%, coincides with thgreduced C*-algebra of the semigroup[ Q. ]. For ne N[Q,], lete(7)
denote the canonical basis elementl®N[Q,])=7,7,. Let H, be an unbounded, self-
adjoint operator in7, 7, defined by

H . e(n)=7ne(n), (11.6)

and letU(t)=e™"+ be the corresponding one-parameter group of unitary operators. The pair
(7, ,U(1)) is a quantization ofC(Rg), ;) which we call thequantum Kronecker flow

Recall that the standard ToeplitZ -algebraJ is the C*-algebra generated by a single gen-
eratoru satisfying the relation* u=1. The following proposition can be proved by the method
used in the proofs of Propositions 7 and 8 in Ref. 1.

Proposition 11.2. (1) TheC* -algebra. Z.. is an infinite tensor product of ToeplitZ -algebras
Tos

whereJ,, is generated by the unilateral shift & T(e'*).
(2) For everyB>0 there exists a unique KMsSstate for(.Z, ,U(t)).

C. Ergodic theorem

We will show now that the quantum dynamical system constructed above is in fact a quanti-
zation of the classical Kronecker flow. Even though there is no Planck’s constant in this theory,
one can still introduce a natural concept ofdtassical limit Such a construction of the classical
limit was originally proposed in Refs. 2—4, and consists in the following i an operator on
T, andE>0, we set
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(e(n),ae(n)), (I1.7)

Te(X)i = ——
£(X) N(E) N[ngenslz

whereN(E) is the number of eigenvalues bff, less than or equal t&. The theorem which we
are about to formulate describes the classical limi¢ af, ,U(t)).

We will need additional assumptions on the 8et to guarantee the existence of the classical
limit. Specifically, assume that for evesy-0,

e(s):=n§l e S¥n< oo, (11.8)

This implies that the following-type function,

ZQ(S):=nf:[1 (1—esen)~1, (11.9)

converges for als>0. Expanding each term df,(s) in a power series and multiplying out the
terms, we can express,(s) as the following Lebesque-Stietljes integral:

[’

Lo(s)=1+ J e S dN(x),

0

where, as above\(x) is the counting function for the eigenvaluestdf . Equivalently, we can
write this formula as

e¢(5)=1+f e S dN(x), (11.10)
0
where ¢(s):=—=,_; log (1-€7). In Appendix A we study(l1.10) recast in the following
form:
e%(s) w
S =f e SX(N(x)+1) dx. (1.12)
0

Theorem I1.3: In addition to the assumptions above, Is) satisfy conditions (£(3) and
(a)—(y) of Appendix A. Then
(1) For every fe C(Rg),

lim 7e(T(f))=[ f(x) dx.

E—w ap
(2) For every fge C(]R_Q),

lim 7e(T(f)T(g)—T(fg))=0.

E—x
(3) For every a=.7, , the limit

lim 7g(a)=:7(a).

E—o

exists
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(4) Letr,. be the GNS representation of . with respect to the state Then
m(.7+)=C(Rg),
and for every & .7, we have
m(U(HaU(—1))= a(m(a)).

Proof: We first introduce some notation. As befote,=T(e*+) denotes the unilateral shift.

We set
u?, if n=0,
““’(n)::[(u;)", if n<0.
It is easy to verify that
U(tu,(nU(—t)=e"u,(n). (11.12)

If fe C(R_Q) is a trigonometric polynomial,

H eixw):E fo einwxw'
{not

f

then the corresponding Toeplitz operaldif) is explicitly given by

T(f)=2 fn Uy(N,).

It follows that for any»,

(), T(He(n)=fo= Lpf(x) dx.

This and the continuity oT(f) in f prove part(1) of Theorem 11.3.
For later reference, notice also that as a consequen@é k),

Ut)T(F)U(—t)=T(ay(f)). (1.13)

The structure of the standard Toeplitz algebra implies that opera{d)3 (g) —T(fg) gen-
erate the commutator ideal of _Z, . The quotient Z, /.7 is isomorphic toC(Ry), and the
quotient mapm:. 2, —C(Ry) is called the symbol map. We claim that

r(a)= lim TE(a):f m(a)(x) dx, (11.14)
ap

E—o

forallae. 7, . In other words, the stateis trivial on the commutator ideal, and it coincides with
the Lebesgue integral on the abelian quotient. R@jtand(3) of Theorem I1.3 are straightforward
consequences dfl.14). Formula(ll.14) implies also thatw(.2,) is isomorphic the algebra
C(Rg). The last statement of the theorem follows now frdirl3).

To prove(ll.14), it is enough, in view of partl) of Theorem II.3, to show that

lim 7g(a)=0, if ae.J.

E—o
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The structure of the standard Toeplitz algebiianplies that7 is generated by the operators of the
form

a=a, ®a, ® -a, el (11.15)

where at least one of the operatars ...a,, , saya,,, is compact. By a density argument, it is no
loss of generality to assume thaa,;k is a finite rank operator whose range is spanned by finitely
many elements of the canonical basis. Lebe the orthogonal projection onto this subspace. Then

=l S e,

T N(E) N0 52 <k
Since the spectrum dfl , is the sefX n,w:n,=0}, we have to show that for any integht,

#{n,=0n, <M:X n,o<E}
#{n,=0:2 n,w<E}

—0, asE—0. (l.16)

The numerator of the lhs fl.16) is equal toN(E) — N(E — (M + 1)), and so we have to show
that

N(E)—N(E— w (M +1))
N(E)

—0, asE—O0.

Formula(ll.11) and Corollary A.3 yieldN(E+1)=N(E)(1+0(1)). Consequently(1l.16) fol-
lows, and the theorem is proved. O
Remark:If ., ={log p:p prime numbe}, then it is easy to see thal(E)~eF and(11.16) is
not true. It would be interesting to determine the classical limit in this case. Note also that the
prime number theorem implies th&f(s) is divergent fors<1, and so the Tauberian theorem of
Appendix A does not apply.
It follows now from the general results in Ref. 4 that the quantum Kronecker(flaw,U (t))
is quantum ergodic in the following sense.
Theorem I1.4: Under the assumptions of Theorem 11.3, for every. & .,

1 (M
lim — U(t)aU(—t) dt=r(a)l +A,
M Jo

M — oo
where A is in the weak closure of, , and

lim re(A*A)=0.

E—o

In other words, the time average of a quantum observable is equal to its spatial average plus a
correction which vanishes in the classical limit.

lll. ALMOST PERIODIC BOSE FIELD

In this section we define the free almost periodic quantized field. It arises as the result of
canonical quantization of the classical almost periodic wave equation. Using Bohr's mean, we
propose a canonical formulation of the latter, and apply the standard quantization procedure. The
resulting quantum dynamical system is a “double” of the Kronecker dynamics studied in the
previous section.
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A. Wave equation

We first introduce some notation. For a smooth functitinZ>"(Q)) —C we letV{H denote
the Frechet derivative ofH in the direction of fe. Z2°({)). The functional derivative
SH()! 84(x) is, by definition, the distribution onZ7°(Q)) such that

SH(¢)
p 0p(X)

VfH(qS):fa f(x) dx.

The canonical complex structure on>(Q)) defines a symplectic structure or’(Q2) for which
positions are real functions and momenta are purely imaginary functions. The respective coordi-
nates will be denoted by(x) and (x) so thatsH (¢, )/ dp(X) is the functional derivative in
the real direction, andH (¢, 7)/é7(x) is the functional derivative in the imaginary direction.
The symplectic spaceZz7°(Q)) is the phase space for almost periodic field theory.

Every smooth functiotH:. Z7°(Q}) —R defines a Hamiltonian flow onz7(Q}) by

do(xt)  oH dm(x,t) SH i1
dt  om(x)’ dt  8é(x)’ (In.1)
The Poisson bracket of two functiofsandG on.Z2>°(Q)) is defined by
FG _J ( oF oG oF oG q
P61 ) o\ 3600 8m00 3700 5900
and so the flow(lll.1) can be written as
dF(o(t),m(t
—(d)( ). 7 ))={F,H}. (1.2)

dt
A straightforward calculation shows that

{p(x,0),m(y.)}=a(x=Yy), {d(x1),d(y,1)}=0, {m(xt),m(y,t)}=0.  (lll.3)

We will now formulate the almost periodic free field theory. The dynamics is given by the
wave equation,

P 5
—(21)— —f = (1.4)
at ox
Equation(lll.4) can be written in the fornflll.1) with the Hamiltonian
1 2 2
H(¢,m)=5 ap(7T(X) + (dxp(x))7) dx.
For this Hamiltonian, Eqs(lll.1) read
d¢ dm
T a_gxg{,, (11.5)

and lead td(lll.4). The most general solution ¢fl.5) can be written in the following form:

d(x,t)= z (¢1’weiw(x+t)+ ¢2’weiw(x—t))'
v (111.6)
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m(X,t)= EQ iw(¢lvweiw(x+t)_d)z’weiw(x—t))_

we

The reality condition implies;?lvwz d1-w and@vw: ¢, - In quantum field theory it is conve-
nient to parametrize the above solutions slightly differently. We set
D10 if >0,

_ 12y
a,=2]o| br o If ©<0.

The new variables,, have the following Poisson brackets:
{aw ,a_w,}=5w’w, y {aw,awr}:{a_w ,a_wr}=0. (“I?)

Equations(l11.6) can then be recast in the following form:

¢(X't)zﬁ 2 |w|—1/2(awe|t|w\+aiwe—lt|w|)e|wx,
we()
(I11.8)

1 . . )
’7T(X,t)=_2 E |w|l/2(awelt\w|_aiweflt\w|)elwx.

\/_ wel)

B. Quantum bosonic field

We shall now describe a quantization of the algebra of functieg(Q)) and of the dynamics
(11.5). We will follow the procedure of canonical quantization which is adopted in quantum field
theory.

The standard rule of quantization consists in replacing classical observables by operators and
Poisson brackets by (i< commutators. For simplicity we sét=1. More precisely, quantization
of the almost periodic wave equation proceeds as follows. We find almost periodic, Hermitian,
operator-valued distributiong(x,t) and 7(x,t) such that(lll.5) is satisfied. Furthermore, we
require thafsee(lll.3)]

[¢(x,1), m(y,)]=i6a(x—Y),
[&(X1), ¢(y,)]=0, [m(xt), m(y,t)]=0. (1.9)

The guantum Hamiltoniai, determines the time evolution of the field operators given by the
Heisenberg equations of motion,

dop 1 dm 1
E:i_[d)’ Hb]v E:i_[w’ Hb]- (|||.10)

We construct operatoms,, anda’ as in(l11.8), satisfying the commutation relations
* q__ _ * 7
[a,, &, ]1=040  [a,,a,]1=[a),a, ]=0, (n.11)
and such thad®* is the Hermitian conjugate af,. Operatorsa,, anda’ are called annihilation
and creation operators, respectively.
If one additionally assumes the existence of a cyclic vegtosuch thata,v,=0 and some

natural domain restrictions, it is known that the algelite11) has a unique representation in
terms of a Fock space which we will describe now.
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Let .7#=12(Q2) and consider the bosonic Fock spa@g.77. As before, the vectow,
=(1,0,0,...)e.7,.7# is called the vacuum. The Hilbert spaeg,.7 can be naturally identified with
12(N[Q]), whereN[Q] is the set of non-negative, integer, finite combinations of elemene. of
Alternatively,

To= @ 12(Nw]), (11.12)

wel)

as in(I.5).
Let e(#5), e N[Q], be the canonical orthonormal basisi N[ Q1 ]) =.7,. 7. The set\[Q]
is, in a natural way, a semigroup with respect to addition. Writing

NQ]s 7]22 n,o, wel},

where almost all numberns,, are zero, we define the creation opera@jfshy

are(n)=n,+1le(n+w). (1n.13)

The field operatorgh(x,t) and w(x,t) are then defined by means of formylH.8).
The Hamiltonian of the free almost periodic quantum field theory is given by the familiar
expression

Hb:w};,Q |w|af;aw:% fap:(w(x)2+(&x¢(x))2): dx, (111.14)

wher : : means Wick ordering. The canonical bd®é7)} is the basis of eigenvectors fét,,

2 nlo|

Let & be the dense subspace.@},7 consisting of finite linear combinations of the basis
elementse(7). It is an invariant domain foa, anda’ , and is a core foH,,.

Proposition IIl.1: With the above definitions, the operator-valued distributigits,t) and
7(x,9), and the Hamilton operator Kisatisfy Egs. (I11.5), (111.9) and (111.10) onz.

Proof: The proof is a direct calculation following essentially the similar argument in standard

Hpe(n)= e(n). (111.15)

quantum field theory(see, e.g. Ref. 11 O
The quantum dynamics described in this section is very closely related to the quantum Kro-
necker flow. Indeed, denotingZ_ : =1%(Q)_), we have a natural decomposition

With respect to this decomposition, the Hamiltontag can be split into the positive and negative
frequency parts:

Hb:E |w|a:’a“’: 2 |w|afuaw+ 2 wa:)aw:H,‘l-HJr.
wel) wel)_ wel)

SinceH _ is unitarily equivalent taH ., the almost periodic free field theory is a double of the
quantum Kronecker flow.
Consider the family of operatotd ,(t) andV(s), s,te R, we(}, defined as

u,(t)= eit(aw+a’;), V,(s)= es@,—ay)
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The C*-algebra generated Wy, (t) andV,,(s) is an example of a CCR algebtalt is a nonsepa-
rable C* -algebra which is usually studied in quantum field theory. It is, however, not well suited
for our purposes and, following Ref. 1, we define the bosonic algebra of observaplesbe the

C* -algebra generated by the canonical unilateral shifts in each factdi.@®). The Hamiltonian

H, defines a dynamice{J on .7y, by

oP(A)=eltMbpae M Ac. 7.

We have the following analog of Proposition 11.2.
Proposition 111.2: (1) TheC*-algebra. 7, is an infinite tensor product of standard Toeplitz
C*-algebrasJ,,:

'/éb: ® jw!
wel)

whereJ,, is generated by the canonical unilateral shift f{(IN[ w]).

(2) For every>0, there exists a unique KMState on(. 7, ,a{’).

Proof: This follows from Propositions 7 and 8 of Ref. 1. O
IV. ALMOST PERIODIC FERMIONS

In this section we will define the almost periodic fermionic quantum free field.
A. Quantum fermionic field
Let, as before,7#7=1%(Q)), and consider the fermionic Fock spagg.7Z. The Hilbert space
7+ is defined as
T =@ N\ X,

n=0

where/\".7 is thenth exterior power of7 with /\°.%7=C. The vectow,=(1,0,0,...). 717 is
called the vacuum. The Hilbert spa¢g.77 can be naturally identified with?(Z,[ Q]), whereZ,
is the group{0,1} with addition modulo 2.

Let f(7), neZ,[Q], be the canonical orthonormal basis Iif(Z,[Q])=.7;7. The set
7,[ Q] has a natural group structure with respect to addition modulo 2. Writing

Z[Q]3 7= 2 n,o,
we)

where almost all numberns,, are zero, we define the creation operatofsand the annihilation
operatorsh,, by

b%f(7)=(n,+1)mod Z(7n+w),
b, f(7)=\n,f(7-w).
It easy to verify the following anticommutation relations:
[by, b} )i =800 [bu, bu]s=[b, b},1,=0, (IV.1)
where[ X, Y], :=Xxy+yxis the anticommutator. Unlike in the bosonic case, the operatpere
bounded. Let #; be theC*-algebra generated by the fermionic creation and annihilation opera-

tors. This algebra is called in the literature the CAR algébra.
Fermionic field operatorg;(x) and ¢,(x) at time O are then defined by
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P (X)= Eg) O(w)b:+6(— w)b,w)e_i“’x,
" (IV.2)

Yo (X) =i EQ (e(—w)b2+e(w)b7w)e—iwx'

where© is the Heaviside function. One can directly verify the following anticommutation rela-
tions:

L#i(X), ¢i(Y)]+ =26 6a(X—Y).

The fermionic almost periodic free Hamiltonia&fy is then given by

Hi= > |o|bkb,,
wel)

so that

Hffw):( Zﬂ ”w|w|)f(77)-

It defines a dynamics! on. 7 by
ol(A)=eMipe ™M, Aec. 7.

B. Supersymmetry

The supersymmetric almost periodic quantum free field theory is defined as the tensor product
of bosonic and fermionic field theories. This means that the Hilbert space of that theory is the
tensor product/, 7®.7 ;.77 with the naturalZ, gradingl’=1® (—1)F, where

Ff(n)=(w29 nw)fw).

The relevant*-algebra 7 is then the tensor product=. 7,®.7; . The supersymmetric Hamil-
tonianH is defined by

H=Hp®l+I®H;,

and the corresponding dynamics .ofiis denoted byr;. The new feature of the supersymmetric
theory is the existence of a supercharge, namely a self-adjoint op&attich is odd under the
7, grading, and has the property ti@f=H. The operatof) can be defined in the following way:

Q= % Lp%(x)((ﬂ(x)—ﬁx¢(x))+ tha(X) (m(X) + dxp(x))) dx

= EQ Vo|(aXb,+a,b%). (IV.3)

The system.(Z,I",0,Q) is an example of a quantum algebra to be discussed in the next section.
J. Math. Phys., Vol. 38, No. 11, November 1997

Downloaded 22 Apr 2008 to 128.103.60.225. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



S. Klimek and A. Lesniewski: Kronecker flows 5617

V. SUPER-KMS STATES

In this section we construct and prove the uniqueness of super-KMS functionals for the free
supersymmetric almost periodic quantum field theory. Super-KMS functionalsageaded
counterparts of KMS states and play an important role in index theory.

A. Super-KMS functionals

We will recall the definitions of quantum algebras and the super-KMS states on quantum

algebras:®
Definition V.1: A quantum algebrs a quadruple.(Z,I",0,,d) satisfying conditiong1)—(4)
below.

(1) .7 is aC*-algebra.

(2 I’Fis a7, grading on +, i.e., ax-automorphism of Z such that’?>=1. Forae. 7 we denote
a':=TI'(a).

(3) oy:.#4—.7 is a continuous, one-parameter group of even, bounded automorphisms®f
do not have to be-automorphisms.

(4) Let. 7, be the subalgebra o/ such that for evenae. 7, the functiont— o(a) extends to
an entire_#-valued function. It is known thatZ, is norm dense. On#Z, we set

D . doy
== — .
dt =0

Hered is a superderivation onz,,, i.e.,
d'=-d, d(ab)=dab+a’db,

such thatl?=D.

In the theory of the previous section ski: =[Q, a]s, andDa:=[H, a]s, where[a, b]sis
the supercommutator, i.efa, b]s=[a, b], if at least one of the operatob is even, and
[a, b]s=[a, b], , if both are odd. Then.¢,I",0;,d) is a quantum algebra. In the following, this
quantum algebra will be referred to as thienost periodic quantum algebra

Definition V.2: Let (.#4,I',0¢,d) be a quantum algebra. A continuous linear functional
2—{( is called a super-KMgfunctional if fora,be.7,,

(1) u(da)=0,
(2) p(ab)=pu(b" oig(a)).

If, for a Z,-gradedC* -dynamical system.¢,I", o), a linear continuous functional satisfies only
the condition(2) above, then it is called pre-super-KMg functional

Unlike for KMS states, no positivity assumptions are or can be made for super; Kig-
tionals. It follows from the definition that a super-KM&unctional u: . 7—C satisfies

plofa)=pm(@), w'=un, wp(adb)=pu(dab).

In our example of the almost periodic quantum algebra, assuming additionally thetAt)(
<o, set

rp(a):=Str(ae A1), (V.1)
where Str is the supertrace, i.e., St €tr (I'a). It is then easy to verify that, is a super-
KMS, functional.

J. Math. Phys., Vol. 38, No. 11, November 1997
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B. Uniqueness theorem

The remainder of this section is devoted to the proof of the uniqueness of the super-KMS
functional for the almost periodic quantum algebra. We start with two propositions of independent
interest.

Proposition V.3: Let V be a finite-dimensional Hilbert spaEeaZ,-grading on V, Q an odd
self-adjoint operator on V, H=Q?, and . Z:=%(V) the algebra of linear operators on V. For
ae. 7, we set da=[Q,a]s andoy(a): =e'™Mae "™ Then, for every3>0, there is a unique, up to
a multiplicative constant, pre-super-KM$unctionalug on (.7,I',0y) given by

wp(a)=Str(ae™ A1),

Moreover,u3 is automatically a super-KMgfunctional on(.7,I", o ,d).

Proof: Let ug; be any pre-super-KMg functional on (#,I',0¢,d). Consider ,EB:
=,uﬂ(l“ae5H). Using condition 2 of Definition V.2, one easily verifies thﬁg(ab)zﬁﬁ(ba),
and soﬁﬁ is proportional to the trace and the claim follows. O

Proposition V.4: Le(.7',I"",0y),i=1,2be twoZ,-gradedC*-dynamical systems which have
unique, up to a multiplicative constant, pre-super-KMfinctionals ,u'ﬁ. Then ,ué@,ufg is a
unique, up to a multiplicative constant, pre-super-KM8nctional on the tensor produdt #*
®. 22 TeT? ol®0d).

Proof: Let uz be any pre-super-KMgfunctional on the tensor product. The statement fol-
lows easily from the fact that for anye . #? the following functional on #*:

Mpp(d):=ugla®b)

is a pre super-KMgfunctional. O

The following theorem can now be easily deduced from Proposition V.3, Proposition V.4, and
Proposition 8 of Ref. 1.

Theorem V.5: For every8>0, there exists a unique, up to a multiplicative constant, super-
KMS; functional on the almost periodic quantum algelfre,I', o ,d).

Proof: We are going to prove that there is a unique pre-super-KMfictional on the
Z,-gradedC* -dynamical system.¢Z,I", ). It will follow from the construction that functional is,
in fact, a super-KMg functional.

It follows from Proposition 111.2 and the structure theorems fet; (see Ref. 12that the
C*-algebra 7 is isomorphic with the following infinite tensor product:

A= ® T,04,,
wel)

whereJ, is the Toeplitz algebra and,, is generated by the fermionic creation and annihilation
operatord? , b,,, and is isomorphic wittM,(C), the algebra of 2 matrices. Additionally, both
the gradingl’ and the dynamicsr, factor with respect to the above decomposition,

I'= ® Fw, o= ® Ut,w'
wel) wel)

It is easy to verify thafl",, is trivial on J,, so thatl“w=l®l“{u. The generator ot , is the
supersymmetric harmonic oscillator Hamiltoniblp, = |w|(a% a,,+bXb,), and so we have a fur-

ther decompositions, ,= o, ®o{ . The system, I, a{ ) is finite dimensional, and thus

by Proposition V.3 it has a unique pre-super-KMBnctional. The uniqueness of a pre-super-
KMS; functional on @, TP=| ,a?’w) follows from Proposition 8 of Ref. 1 since the proof of that
proposition does not require any positivity assumptions on the functional. Moreover, any pre-
super-KM$; functional onJ,®4l,, is proportional to
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Downloaded 22 Apr 2008 to 128.103.60.225. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



S. Klimek and A. Lesniewski: Kronecker flows 5619

a—Str(ae PHo),
and consequently is a super-KM8&inctional. The theorem now follows from Proposition \L.X.
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APPENDIX A: AN INGHAM-TYPE TAUBERIAN THEOREM

In this Appendix we prove a technical result used in Sec. Il to establish the quantum ergod-
icity of the quantized Kronecker dynamics. This result is a variant of Ingham’s Tauberian theorem
(Ref. 13, see also Ref. J4and differs from the original theorem in some of the hypotheses.

Let N(x) be a nondecreasing function of bounded variation satisfying the following assump-
tions:

(1) N(x)=0, for all x<0;
(2) for all 0>0, fge™ ™ dN(x)<o;
(3) for all s=o+it, >0, teR, the function¢(s) defined by

e¢(5)=f e S dN(x) (A1)
0

is holomorphic.

The functiong(s) will play a fundamental role in the following analysis. Ingham’s original
theorem requires detailed knowledge of the asymptotig(@) ass approaches 0 within an angle.
Such an asymptotic is usually difficult to obtain. Somewhat different assumptiosgpg)riead to
a result which is well tailored for our purposes. Specifically, we require that

(@)
—o¢'(0) /», and O'ZdJ”(o')/OO, as o\,0; (A2)
(B)
0¢"(0)| _ |
(o) =0(1), aso\0; (A3)

() for any A>0, there iso ;>0 such that the triangle
T(A,00)={o+it:0<0o<0y,|t|<Ac}

does not contain nonreal roots of ki(s).
We can now formulate the main result of this Appendix.
Theorem A.1: Under the above assumptions {{3) and @)—(7),

N(E)=(2mole" (og)) Ye’eET¢7e)(1+0(1)), as E—o, (A4)
whereog is the unique solution to the equation
¢'(ao)+E=0. (A5)
Proof: The existence and uniqueness of the solutioriA®) follows from assumptior(«).
Integrating by parts on the right-hand side(éfl) we obtain the identity
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edlotit)

B
p jo e N(x) dx. (A6)

Let g be an integrable function. MultiplyingA6) by eE(°*1g(t) and integrating over we obtain,
after a change of the order of integration,

. ez//E(a'-Ht) . R
f —g(t) dt= Jﬁf e’ E=Xg(x—E)N(x) dx, (A7)

o+it —w
where we have set
Ye(s)=¢(s) +Es. (A8)

Shifting the integration variable on the right-hand sidgAT) we rewrite(A7) as the following
basic identity:

1 . ewE(a'+lt

g(t) dt= \/—f e” ”g(x)N(x+E) d (A9)

Z —o 0'+|t

We take the functiorg to be of the formg(t)=f(t/T), wheref is continuous in the interval
[—1, 1] and zero outside itf(0)=1, and wherel >0 is a number which will be chosen shortly.
We letL (o) denote the left-hand side ¢A9), i.e.,

1 T el,llE((H—it)

L(o)=5— e f(t/T) dt.
For 0<6<T, we decomposé (o) into two parts,
! erer 1 etelr (1) )
L(U):E |t|g§W f(t/T) dt+ — o s<lt]<T W f(t/T) dt=L (0’)+L (0’),

and analyze them separately.

So far the considerations have been quite general, and we will now start making specific
choices. Pick anyA>0 (which we will eventually want to make arbitrarily largeand choose
0>0 such that the triangl€(A, o) defined in assumptiofly) does not contain nonreal roots of
Im ¢'(s). TakeE sufficiently large so thatre<<o. To simplify the notationgg will be denoted
by o throughout the remainder of this proof. Furthermore, tBkiarge enough so that

A

—=1,

which is possible by assumptida). SetT=cA. The choice ofs will be made shortly.
To analyzel M(o) we expandye(s) arounds=o (in the following the subscripE in g
will be suppressed

(A10)

Yo+it)= (o) —12¢" (o)t2— 1/6¢" (0)it3,
for a 0 belonging to the line segment which joins-i § ando+i 6. By assumptior{8) we have

|¢"'(a>tl\$,—()) — ¢"()=0(1)¢" (o),
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if 6/c=0(1), asE—». We now make the following choice af:

0_2 1/4
52(%) - (ALD)

Then, by assumptiotw), 8/a=(c2¢"(a)) Y*=0(1), and, consequently,
Ylo+it)= (o) —1/2¢" () (1+0(1)%
Therefore,
5

1 1 "
LW(0)= 5= f_,; = f(0)ete 12 (@)(@+o(1)t?

B eW(S) 5(¢rr(g))1/2
27T 02¢//(U) 75(¢H(0_))l/2

However, 8(¢"(0))Y?=(0?¢"(0))Y*—x, asE—», and so the Gaussian integral above be-
comes an integral over entife in this limit. As a result,

e71/2(1+o(1))t2 dt(1+0(1)).

LY(o)=R2ma?¢" (o)) Y (1+0(1)).

We now turn to the analysis &f?)(¢). We wish to show that this term is much smaller than
the previous one. Indeed,

1 : :
IL@(0)|<T sup|f(t/T)] = sup |e"V]|=0(1)A sup eRe¥lo+it),
O s<|t|<T S<|t|<T

Assumption(y) implies that the above supremum is attaineft|at 5. To see this, we consider the
function

t—->Rey(o+it)=Re ¢(oc+it)+Eo.

The critical points of this function satisfy

0= % Re(¢p(o+it)+Eo)=Im ¢'(o+it).

Hence there are no critical points in the inten&k|t|<T=0cA, and the function attains its
maximum value at an endpoint. Consequently, using a Taylor expansion as in the analysis of
L(l)(cr),

| L(Z)( O') | < O( 1)AeRe Y(oxid) — O( 1)Ae|//(o')— 1/2¢" (o) 52(1-%—0(1)).
It is easy to see that, with our choices ®&nd A, we have
Ae~ 124" (o) < (02 &' (o)) 1/2

and soL®) (o) =0(1)LY(o). This concludes the analysis of the left-hand sid¢AS).

The asymptotic behavior df(o) turns out to be independent of the choice of functiorin
the following we study the right-hand side @9) which will be denoted byR(o). We shall make
suitable choices of in order to get bounds oN(E) from above and from below.

Lemma A2: Define

J. Math. Phys., Vol. 38, No. 11, November 1997
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N(E): = 2mo2¢" () H2eoE+ ¢, (A12)
Then
N(E+0O(1)/a)=N(E)(1+0(1)).

Proof: Let o, be the unique solution of the equatieng’ (o) =E+O(1)/o. Taylor expand-
ing ¢' aroundo yields

- 0(1)
T (o)

since 16¢"(0)<o. It then follows readily thatr; = o(1+0(1)). In a similar fashion, we conclude
that ¢"(o1) = ¢"(0)(1+0(1)), and (o) =¢(o)+0(1). Inserting these expressions into the

definition of N(E+O(1)/0) completes the proof. O
Choice 1:Set
1-1t, if |t|<1,
f(t)= .
0, otherwise.

The Fourier transform of is

n 1 [sin(x/2)\?
fX)=——=|—5—/ .
V2 x/2
and thus the right-hand side 049) is
Rlor)— T f o SIN(TX2) 2N . g AL3
(0‘)—% Re T—X/2 ( +X) X. ( )

The integrand ofA13) is positive and so, for an,

R( )= T IA o sin (Tx/2)
(=55 .8 X2

where we have used the monotonicity ¢x). Now take A =1/(c/A). With this choice,cA
=1/\JA, and the exponential term in the above formula tends to 1A-ase. Similarly, TA
= /A and the integral over{ TA,TA) tends to the integrdequal to 3 over all of R. This yields
the inequality

_ —oA
N(E+x) dx=N(E—A)e 2

2 1 (7A (sin (XIZ))2
R — X,
27 J-TA

R(o)=N(E—A)(L+0(1)).

Replacinge by E— A and using Lemma A.2, we conclude that

N(E)<N(E)(1+0(1)).
Choice 2:Set
1 : .
—— (elHlt—eminlthy jf Jt|<1,
fi(t)=4 2in

0, otherwise,
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whereu=2km, 0<keZ. Let

. 1-1t, if [t|<1,
27700, otherwise,
and takef =f,+f,. The Fourier transform of is

2 MZ

f0= ,

2 2

1 (sin (x/2)
we—x

Vom | X2

and so?(x)<0, for |x|>u. Consequently,

2 2

T M

R(o)< — eX‘T(
2 J|TX<p

sin (Tx/2)
Tx/2

5 N(E+x) dx

pP=x

M(sin (x/2)

1 2 2
<N(E+ /T ef“”T—f
(E+ulT) om ) X/2

"
u2—x2

dx,

M

by monotonicity. Now take to be the integer part dfyA]. With this choice, the integral above
tends to 1, as\—». Also, uo/T~A Y20 and the exponential term tends to 1. Sincél
~1/o\JA, we can use Lemma A.2 to replaBeby E+ w/T. This yields

N(E)=N(E)(1+0(1)),

and concludes the proof of the theorem. O
Corollary A.3: With the above assumptions we have

N(E+0(1))=N(E)(1+0(1)).

Proof: This follows directly from Theorem A.1 and Lemma A.2. O

APPENDIX B: SOME EXAMPLES OF KRONECKER SYSTEMS

The theorem below provides a source of examples of Kronecker systems satisfying the as-
sumptions of Theorem A.1.

Theorem B.1: Let w,=An%(1+ w,), where A>0 and a=1 are constant, and wherg,
=0(1), as n—x. Then¢(s) satisfies the assumptions of Theorem A.1

Proof: Assumptions(1)—(3) of Appendix A are clearly satisfied, and so it is sufficient to
verify assumptionga)—(y).

Assumption(a) is a consequence of the following equalities:

—aas'(o):ngl f(owy), az¢"<a>=n§1 f(owy),

where the function$ andg are given by

xe~ X x2e™*
f(x)= 1o © g(x)= (1=e N2

Since bothf(x) andg(x) increase monotonically 1 as\,0, the claim follows.
To prove(B), we note that
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—03¢"(0)<6(0),
and
a?¢"(0)=C_0(1—€)o), for some G<e<1,

whered(o) is defined in(11.8). Sincew,=An*(1+ u,) implies thatd(c)=Co Y*(1+0(1)), as
o—0, we conclude that

od" (o) 6(o)
————<0(1) ———=0(1),
7@ |-V a@—am WY
aso—0.
Finally, assumptior{y) is verified in the following lemma. O

Lemma B.2: Under the assumptions of Theorem B.1
Im ¢’ (0+ix0o)=Cp 40 Px(h(x)+0(1)), (B1)

for xe R, aso—0, uniformly in|x<A. Here =1+« !, and Kx) is a function such that(b)+80,
for all xe R.
Proof: Explicitly,

Ap€ 7 sin (Xo\,)

’ + — .
Im ¢"(o+ixa) nél 1+e 27n—2e n cogXo\,) (B2)
We will analyze this expression in two steps.
Step 1:Assume first thah,=An®, and setu,=(Ac)¥*n. Then
Im ¢’ (o+ixo)=A"Yeg x> y(u,,x)Au,, (B3)
n=1

where

1  u®sin(xu®)
(U, x)= 5= (B4)

2s coshu®—cosxu®’

and whereAu,=u,—u,_;=(Ac)Y®. The sum in(B3) is a Riemann sum of the integral

1 fw u® sin (xe Y“u®)

= = = du=C, ,h(x), (B5
01+e 2"—2e Y cogxu®) Aan(X) )

S

whereC, ,=a 'T'(8)¢(B), and where

h(x)= (1+2)52 sin (B irctanx) . (86)

Note thath(x)#0, if a=1. We claim that the difference of the Riemann sumB8) and the
integral (B5) is 0(1), asoc—0. Indeed, this difference can be written as

> J (¥(upn,x)— ¢(u,x)) du,

n=1

which can readily be bounded by
J. Math. Phys., Vol. 38, No. 11, November 1997
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d
AlegB> max | — ¢(u,x)|. (B7)
n=1 y,_;<u<u, au
Using the fact that, uniformly irx,
9 O(1u %, if O<u<1:
— <
u MU S oe o, if us1 (B9)

(with 0<e<1), we can boundB7) by

oL > (Ag) Y10l D e (-anlm

1<n<(Ag) e n>(Ag)~ Y

=0(1)o log (Ac) Y*+0(1)o=0(1),

and our claim follows.
Step 2:In the general case, we write\ ,=u,(1+ w,), with u, as before. We now claim that
the difference

2 (PUn(1F 120) X)= 4(Un X)) Ay (B9)
is0(1), aso—0. Indeed, usingB8) we can boundB9) by

2 Un|penlAup max

n=1 uelup_1,Up]

J
u (u,x)

<01 Y 1+0(1)0?e S, p.ne” 1-9ADNo(1)gleaA +O(1) sup u,,
1A n>A

n>A

where A>0 is arbitrary. Choosing, e.gA =0 2% we conclude that the above expression is
o(1), aso—0. O
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