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We define a large class of quantum sources and prove a quantum analog of the
asymptotic equipartition property. Our proof relies on using local measurements on
the quantum source to obtain an associated classical source. The classical source
provides an upper bound for the dimension of the relevant subspace of the quantum
source, via the Shannon—McMillan noiseless coding theorem. Along the way we
derive a bound for the von Neumann entropy of the quantum source in terms of the
Shannon entropy of the classical source, and we provide a definition of ergodicity
of the quantum source. Several explicit models of quantum sources are also pre-
sented. ©1998 American Institute of Physid$s0022-24888)00401-(

I. INTRODUCTION

A. Context

The possibility of building a quantum computer has stimulated new interest in the quantum
analog of classical information theofgee Ref. 1 for an introduction and review of current ideas
Shannon, McMillan, Khinchin, and others provided a firm foundation for the classical theory, and
used the mathematics of stochastic processes to prove important theorems. In particular they
obtained limits on the amount of information that can be transmitted through a channel. Although
a quantum computer does not yet exist, it is reasonable to suppose that similar issues of channel
capacity are relevant to its operation. So it is interesting to investigate this question, using our
current understanding of quantum mechanics.

There has been much work done on this and related questions. In particular, Schumacher
stated and proved a capacity result for a quantum channel in Refs. 2 and 3. Our particular interest
is in the extendedgquantum signal source described by Schumacher. This is a quantum system
whose state space is(@nsoj product of many copies of one fundamental state spacerhe
source produces a signal that is encoded by a stad;irthe ensemble of possible signals is
represented by a density operapasn M. The extended source corresponds to a sequence of such
states, and has a natural interpretation as a message. The probabilistic character of the message is
contained in the density operator on the tensor product of copids.obne choice of density
operator isp®---®p. This corresponds to independent signals at all times, and there are no
correlations between signals in the message. For this reason we call this a quantum Bernoulli
source(a precise definition is provided in Sec).lISchumacher proves his quantum noiseless
coding theorem for such a source. He introduces the notion of fidelity of a quantum channel, and
states his results in terms of this. On the most basic level his results show that the state space for
the extended source has a relevant subspace whose dimension is determined by the von Neumann
entropy ofp. As far as the information content of the source is concerned, the rest of the state
space can be ignored.
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B. Results

Our main interest in this paper is to extend Schumacher’s result to a large class of quantum
sources. We define precisely what we mean by this in Sec. Il. Roughly speaking, we consider
sources that allow correlations on all time scales between signals in a message. In classical
information theory the corresponding result is the Shannon—McMillan theorem, which shows that
under very general assumptions the ensemble of all possible messages can be split into a relevant
and an irrelevant part. The criterion for splitting is provided by the entropy of the source. The
corresponding result for the quantum theory should be a splitting of the state space into a relevant
subspace and an irrelevant subspace, with the von Neumann entropy as the criterion. This is
precisely what Schumacher proved for the quantum Bernoulli source. We obtain such a splitting in
the general case, and derive an estimate for the dimension of the relevant subspace, by computing
the entropy of a classical source that is obtained by making measurements on the quantum system.

To summarize, we show that a general quantum source can be encoded by a quantum system
whose dimension is smaller than the original. We give estimates for the dimension of the reduced
space, based on the results of local measurements of the source. For the case of a quantum source
emitting orthogonal states our estimate is tight, and for a Bernoulli source reproduces Schumach-
er's result. We also derive an inequality relating this experimental entropy to the true von Neu-
mann entropy.

C. Layout

The paper is organized as follows. In sec. Il we define quantum sources and recall some
standard results about the construction of infinite quantum systems. We also provide some explicit
examples that serve to illustrate our ideas. In Sec. Ill we recall the classical notion of an ergodic
source, and propose a definition of ergodicity for a quantum source. As a check we prove that a
quantum Bernoulli source is ergodic. In Sec. IV we recall the notion of quantum entropy. In Sec.

V we pursue the quantum analog of the Shannon—McMillan theorem. To do this we use the notion
of a positive operator-valued measure, and construct an associated classical source. The entropy of
this associated source satisfies a lower bound involving the von Neumann entropy of the quantum
source. It also determines the dimension of a relevant subspace of the quantum system, which in
turn yields our quantum noiseless coding theorem.

IIl. QUANTUM SOURCES
A. Setup

According to the mathematical theory of information, see, e.g., Refs. 4¢efassical source
is a stochastic process. In this paper, we are concerned with discrete sources that can be described
as follows. We are given a finite set’, called the alphabet, and consider the spacé of all
infinite sequences={x,},.z, called messages. The time evolution is given by the shift
2°*—.2"% defined by Tx),:=x,.1. The stochastic character of the process is governed by a
probability measurg. on.Z"*. The triple (2°%,T,u) is called a source. We say that the source is
stationary if T preserves the measure

We begin by describing informally the properties of a quantum source. In the next section we
will provide a rigorous mathematical description. By analogy with the classical case, a quantum
source will be a triple, consisting @fuantum messagethe time shift and aprobability distribu-
tion for the messages. For technical reasons, it is useful to describe the space of quantum messages
(which is a linear spageby the algebra of observables on it.

A guantum sourceends a series of signals, each of which is a vector in a finite-dimensional
Hilbert space7Z. We assume that the source is discrete, i.e., each signal is an element of a finite
set={|#1),...,|s)} of normalized vectors in#Z. To avoid unnecessary redundancy, we assume
that the space’ is spanned by, i.e. 77=(9, whered<s. We do not assume that the elements
of . are orthogonal to each other or even linearly independent. Indeed, this is an
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important difference from the classical situation, which does not allow for forming linear super-
positions of states. Denote Ipy the a priori probability of the statéwj) being sent. The density
matrix corresponding to the ensemble of signalds then given by

p= 2 Pilu)(y. (1)

As a consequence of our assumptionspltef 1. Clearly, an ensemble of signalg” and the
associatea priori probabilities determines uniquely the density magrixOn the other hand, any
given density matrix corresponds to infinitely many different sets of signals. For a discussion of
this point, see Ref. 7.

The observables associated with quantum signald & Hermitian matrices; more formally
(we will need this viewpoint shortlythey are elements of the* -algebra 7=_4(.7) of linear
operators on7Z. Abusing slightly the language, we will refer t& as the algebra of observables.
Using the language adopted in the operator algebra approach to quantum physics, see, e.g., Refs.
8 and 9, we define thstateon the algebra of observableg associated with the density matgix
to be

m(R):=t(Ap)= 2, pi(yjlAlu). (.2)

B. Definition

We now propose a formal definition of a quantum source. To this end, we construct the state
on the algebra of observables associated with eriirnite) quantum messages rather than
individual signals. This is technically somewhat delicate, as it involves infinite tensor products of
Hilbert spaces. LekC 7 be a finite set of the forfiM,M +1,...N— 1N}, whereM <N, i.e.,| is
a finite collection of consecutive integers. Bywe denote the partially ordered set of all suith
We setH,:=®;.,.7;, where 7= .7 for all jel, and define the corresponding observable
algebraA, : = #(H,)= o'l #(_7%), where|l| denotes the number of elementd ifFor| CJ, there
is a natural embeddingZ(H,)— %(H;), and so we can form the uniofy,.:=U, ;A . The
latter is a normed algebra, and we refer to its elementeed observablesRoughly, A is a
collection of operators acting on the infinite tensor produigt ;. 77; ; every element oy, acts as
the identity on all but a finite number of factors in this product. For a local obsergabl,., we
let supp@) denote its support, i.e., the smallést.7 such thath e A, . The norm closuré\ of Ay,
is aC*-algebra called the algebra gfiasilocal observablesThese concepts are borrowed from
algebraic field theory and statistical mechanics, and we refer the reader to Refs. 8 and 9 for a
thorough presentation.

We will use the nef{A}, . » of matrix algebras to construct the Hilbert space of states of a
guantum source. Assume that we have a farfilly},. », 11, e A, satisfying the following as-
sumptions:
1°. Eachll, is a positive operator.
2°. If |I|=1, thenIl,=p.
3°. Let1CJ be such thathl €.7. Then

trH|HJ2H|, (”3)

where ty; denotes the partial trace over the factdy in the tensor producH,=H;®Hj;, or

HJ: HJ\| ® H| .

Note that the last condition implies, in particular, thafly=1. In other words{Il,},., is a
consistenfamily of density matrices, and it can be thought of as a quantum mechanical counter-
part of a consistent family of cylinder measures.
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For eachl .7 we define a state, on A, by
7(A):=tr(All), (1.4)

and observe thdtr;(A)|<|Al|, uniformly in . The consistency conditiofil.3) implies thatr, is
well defined, and that the generalized limi(A):=Ilim, -, 7,(A) exists for allAe Ay, and
satisfied 7(A)|<| A||. As a consequence,can be uniquely extended to a state on(tiealgebra
A of quasilocal observables. We use the same symlboldenote this extension.

Let H, 7 be the GNS representation, see, e.g., Ref. 9, associated with the. Stag Hilbert
spaceH is the state space of the quantum source. If no confusion arises, we willAviitstead
of m(A).

The additive groupZ underlying the above construction plays the role(discrete time
translations. Its action on the algebra of local observables is defined as follows:

A A=ARI—a(A):=I@A=AcA ;. (I1.5)

In other words,« pushes the observable to the right by one unit of time. ClefadyA)|=|Al,
and soa has a unique extension to all Af which we will denote by the same symbol. The family
of automorphismga"}, ., defines then a representation 6f The triple A «,7) is called a
quantum source

We say that the quantum sourcestationary if the stater is invariant under, i.e.

7(a(A))=T1(A), (11.6)

for all Ae A. From now on we will be assuming that our source is stationary. A standard result in
operator algebras implies that the automorphisia unitarily implementable on the GNS Hilbert
space associated with the invariant staté.e., «(A)=FAF ! on H. We will call the unitary
operatorF a quantum shift

Because of stationarity, we can always assumelthaf is of the form{1,...n}. To simplify
the notation, we will write thedl, instead ofll,, and r, instead ofr, .

C. Examples

The simplest example of a quantum source Beanoulli source which we now describe. As
in the classical case, a Bernoulli source produces messages that are sequences of independent
signals. Accordingly, the family of density matricEd,} is given as follows:

IL=®icpi, (I.7)

where eaclp; equalsp. It immediately follows that the consistency conditih3) is satisfied,
and that the source is stationary. This is the class of sources considered by Schifn@méer.
special feature of a Bernoulli source is that whenever stppsuppB) =9, we haver(AB)
=7(A)7(B).

There are many examples of non-Bernoulli sources. We present here a special class of sta-
tionary sources. These are all described by a signal density matard another matribxR
e Z(7#®.7%) satisfying several consistency and positivity conditions. The most basic conditions
are

R=R*, trh((p®)R)=p, try(R)=I. (1.8)
Herel is the identity matrix on7, and we introduce the notation for the partial trace over the

ith factor in then-fold tensor product®".7Z. The density matrice$Il,} are then constructed
recursively as follows:
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;=p,
Mhy1= %(Hn® [)(1h-1®R)+ %(I n—1®R)(I®14).
We have denoted bly, the identity matrix on the product".7Z. The consistency of this definition
[(1.3)] is immediate. The positivity of the density matricHs, is a further constraint oR. We
have several explicit examples for which the positivity can be proven.
In the simplest situation the matrRR satisfies the following additional conditions:
R=0,
[p® I 1 R] = 01
[Ii®R,R®1,]=0. (1.9)

It follows readily that all the matrice$l,, are positive, for alln=1. For example, suppose
=2§’:1 \jP;, where{\;} are the eigenvalues ¢f, and{P;} are the corresponding orthogonal
projections. Then we can take= E}Ll P;®P;, and all the above properties are easily seen to

hold.
For our second examplez=(2, and we assume thatis strictly positive. Let{o;} be the

Pauli matrices:
0 1 0 —i 1 0
91711 o) %27\ o) Tlo -1)

By choosing a suitable basis we can write

1 a
p=§|+§(73, (1.10)

where|a|<1. Then we take the matriR to be

R=1®p+ 5 5

a 1
= I——03)®(b0'1+00'2). (1.112)

The consistency conditions are easily verified. Positivity of all matr{dgg} holds for|b|, |c|
sufficiently small; the proof is given in the Appendix.

D. Reduction to classical source

The density matrix1,, can also be written in terms of the stae} that span”[compare
(11.1)] as follows:

M= > _ P il g @@ g Wy |

The numberspjl ,,,,, i, satisfy obvious consistency conditions. If the stdtgg are linearly inde-

pendent, then they are also non-negative. Further, if the states are orthogonal, the density matrices
{I1,} commute. In this case, the quantum source is equivalent to a classical source.
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lll. ERGODIC QUANTUM SOURCES

A. Definition

According to the individual ergodic theoretffor any functionf e L1(.2°*), the sequence of
time averages

1
<f>N()_():=NOgE (), (.1)

ns=N-

converges almost everywhere to a linfit The functionf is invariant underT. The source

(£, T,u) is calledergodig if the only functions invariant undeéf are constants. Consequently,

for an ergodic sourcé= [ ,-»f(x)dw(x). This condition is one of the several equivalent state-

ments that could be used to define ergodicity; see, e.g., Ref. 10. There is no natural concept of

convergence almost everywhere in quantum mechanics. Consequently, we adopt a notion of con-

vergence that is natural for the algebaOur definition of ergodicity of a quantum source is

specifically designed to suit the purposes of this paper, although it may have broader applications.
We say that a quantum sourcedrgodic if the following condition is satisfied. For ank

e A, the time averages,

1 n -n
<A>N::No<nZN4 FPAF", (In.2)

converge in a suitable sense to the limjA)l, asN—o. Specifically, we require weak conver-
gence, i.e., for aly, yeH,

lim (¢, ((A)n—7(A)1))=0. (I11.3)

N—o

For Ae A, we let[A] denote the corresponding elementtbf Substitutingg=[1] and ¢=[B],
B e Ay in (111.3), we find that for an ergodic source,

lim 7((A)\B)=7(A)7(B), (111.4)

N—o

for all A,Be Aq..

B. Bernoulli source

The simplest example of an ergodic source is a Bernoulli source.
Proposition Il.1: A quantum Bernoulli source is ergodic.
Proof: Let A,B,C e A,.. We assert that

7(BT(A)C)— 7(BTC)(A), (11.5)

which is equivalent tdlll.3) with ¢=[B], #=[C]. To prove this, we observe that therenig,
such that

(BIF"AF"C)=r(F"AF ") 7(B'C) = 7(A)7(B'C),

for n>ng (this follows from the fact that the supports&f B, andC are all finite. Consequently,

N7no—1 HA)#(B'C).

1
T(BT<A>NC)=NOZ 7(B'F"AF"C)+ —,
0

=n=sn,
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But

3 ng+1
7(BTF"AF"C)|<

0

1
N 0=n=n
and so limy_... 7(BT(A)\C)=7(A)7(B'C).
The remainder of the proof is a series of straightforward approximation arguments.
1°. We claim that(l1.5) holds for allA,B,C € A. To prove this, observe that for all,
IKAYNI=<IIA]. (111.6)
ForAeA, let Aje A, be such thafA—A;|—0, asj—=. For anyB,C e Aq, write
m(BY(A)NC—7(A)B'C)=7(BT(A;)N\C—7(A))B'C)
+7(BY(A—A)NC)+ 7(Aj—A)7(BTC),

and choosej such that [|A—Aj[<e/(3|BJ|[C[). Now choose Ng=Ng(j) such that
|7(BT(A)NC—7(A))BTC)|<el3, for allN>Ng. Then, usinglIl.6),

| 7(BY(A)NC— m(A)BTC)|<e/3+ (A= AIIBIIC] + A —AllliB]C]
<2|A-A[B]+e/3=<e,

for all N>Ny. We have thus shown thdtll.5) holds for allAe A and B,Ce A,.. Repeating
twice almostverbatimthe above 8 argument we establistill.5) for all A,B,C e A.

2°. Having establishedll.3) for ¢=[B], ¥=[C], andA e A, we now show that it holds for
arbitrary ¢, ye H. Let ¢ e H, and letB; be such thal¢—[B;]|<e/(2|[C]|[|Al). Write

(&, (An—1(ADICD=([B;I,(A)N—T(A)DIC] + (¢ —[B;I,(A)n—T(A)[C]),
and chooséNo=Ng(j) so that|([B;],((A)n—7(A)[C])|<e/2, for all N>N,. Then
[(o, (A= r(ADICD|<el2+ ] o= [BjIlII[CIIIAl <e.

Repeating this argument we establi$t.3) for all ye H. The proof of the proposition is com-
plete.

IV. ENTROPY OF A QUANTUM SOURCE

A. Definition

In this section we construct the entropy of a quantum source. Our construction is largely
standard; see, e.g., Refs. 11 and 12, but we include most of the details to make the presentation
self-contained. The key mathematical input is the following lemma, known as Klein’s inegtfality,
whose proof can be found in Ref. 12, as well as on p. 1122 of Ref. 11.

Lemma IV.1: Let A and B be positive trace class operators on a Hilbert space. Then

tr(A log A—A log B)=tr(A—B). (IV.1)
We define the entropy associated with a sequenae sifjnals to be

Hn(I1): = —tr 5 en(I1, log I1,). (IV.2)
J. Math. Phys., Vol. 39, No. 1, January 1998
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SubstitutingA=11,,., andB=11,®I1,, in (IV.1), we obtain the following subadditivity property
of H,(II) (this is a special case of the well-known subadditivity of quantum mechanical entropy;
see Ref. 1L

Hmen(ID<H(IT) + H,(1I). (IV.3)

A standard argument, see, e.g., Ref. 6, pp. 48—49, shows that the limit
i 1
h(Il)=lim__ I~ H,(IT) (IV.4)

exists. We calh(II) the entropy of the quantum source. Notice also that subadditivity implies the
inequality

h(IT)=< —tr(p log p)=<log d. (IV.5)
wherep is the density matrix for the signals, adds the dimension of the signal Hilbert spaze.

B. Examples

We can easily compute the entropy of two basic types of quantum sources introduced in Sec.

For a Bernoulli sourcell,=p®---®p, and so
1 1 N N
S Ha(ID==—1tryen((®"p)(log ®"p))

1
=== > tryen((®"p)(1®---®log p@---®1))

N 1<7<n
=—1tr(p log p).

As a result,h(IT)=—tr(p log p), i.e., the entropy of a Bernoulli source is equal to the von
Neumann entropy of the signal density matrix.

For the non-Bernoulli source defined (.9) a similar calculation yieldh(II)= —tr((p
®1)R log R). We have not found a closed form expression for the entropy of the other non-
Bernoulli source described in Sec. Il

V. ASYMPTOTIC EQUIPARTITION PROPERTY
A. Classical result

The classical asymptotic equipartition property, also known as the Shannon—McMillan
theorem—see, e.g., Refs. 4 and 6—states that/if*(T,u) is an ergodic source with entropy
h(u), then the sequence,

1
fa(x):=— n log M({YE'—%m:yl:Xl:---ayn:Xn})a (V.1)

converges in measure to{u). In other words, givens,e>0, there isng such that for alln

=n,,
u({xe. 2 |f(x)—h(w)|> 6} <e. (V.2)

This is interpreted as saying that for any lengththere are two categories of messages sent by a
source:(i) a small fraction of “likely” messages, each of which carries equal probability,
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p{y e 2 "y1=Xq,...yn=Xp})~e "M, (V.3)

and(ii) the bulk of “unlikely” messages, whose total probability goes to zern gses to infinity.
There are approximatelg""® likely messages, which is much less than the total number of
messageg" '°9" [unlessh(u) happens to equal lag.

The goal of this section is to establish an analogous result for quantum sources. Our theorem
generalizes Schumacher’s reédlto general, not necessary Bernoulli, sources.

B. POM

Let A={A;,.... A}, r<« be a family of observables oW such thatA;=0, for all j, and
At +A =1 (V.4)

Such a family is called gositive operator-valued measufPOM); see Ref. 7 and references
therein. A POM is callegure if eachA; is a rank one operator. For example, any familydof
=dim .77 pairwise orthogonal projections o# satisfies the above conditions, and so is a pure
POM. We will call the setZ’s={1,...r} the classical alphabet associated with the P@Mand
denote by.2", the space of all infinite messages over the alphabgt We can define a prob-
ability measure onz", associated with the quantum sour@e 7, @). For{kq,... k,} €.2"", we
define

pa{X: X1 =Ky, ... Xg=Kp}): = Tn(Ag,® - ©A ). (V.5)

This defines a consistent family of cylinder measures, as

Z, pr 1 (XX =Ke s X0 =Ky Xn 1=K = T g A © @A ® 2 Ac) = Tnea(Ag®-
ke.Zp ke.Zp

A, ®1)=T(A,® @A )= pun({X: X1 =Ky, ... Xn=Kq}).

Let u” denote the probability measure obtained fr{mﬁ} by means of Kolmogorov's extension
theorem. ByT we denote the shift operator ots . Then the triple "% , T, u”) forms a classical

information source. We emphasize that it depends on the choige @bviously, this source is
stationary.

C. Classical ergodicity from quantum

In fact, this source is ergodic if the underlying quantum source is ergodic. We state it as the
following lemma.
Lemma V.1: If(A, «, 7) is ergodic, then for any choice &, the classical source constructed
above is ergodic

Proof: We show that (2" ,T,u”) has the following property: for everfe L1(.2"*,du?),
the sequencéf)y converges irL! to [f du”. Using Fatou’s lemma, and recalling the individual
ergodic theorem, this implies that the only functions invariant ufidare constants, and so the
classical source is ergodic. We first observe that it is sufficient to show tiatsfa cylinder set,
and y» denotes the corresponding characteristic function, then

L,J(Xz)w(x)—,uA( )|dut(x)—0, (V.6)

asN—o. A standard ‘e/3” argument then implies that for afle L1(.2"*,du?), (f)y converges
to ff du” in the LY norm. Furthermore, sincéu” is a probability measurey.6) will follow
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from convergence ofx,)n to (%) in the L2 norm. This in turn is implied by the following
stronger result. Suppos€ and & are cylinder sets, ang,- and x ., are the corresponding char-
acteristic functions; then

Jy‘m<X%>N()_()X£/()_()dMA()_()HMA(ZZ)MA(%)- V.7)

asN—oo,
In order to prove(V.7), let Z={x:x;=Ky,... Xnp=Kp}, Z={X:Xj41=11,... Xj4m=Im}. The
corresponding observables are given by

G(7)=A® - ®A, G(Z)=A 8 A .

There isNg such that for aln>Ng, T"(%2)NZ=. Therefore,

1 N—-1 1 N—-1
N J L 2 (T2 A= | 2 ai(Gw))G(:%))
2 5 i=Ng+1 i=Ng+1

=Np+

1 (D
=7(G(ZNNG(N)— T(E a'(G(%))G(,@)>.

=0

By our assumption of quantum ergodicity, the first term above convergag'te') u”(2), as
N—oo. The second term is bounded as follows:

No

No+1 !
i ; 0
ST 2 @l(G(2)G(9) || < IT 1A IIT A,
N i= N p=1 p g=1 q
which converges to 0 dd— . Finally,
10 Q& o N+l
N | o2 XeTOX (0 duA(0)= ———0,
.zAlzo

and the proof is complete.

D. Bounds for the entropy

Let h, denote the Shannon entropy of the classical sour¢é, (T,u”) (Refs. 5 and & In
other words,

1
ha=— lim n E Csa{xixg=Kg, . X =Kph) X10g ma({X: X3 =Ky, ... Xn=Kp})
n—oo (ST Kne.Z'n

1
=—lim = E ] T(Ak1®---®Akn)log T(Akl®"'®Akn).

A remarkable fact about, is that it can be bounded from below in termshgil), the quantum
entropy of the source, and a quantity depending exclusively on the statistical properties of the
signal ensemble.

Theorem V.2: For any POMA the following inequality holds
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ha=h(IT)— > tr(Ap)log tr(Ay). (V.8
1<ksr

Remark:In particular, if A is a pure POM consisting af mutually orthogonal projections,
thenh,=h(II).

Proof: The proof of this theorem is based on the following lemma.

Lemma V.3: Let” be a Hilbert space of finite dimension nd let B be a density matrix on
.0 Aq,... A, are positive operators such thatA---+A,=I, then

>, tr(A;B)log tr(A;B)<tr(B log B)’Ll;,-sr tr(A;B)log tr(A,). (V.9)

1<j=r

Proof: Let Ak' denote the matrlx entries &; in an orthonormal basis consisting of eigen-
vectors ofB. Then trd;B) =%y kA Where)\l,.. A are the eigenvalues &. The function
[0,1] > x—f(x):=x log x is convex, and so by Jensen’s inequality,

kk

3 o303 w3 n) 3 3

kk

oAy M E(AD)

s}j: Ek: A;(kf()\k)‘f'Ej: tr(A;B)log tr(A;)

=2k f(\)+ > tr(A;B)log tr(A)),
J

which implies(V.9).
As a consequence of this lemma, and condition 3° in the definition of a consistent family of
density matrices,

D (A @ @A O)TT)log tr(Ay @+ @A T1))

kl ..... knE‘/A

str(Hnloan)+k > tr((A,® - ® A )TT)log tr(A ® - ® A )
xr n n

=tr(Il, log IT) + >, > (A @ @A )IIy)log tr(Akj)

1<jsn Kkq,...kpe.Z'a

=tr(Il, log I1,)+n >, tr(Acp)log tr(Ay),

1<ksr

and the claim follows.

E. Main theorem

The theorem below is the main result of this section. It can be regarded as a quantum version
of the Shannon—McMillan theorem.

Theorem V.4: Let (A,7,a) be an ergodic source, and l18tbe a POM, for which the operators

{Aj}, 1<j=r, are orthogonal projections. Let ibe the Shannon entropy of the associated
classical source, and define

M= max rankA;), m= min rankAj).

1<j=<r 1<j<r
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Then, givens, >0, there is ry, such that for all r=ng,
TEN= 0@,
where.”, is a subspace whose dimension satisfies

log m— 5< log dim.”, ha _ logM+6
logd  log dim.7#®" logd  logd

(V.10)

Further, let P,n be the orthogonal projection onto”,. Then for any observable C
e A T#®M),

[7(CP, )~ (C)] <elCl. (V.11

Remark 1:We can regard/;, as a significant subspace .6# ®" in the sense that the expec-
tation of any observable is almost completely determined by its restrictiortolf the states
{l;)} are orthogonal, we can take theorthogonal projection$|;)(;|} for the POM. In this
case the entroply, is equal to the von Neumann entropy, since the density operators all commute.
Then there is a direct correspondence with the classical Shannon—McMillan theorem, and the
quantum theory is just a restatement of the classical result.

Remark 2:In the Bernoulli case we can take the PGMto bed orthogonal projections onto
the eigenvectors g, in which case the inequality of Theorem V.2 is saturate@. tfais a simple
spectrum, this means that the Shannon entropy equals the von Neumann entropy of the quantum
source. Our result then agrees with Schumacher’s conclusion that the information contained in the
quantum source resides in a subspace whose dimension is asymptefiallin the general case
we obtain only an upper bound for the dimension of the relevant subspace, and this upper bound
depends on the choice of POM. For example, if each opefgtor the POMA is equal to (1d)I,
wherel is the identity, then the Shannon entropyjs=log d. Since this is the maximum possible
entropy for a POM withd operators, we can conclude that all information about the quantum
source has been lost in this measurement process. As these results show, it is advantageous to use
a POM composed of orthogonal projections.

Proof: we use the POM to construct the classical soufc¢g with entropyh, . Let f,(x) be
the empirical entropy of a messag®f lengthn defined in(V.1). Givene, 5>0, let us define the
sets

Up,s={xe.22[fn(x)—hal> 4},
Lns={xe.2[fa(x)—hal<5}.

By the Shannon—McMillan theorem, givens>0, there isny, such that for alh=ng,

2 ma({x}) <e.

xeUp s

Since the operator§A;} are orthogonal projections, each tensor proddigt®---®Ay is an

orthogonal projection, and hence so is the sum of these operators over thessetet./”, denote
the range of this projection, and IEt/n denote the orthogonal projection onto this subspace. Then

for any observabl€, we have

|7(CP, )~ n(C)|=é|c].
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It remains to estimate the dimension .af,. Since the projection$A;} are orthogonal, its
dimension is given by

n
dim(.7)= >, ] rankA,).
XELn’5J=l !

Therefore,
m"|L,, sl <dim(7)<M"|L, 4,
where|L,, 5 is the size of the sdt,, 5. The Shannon—McMillan theorem implies that
(1—e)e"Mtd=|L J=enha=9),
This leads to

log m 6 dim(~,) hy logM ) log(1—¢)
< <
logd logd nlogd logd logd logd n

and the result follows.

ACKNOWLEDGMENTS

Supported in part by the National Science Foundation under Grant No. DMS-9424344. We
would like to thank Evelyn Wright for helpful discussions, and the referee for useful suggestions.

APPENDIX: PROOF OF POSITIVITY

We present here the proof that tie matrix (11.11) defines a family of positive density
matrices, wherlb| and|c| are sufficiently small. It is convenient to introduce the matrices

_aI 1
®=3!172%

Q=p Y(boy+cay).
Note that we assumi@|<1, sop~! exists. Then for alh=2 we define
Si=lh-220®Q.
It follows by direct calculation that for ath=1,
i1 =Hp®p+3(11®p) Sy 1+ 3S). 1 (1,@p).

In order to proceed we make the inductive assumptionlthat 0; this implies, in particular that
(IT,+u) 1 is bounded for every=0. We will prove that {I,,,+u) ! is bounded for every
u=0; together with the positivity ofl,=p, this will establish the desired result.

Note first that|S,||<| l|||Q||, and this bound is uniform in. For convenience we define

w=lol, aq=[Qll.

Furthermore, for any=0,
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(Hn+1+u)_1:(Hn®p+u)_l(| + %(Hn®P)Sﬁ+1(Hn®P+U)_l
+ 350 1(Ih@ p) (M@ p+u) "2,

Our inductive assumption implies thafl{®p+u) ! is bounded foru=0. Choosing|b|, |c|
sufficiently small guarantees th!||< e for any e>0. Furthermore,

(I1,®p)Sh+ 1My @ p+u) " F=([(Iy-1® ) 1@ QM@ p) (@ p+u) L.

Since||Q'|=q can be made arbitrarily small by choosifty], |c| sufficiently small, the bound-
edness of I, ;+u) ~* will follow from a bound for the operatofl,(1,,_,® w)Hn‘l, which is
uniform in n. Accordingly let us define fon=1,

Ar=TI,(l_ 1@ )Tt
By imitating the derivation above, we obtain the recursion relation
An=(1+3A0-19Q"+35) (110 @) (1 +3A, 1 © Q"+ 35D+, (A1)

It is immediate thallA,||=| w||<1. We make the inductive assumption that,_,||<1; then
(A1) implies the estimate

q wqg q wq|*!
|An||$(l+§+7 W(l—z— 7) (A.Z)
If we choose
1-w

then(A2) implies that| A,|<1. Hence by choosin¢A3) we obtain tha#A,, is uniformly bounded
for all n, and hence thatI{,,,+u) ! is bounded for alu=0. Therefore the positivity of the
density matrices is proved.
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