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We define a large class of quantum sources and prove a quantum analog of the
asymptotic equipartition property. Our proof relies on using local measurements on
the quantum source to obtain an associated classical source. The classical source
provides an upper bound for the dimension of the relevant subspace of the quantum
source, via the Shannon–McMillan noiseless coding theorem. Along the way we
derive a bound for the von Neumann entropy of the quantum source in terms of the
Shannon entropy of the classical source, and we provide a definition of ergodicity
of the quantum source. Several explicit models of quantum sources are also pre-
sented. ©1998 American Institute of Physics.@S0022-2488~98!00401-0#

I. INTRODUCTION

A. Context

The possibility of building a quantum computer has stimulated new interest in the qua
analog of classical information theory~see Ref. 1 for an introduction and review of current idea!.
Shannon, McMillan, Khinchin, and others provided a firm foundation for the classical theory
used the mathematics of stochastic processes to prove important theorems. In particul
obtained limits on the amount of information that can be transmitted through a channel. Alth
a quantum computer does not yet exist, it is reasonable to suppose that similar issues of
capacity are relevant to its operation. So it is interesting to investigate this question, usin
current understanding of quantum mechanics.

There has been much work done on this and related questions. In particular, Schum
stated and proved a capacity result for a quantum channel in Refs. 2 and 3. Our particular i
is in the extendedquantum signal source described by Schumacher. This is a quantum s
whose state space is a~tensor! product of many copies of one fundamental state spaceM . The
source produces a signal that is encoded by a state inM ; the ensemble of possible signals
represented by a density operatorr on M . The extended source corresponds to a sequence of
states, and has a natural interpretation as a message. The probabilistic character of the me
contained in the density operator on the tensor product of copies ofM . One choice of density
operator isr ^ ••• ^ r. This corresponds to independent signals at all times, and there a
correlations between signals in the message. For this reason we call this a quantum Be
source~a precise definition is provided in Sec. II!. Schumacher proves his quantum noisele
coding theorem for such a source. He introduces the notion of fidelity of a quantum channe
states his results in terms of this. On the most basic level his results show that the state sp
the extended source has a relevant subspace whose dimension is determined by the von N
entropy ofr. As far as the information content of the source is concerned, the rest of the
space can be ignored.

a!Electronic mail: king@neu.edu
b!Electronic mail: lesniewski@huhepl.harvard.edu
0022-2488/98/39(1)/88/14/$15.00
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B. Results

Our main interest in this paper is to extend Schumacher’s result to a large class of qu
sources. We define precisely what we mean by this in Sec. II. Roughly speaking, we co
sources that allow correlations on all time scales between signals in a message. In c
information theory the corresponding result is the Shannon–McMillan theorem, which show
under very general assumptions the ensemble of all possible messages can be split into a
and an irrelevant part. The criterion for splitting is provided by the entropy of the source.
corresponding result for the quantum theory should be a splitting of the state space into a re
subspace and an irrelevant subspace, with the von Neumann entropy as the criterion.
precisely what Schumacher proved for the quantum Bernoulli source. We obtain such a split
the general case, and derive an estimate for the dimension of the relevant subspace, by co
the entropy of a classical source that is obtained by making measurements on the quantum

To summarize, we show that a general quantum source can be encoded by a quantum
whose dimension is smaller than the original. We give estimates for the dimension of the re
space, based on the results of local measurements of the source. For the case of a quantu
emitting orthogonal states our estimate is tight, and for a Bernoulli source reproduces Schu
er’s result. We also derive an inequality relating this experimental entropy to the true von
mann entropy.

C. Layout

The paper is organized as follows. In sec. II we define quantum sources and recall
standard results about the construction of infinite quantum systems. We also provide some
examples that serve to illustrate our ideas. In Sec. III we recall the classical notion of an e
source, and propose a definition of ergodicity for a quantum source. As a check we prove
quantum Bernoulli source is ergodic. In Sec. IV we recall the notion of quantum entropy. In
V we pursue the quantum analog of the Shannon–McMillan theorem. To do this we use the
of a positive operator-valued measure, and construct an associated classical source. The en
this associated source satisfies a lower bound involving the von Neumann entropy of the qu
source. It also determines the dimension of a relevant subspace of the quantum system, w
turn yields our quantum noiseless coding theorem.

II. QUANTUM SOURCES

A. Setup

According to the mathematical theory of information, see, e.g., Refs. 4–6, a~classical! source
is a stochastic process. In this paper, we are concerned with discrete sources that can be d
as follows. We are given a finite setX , called the alphabet, and consider the spaceX ` of all
infinite sequencesxI 5$xn%nPZ , called messages. The time evolution is given by the shiftT:
X `→X ` defined by (TxI )n :5xn11 . The stochastic character of the process is governed
probability measurem on X `. The triple (X `,T,m) is called a source. We say that the source
stationary, if T preserves the measurem.

We begin by describing informally the properties of a quantum source. In the next sectio
will provide a rigorous mathematical description. By analogy with the classical case, a qua
source will be a triple, consisting ofquantum messages, the time shift, and aprobability distribu-
tion for the messages. For technical reasons, it is useful to describe the space of quantum m
~which is a linear space! by the algebra of observables on it.

A quantum sourcesends a series of signals, each of which is a vector in a finite-dimens
Hilbert spaceH. We assume that the source is discrete, i.e., each signal is an element of a
setS 5$uc1&,...,ucs&% of normalized vectors inH. To avoid unnecessary redundancy, we assu
that the spaceH is spanned byS , i.e. H.Cd, whered<s. We do not assume that the elemen
of S are orthogonal to each other or even linearly independent. Indeed, this i
J. Math. Phys., Vol. 39, No. 1, January 1998
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important difference from the classical situation, which does not allow for forming linear su
positions of states. Denote bypj the a priori probability of the stateuc j& being sent. The density
matrix corresponding to the ensemble of signalsS is then given by

r5 (
1< j <s

pj uc j&^c j u. ~II.1!

As a consequence of our assumptions, tr(r)51. Clearly, an ensemble of signalsS and the
associateda priori probabilities determines uniquely the density matrixr. On the other hand, any
given density matrix corresponds to infinitely many different sets of signals. For a discuss
this point, see Ref. 7.

The observables associated with quantum signals ared3d Hermitian matrices; more formally
~we will need this viewpoint shortly! they are elements of theC* -algebraA5L(H) of linear
operators onH. Abusing slightly the language, we will refer toA as the algebra of observable
Using the language adopted in the operator algebra approach to quantum physics, see, e.
8 and 9, we define thestateon the algebra of observablesA associated with the density matrixr
to be

t1~A!:5tr~Ar!5 (
1< j <s

pj^c j uAuc j&. ~II.2!

B. Definition

We now propose a formal definition of a quantum source. To this end, we construct the
on the algebra of observables associated with entire~infinite! quantum messages rather th
individual signals. This is technically somewhat delicate, as it involves infinite tensor produ
Hilbert spaces. LetI ,Z be a finite set of the form$M ,M11,...,N21,N%, whereM,N, i.e., I is
a finite collection of consecutive integers. ByI we denote the partially ordered set of all suchI ’s.
We setHI :5 ^ j PIH j , where H j5H for all j PI , and define the corresponding observab
algebraAI :5L(HI). ^

uI uL(H), whereuI u denotes the number of elements inI . For I ,J, there
is a natural embeddingL(HI)�L(HJ), and so we can form the unionAloc :5ø I PI AI . The
latter is a normed algebra, and we refer to its elements aslocal observables. Roughly,Aloc is a
collection of operators acting on the infinite tensor product^ j PZH j ; every element ofAloc acts as
the identity on all but a finite number of factors in this product. For a local observableAPAloc , we
let supp(A) denote its support, i.e., the smallestI PI such thatAPAI . The norm closureA of Aloc

is a C* -algebra called the algebra ofquasilocal observables. These concepts are borrowed fro
algebraic field theory and statistical mechanics, and we refer the reader to Refs. 8 and
thorough presentation.

We will use the net$AI% I PI of matrix algebras to construct the Hilbert space of states o
quantum source. Assume that we have a family$P I% I PI , P IPAI , satisfying the following as-
sumptions:
1°. EachP I is a positive operator.
2°. If uI u51, thenP I5r.
3°. Let I ,J be such thatJ\I PI . Then

trHI
PJ5P I , ~II.3!

where trHI
denotes the partial trace over the factorHI in the tensor productHJ5HI ^ HJ\I or

HJ5HJ\I ^ HI .
Note that the last condition implies, in particular, that trP I51. In other words,$P I% I PI is a
consistentfamily of density matrices, and it can be thought of as a quantum mechanical cou
part of a consistent family of cylinder measures.
J. Math. Phys., Vol. 39, No. 1, January 1998
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For eachI PI we define a statet I on AI by

t I~A!:5tr~AP I !, ~II.4!

and observe thatut I(A)u<iAi , uniformly in I . The consistency condition~II.3! implies thatt I is
well defined, and that the generalized limitt(A):5 limI↗Z t I(A) exists for all APAloc , and
satisfiesut(A)u<iAi . As a consequence,t can be uniquely extended to a state on theC* -algebra
A of quasilocal observables. We use the same symbolt to denote this extension.

Let H, p be the GNS representation, see, e.g., Ref. 9, associated with the statet. The Hilbert
spaceH is the state space of the quantum source. If no confusion arises, we will writeA instead
of p(A).

The additive groupZ underlying the above construction plays the role of~discrete! time
translations. Its action on the algebra of local observables is defined as follows:

AI{A.A^ I→a~A!:5I ^ A.APAI 11 . ~II.5!

In other words,a pushes the observable to the right by one unit of time. Clearly,ia(A)i5iAi ,
and soa has a unique extension to all ofA, which we will denote by the same symbol. The fam
of automorphisms$an%nPZ defines then a representation ofZ. The triple (A,a,t) is called a
quantum source.

We say that the quantum source isstationary, if the statet is invariant undera, i.e.

t„a~A!…5t~A!, ~II.6!

for all APA. From now on we will be assuming that our source is stationary. A standard res
operator algebras implies that the automorphisma is unitarily implementable on the GNS Hilbe
space associated with the invariant statet, i.e., a(A)5FAF21 on H. We will call the unitary
operatorF a quantum shift.

Because of stationarity, we can always assume thatI PI is of the form$1,...,n%. To simplify
the notation, we will write thenPn instead ofP I , andtn instead oft I .

C. Examples

The simplest example of a quantum source is aBernoulli source, which we now describe. As
in the classical case, a Bernoulli source produces messages that are sequences of inde
signals. Accordingly, the family of density matrices$P I% is given as follows:

P I5 ^ i PIr i , ~II.7!

where eachr i equalsr. It immediately follows that the consistency condition~II.3! is satisfied,
and that the source is stationary. This is the class of sources considered by Schumache2 One
special feature of a Bernoulli source is that whenever supp(A)ùsupp(B)5B, we havet(AB)
5t(A)t(B).

There are many examples of non-Bernoulli sources. We present here a special class
tionary sources. These are all described by a signal density matrixr and another matrixR
PL(H ^ H) satisfying several consistency and positivity conditions. The most basic cond
are

R5R* , tr1„~r ^ I !R…5r, tr2~R!5I . ~II.8!

HereI is the identity matrix onH, and we introduce the notation tri for the partial trace over the
i th factor in then-fold tensor product̂ nH. The density matrices$Pn% are then constructed
recursively as follows:
J. Math. Phys., Vol. 39, No. 1, January 1998
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P15r,

Pn115 1
2~Pn^ I 1!~ I n21^ R!1 1

2~ I n21^ R!~Pn^ I 1!.

We have denoted byI n the identity matrix on the product̂ nH. The consistency of this definition
@~II.3!# is immediate. The positivity of the density matricesPn is a further constraint onR. We
have several explicit examples for which the positivity can be proven.

In the simplest situation the matrixR satisfies the following additional conditions:

R>0,

@r ^ I 1 ,R#50,

@ I 1^ R,R^ I 1#50. ~II.9!

It follows readily that all the matricesPn are positive, for alln>1. For example, supposer
5( j 51

d l j Pj , where$l j% are the eigenvalues ofr, and $Pj% are the corresponding orthogon
projections. Then we can takeR5( j 51

d Pj ^ Pj , and all the above properties are easily seen
hold.

For our second exampleH5C2, and we assume thatr is strictly positive. Let$s j% be the
Pauli matrices:

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

By choosing a suitable basis we can write

r5
1

2
I 1

a

2
s3 , ~II.10!

whereuau,1. Then we take the matrixR to be

R5I ^ r1S a

2
I 2

1

2
s3D ^ ~bs11cs2!. ~II.11!

The consistency conditions are easily verified. Positivity of all matrices$Pn% holds for ubu, ucu
sufficiently small; the proof is given in the Appendix.

D. Reduction to classical source

The density matrixPn can also be written in terms of the states$c j% that spanS @compare
~II.1!# as follows:

Pn5 (
1< j 1 ,...,j n<s

pj 1 ,...,j n
uc j 1

&^c j 1
u ^ ••• ^ uc j n

&^c j n
u.

The numberspj 1 ,...,j n
satisfy obvious consistency conditions. If the states$c j% are linearly inde-

pendent, then they are also non-negative. Further, if the states are orthogonal, the density m
$Pn% commute. In this case, the quantum source is equivalent to a classical source.
J. Math. Phys., Vol. 39, No. 1, January 1998
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III. ERGODIC QUANTUM SOURCES

A. Definition

According to the individual ergodic theorem,10 for any functionf PL1(X `), the sequence o
time averages

^ f &N~xI !:5
1

N (
0<n<N21

f ~TnxI !, ~III.1!

converges almost everywhere to a limitf̄ . The function f̄ is invariant underT. The source
(X `,T,m) is calledergodic, if the only functions invariant underT are constants. Consequentl
for an ergodic sourcef̄ 5*X ` f (xI )dm(xI ). This condition is one of the several equivalent sta
ments that could be used to define ergodicity; see, e.g., Ref. 10. There is no natural con
convergence almost everywhere in quantum mechanics. Consequently, we adopt a notion
vergence that is natural for the algebraA. Our definition of ergodicity of a quantum source
specifically designed to suit the purposes of this paper, although it may have broader applic

We say that a quantum source isergodic if the following condition is satisfied. For anyA
PA, the time averages,

^A&N :5
1

N (
0<n<N21

FnAF2n, ~III.2!

converge in a suitable sense to the limitt(A)I , asN→`. Specifically, we require weak conve
gence, i.e., for allf, cPH,

lim
N→`

„f,~^A&N2t~A!I !c…50. ~III.3!

For APA, we let @A# denote the corresponding element ofH. Substitutingf5@ I # andc5@B#,
BPAloc in ~III.3!, we find that for an ergodic source,

lim
N→`

t~^A&NB!5t~A!t~B!, ~III.4!

for all A,BPAloc .

B. Bernoulli source

The simplest example of an ergodic source is a Bernoulli source.
Proposition III.1: A quantum Bernoulli source is ergodic.
Proof: Let A,B,CPAloc . We assert that

t~B†^A&NC!→t~B†C!t~A!, ~III.5!

which is equivalent to~III.3! with f5@B#, c5@C#. To prove this, we observe that there isn0 ,
such that

t~B†FnAF2nC!5t~FnAF2n!t~B†C!5t~A!t~B†C!,

for n.n0 ~this follows from the fact that the supports ofA, B, andC are all finite!. Consequently,

t~B†^A&NC!5
1

N (
0<n<n0

t~B†FnAF2nC!1
N2n021

N
t~A!t~B†C!.
J. Math. Phys., Vol. 39, No. 1, January 1998
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But

1

N U (
0<n<n0

t~B†FnAF2nC!U< n011

N
iAiiBiiCi→0,

and so limN→` t(B†^A&NC)5t(A)t(B†C).
The remainder of the proof is a series of straightforward approximation arguments.
1°. We claim that~III.5! holds for allA,B,CPA. To prove this, observe that for allN,

i^A&Ni<iAi . ~III.6!

For APA, let AjPAloc be such thatiA2Aj i→0, as j→`. For anyB,CPAloc , write

t~B†^A&NC2t~A!B†C!5t~B†^Aj&NC2t~Aj !B
†C!

1t~B†^A2Aj&NC!1t~Aj2A!t~B†C!,

and choose j such that iA2Aj i<e/(3iBiiCi). Now choose N05N0( j ) such that
ut(B†^Aj&NC2t(Aj )B

†C)u,e/3, for all N.N0 . Then, using~III.6!,

ut~B†^A&NC2t~A!B†C!u,e/31i^A2Aj&NiiBiiCi1iAj2AiiBiiCi

,2iA2Aj iiBi1e/3<e,

for all N.N0 . We have thus shown that~III.5! holds for all APA and B,CPAloc . Repeating
twice almostverbatimthe above 3e argument we establish~III.5! for all A,B,CPA.

2°. Having established~III.3! for f5@B#, c5@C#, andAPA, we now show that it holds for
arbitraryf, cPH. Let fPH, and letBj be such thatif2@Bj #i,e/(2i@C#iiAi). Write

~f,„^A&N2t~A!I !@C#…5~@Bj #,„^A&N2t~A!I …@C# !1~f2@Bj #,„^A&N2t~A!I …@C# !,

and chooseN05N0( j ) so thatu(@Bj #,„^A&N2t(A)I …@C#)u,e/2, for all N.N0 . Then

u~f,„^A&N2t~A!I …@C# !u,e/21if2@Bj #ii@C#iiAi,e.

Repeating this argument we establish~III.3! for all cPH. The proof of the proposition is com
plete.

IV. ENTROPY OF A QUANTUM SOURCE

A. Definition

In this section we construct the entropy of a quantum source. Our construction is la
standard; see, e.g., Refs. 11 and 12, but we include most of the details to make the prese
self-contained. The key mathematical input is the following lemma, known as Klein’s inequal13

whose proof can be found in Ref. 12, as well as on p. 1122 of Ref. 11.
Lemma IV.1: Let A and B be positive trace class operators on a Hilbert space. Then

tr~A log A2A log B!>tr~A2B!. ~IV.1!

We define the entropy associated with a sequence ofn signals to be

Hn~P!:52trH ^ n~Pn log Pn!. ~IV.2!
J. Math. Phys., Vol. 39, No. 1, January 1998
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SubstitutingA5Pm1n andB5Pm^ Pn in ~IV.1!, we obtain the following subadditivity propert
of Hn(P) ~this is a special case of the well-known subadditivity of quantum mechanical ent
see Ref. 11!:

Hm1n~P!<Hm~P!1Hn~P!. ~IV.3!

A standard argument, see, e.g., Ref. 6, pp. 48–49, shows that the limit

h~P!5 lim
n→`

1

n
Hn~P! ~IV.4!

exists. We callh(P) the entropy of the quantum source. Notice also that subadditivity implies
inequality

h~P!<2trH~r log r!< log d. ~IV.5!

wherer is the density matrix for the signals, andd is the dimension of the signal Hilbert spaceH.

B. Examples

We can easily compute the entropy of two basic types of quantum sources introduced i
II.

For a Bernoulli source,Pn5r ^ ••• ^ r, and so

1

n
Hn~P!52

1

n
trH ^ n„~ ^

nr!~ log ^
nr!…

52
1

n (
1< j <n

trH ^ n„~ ^
nr!~ I ^ ••• ^ log r ^ ••• ^ I !…

52trH ~r log r!.

As a result,h(P)52tr(r log r), i.e., the entropy of a Bernoulli source is equal to the v
Neumann entropy of the signal density matrix.

For the non-Bernoulli source defined in~II.9! a similar calculation yieldsh(P)52tr„(r
^ I )R log R…. We have not found a closed form expression for the entropy of the other
Bernoulli source described in Sec. II.

V. ASYMPTOTIC EQUIPARTITION PROPERTY

A. Classical result

The classical asymptotic equipartition property, also known as the Shannon–McM
theorem—see, e.g., Refs. 4 and 6—states that if (X `,T,m) is an ergodic source with entrop
h(m), then the sequence,

f n~xI !:52
1

n
log m~$yI PX `:y15x1 ,...,yn5xn%!, ~V.1!

converges in measure toh(m). In other words, givend,e.0, there isn0 such that for alln
>n0 ,

m~$xI PX :u f n~xI !2h~m!u.d%!,e. ~V.2!

This is interpreted as saying that for any lengthn, there are two categories of messages sent b
source:~i! a small fraction of ‘‘likely’’ messages, each of which carries equal probability,
J. Math. Phys., Vol. 39, No. 1, January 1998
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m~$yI PX `:y15x1 ,...,yn5xn%!;e2nh~m!, ~V.3!

and~ii ! the bulk of ‘‘unlikely’’ messages, whose total probability goes to zero asn goes to infinity.
There are approximatelyenh(m) likely messages, which is much less than the total numbe
messagesen log r @unlessh(m) happens to equal logr#.

The goal of this section is to establish an analogous result for quantum sources. Our th
generalizes Schumacher’s result2,3 to general, not necessary Bernoulli, sources.

B. POM

Let A5$A1 ,...,Ar%, r ,` be a family of observables onH such thatAj>0, for all j , and

A11•••1Ar5I . ~V.4!

Such a family is called apositive operator-valued measure~POM!; see Ref. 7 and reference
therein. A POM is calledpure if eachAJ is a rank one operator. For example, any family ofd
5dim H pairwise orthogonal projections onH satisfies the above conditions, and so is a p
POM. We will call the setX A5$1,...,r % the classical alphabet associated with the POMA, and
denote byX A

` the space of all infinite messages over the alphabetX A . We can define a prob
ability measure onX A

` associated with the quantum source~A, t, a!. For $k1 ,...,kn%PX n, we
define

mn
A~$xI :x15k1 ,...,xn5kn%!:5tn~Ak1

^ ••• ^ Akn
!. ~V.5!

This defines a consistent family of cylinder measures, as

(
kPX A

mn11
A ~$xI :x15k1 ,...,xn5kn ,xn115k%!5tn11S Ak1

^ ••• ^ Akn
^ (

kPX A

AkD 5tn11~Ak1
^ •••

^ Akn
^ I !5tn~Ak1

^ ••• ^ Akn
!5mn

A~$xI :x15k1 ,...,xn5kn%!.

Let mA denote the probability measure obtained from$mn
A% by means of Kolmogorov’s extensio

theorem. ByT we denote the shift operator onX A
` . Then the triple (X A

` ,T,mA) forms a classical
information source. We emphasize that it depends on the choice ofA. Obviously, this source is
stationary.

C. Classical ergodicity from quantum

In fact, this source is ergodic if the underlying quantum source is ergodic. We state it a
following lemma.
Lemma V.1: If~A, a, t! is ergodic, then for any choice ofA, the classical source constructe
above is ergodic.

Proof: We show that (X A
` ,T,mA) has the following property: for everyf PL1(X `,dmA),

the sequencêf &N converges inL1 to * f dmA. Using Fatou’s lemma, and recalling the individu
ergodic theorem, this implies that the only functions invariant underT are constants, and so th
classical source is ergodic. We first observe that it is sufficient to show that ifC is a cylinder set,
andxC denotes the corresponding characteristic function, then

E
X A

`
u^xC &N~xI !2mA~C !udmA~xI !→0, ~V.6!

asN→`. A standard ‘‘e/3’’ argument then implies that for allf PL1(X `,dmA), ^ f &N converges
to * f dmA in the L1 norm. Furthermore, sincedmA is a probability measure,~V.6! will follow
J. Math. Phys., Vol. 39, No. 1, January 1998
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from convergence of̂xC &N to mA(C ) in the L2 norm. This in turn is implied by the following
stronger result. SupposeC andD are cylinder sets, andxC andxD are the corresponding cha
acteristic functions; then

E
X A

`
^xC &N~xI !xD ~xI !dmA~xI !→mA~C !mA~D !, ~V.7!

asN→`.
In order to prove~V.7!, let C 5$xI :x15k1 ,...,xn5kn%, D5$xI :xj 115 l 1 ,...,xj 1m5 l m%. The

corresponding observables are given by

G~C !5Ak1
^ ••• ^ Akn

, G~D !5Al 1
^ ••• ^ Al m

.

There isN0 such that for alln.N0 , Tn(C )ùD5B. Therefore,

1

N E
X A

` (
i 5N011

N21

X C ~TixI !X D ~xI !dmA~xI !5
1

N
tS (

i 5N011

N21

a i
„G~C !…G~D !D

5t„^G~C !&N)G~D !…2
1

N
tS (

i 50

N0

a i
„G~C !…G~D !D .

By our assumption of quantum ergodicity, the first term above converges tomA(C )mA(D), as
N→`. The second term is bounded as follows:

U1

N
tS (

i 50

N0

a i
„G~C !…G~D !DU< N011

N )
p51

n

iAkp
i )

q51

l

iAl q
i ,

which converges to 0 asN→`. Finally,

1

N E
X A

`(i 50

N0

xC ~TixI !xD~xI !dmA~xI !>
N011

N
→0,

and the proof is complete.

D. Bounds for the entropy

Let hA denote the Shannon entropy of the classical source (X A
` ,T,mA) ~Refs. 5 and 6!. In

other words,

hA52 lim
n→`

1

n (
k1 ,...,knPX A

mA~$xI :x15k1 ,...,xn5kn%!3 log mA~$xI :x15k1 ,...,xn5kn%!

52 lim
n→`

1

n (
k1 ,...,knPX A

t~Ak1
^ ••• ^ Akn

!log t~Ak1
^ ••• ^ Akn

!.

A remarkable fact abouthA is that it can be bounded from below in terms ofh(P), the quantum
entropy of the source, and a quantity depending exclusively on the statistical properties
signal ensemble.

Theorem V.2: For any POMA the following inequality holds:
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hA>h~P!2 (
1<k<r

tr~Akr!log tr~Ak!. ~V.8!

Remark:In particular, if A is a pure POM consisting ofd mutually orthogonal projections
thenhA>h(P).

Proof: The proof of this theorem is based on the following lemma.
Lemma V.3: LetF be a Hilbert space of finite dimension N, and let B be a density matrix on

F . If A1 ,...,Ar are positive operators such that A11•••1Ar5I , then

(
1< j <r

tr~AjB!log tr~AjB!<tr~B log B!1 (
1< j <r

tr~AjB!log tr~Aj !. ~V.9!

Proof: Let Aj
kl denote the matrix entries ofAj in an orthonormal basis consisting of eige

vectors ofB. Then tr(AjB)5(k lkAj
kk , wherel1 ,...,lN are the eigenvalues ofB. The function

@0,1#{x→ f (x):5x log x is convex, and so by Jensen’s inequality,

(
j

f S (
k

lkAj
kkD 5(

j
tr~Aj ! f S (

k

Aj
kk

tr~Aj !
lkD 1(

j
(

k

Aj
kk

tr~Aj !
lkf „tr~Aj !…

<(
j

(
k

Aj
kkf ~lk!1(

j
tr~AjB!log tr~Aj !

5(
k

f ~lk!1(
j

tr~AjB!log tr~Aj !,

which implies~V.9!.
As a consequence of this lemma, and condition 3° in the definition of a consistent fam

density matrices,

(
k1 ,...,knPX A

tr„~Ak1
^ ••• ^ Akn

!Pn…log tr„~Ak1
^ ••• ^ Akn

Pn!…

<tr~Pn log Pn!1 (
k1 ,...,knPX A

tr„~Ak1
^ ••• ^ Akn

!Pn…log tr~Ak1
^ ••• ^ Akn

!

5tr~Pn log Pn!1 (
1< j <n

(
k1 ,...,knPX A

tr„~Ak1
^ ••• ^ Akn

!Pn…log tr~Akj
!

5tr~Pn log Pn!1n (
1<k<r

tr~Akr!log tr~Ak!,

and the claim follows.

E. Main theorem

The theorem below is the main result of this section. It can be regarded as a quantum v
of the Shannon–McMillan theorem.

Theorem V.4: Let ~A,t,a! be an ergodic source, and letA be a POM, for which the operators
$Aj%, 1< j <r , are orthogonal projections. Let hA be the Shannon entropy of the associat
classical source, and define

M5 max
1< j <r

rank~Aj !, m5 min
1< j <r

rank~Aj !.
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Then, givend,e.0, there is n0 , such that for all n>n0 ,

H ^ n5S n% S n
' ,

whereS n is a subspace whose dimension satisfies

log m2d

log d
<

log dim S n

log dim H ^ n2
hA

log d
<

log M1d

log d
. ~V.10!

Further, let PS n
be the orthogonal projection ontoS n . Then for any observable C

PL(H ^ n),

ut~CPS n
!2t~C!u,eiCi . ~V.11!

Remark 1:We can regardS n as a significant subspace ofH ^ n in the sense that the expec
tation of any observable is almost completely determined by its restriction toS n . If the states
$uc j&% are orthogonal, we can take thed orthogonal projections$uc j&^c j u% for the POM. In this
case the entropyhA is equal to the von Neumann entropy, since the density operators all com
Then there is a direct correspondence with the classical Shannon–McMillan theorem, a
quantum theory is just a restatement of the classical result.

Remark 2:In the Bernoulli case we can take the POMA to bed orthogonal projections onto
the eigenvectors ofr, in which case the inequality of Theorem V.2 is saturated. Ifr has a simple
spectrum, this means that the Shannon entropy equals the von Neumann entropy of the q
source. Our result then agrees with Schumacher’s conclusion that the information contained
quantum source resides in a subspace whose dimension is asymptoticallyenhA. In the general case
we obtain only an upper bound for the dimension of the relevant subspace, and this upper
depends on the choice of POM. For example, if each operatorAj in the POMA is equal to (1/d)I ,
whereI is the identity, then the Shannon entropy ishA5 log d. Since this is the maximum possibl
entropy for a POM withd operators, we can conclude that all information about the quan
source has been lost in this measurement process. As these results show, it is advantageo
a POM composed of orthogonal projections.

Proof: we use the POM to construct the classical sourceX A
` with entropyhA . Let f n(xI ) be

the empirical entropy of a messagex of lengthn defined in~V.1!. Givene,d.0, let us define the
sets

Un,d5$xI PX :u f n~xI !2hAu.d%,

Ln,d5$xI PX :u f n~xI !2hAu<d%.

By the Shannon–McMillan theorem, givene,d.0, there isn0 , such that for alln>n0 ,

(
xPUn,d

mA~$xI %!,e.

Since the operators$Aj% are orthogonal projections, each tensor productAk1
^ ••• ^ Akn

is an
orthogonal projection, and hence so is the sum of these operators over the setLn,d . Let S n denote
the range of this projection, and letPS n

denote the orthogonal projection onto this subspace. T
for any observableC, we have

ut~CPS n
!2t~C!u<eiCi .
J. Math. Phys., Vol. 39, No. 1, January 1998
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It remains to estimate the dimension ofS n . Since the projections$Aj% are orthogonal, its
dimension is given by

dim~S n!5 (
xPLn,d

)
j 51

n

rank~Axj
!.

Therefore,

mnuLn,du<dim~S n!<MnuLn,du,

whereuLn,du is the size of the setLn,d . The Shannon–McMillan theorem implies that

~12e!en~hA1d!>uLn,du>en~hA2d!.

This leads to

log m

log d
2

d

log d
<

dim~S n!

n log d
2

hA

log d
<

log M

log d
1

d

log d
1

log~12e!

n
,

and the result follows.
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APPENDIX: PROOF OF POSITIVITY

We present here the proof that theR matrix ~II.11! defines a family of positive density
matrices, whenubu and ucu are sufficiently small. It is convenient to introduce the matrices

v5
a

2
I 2

1

2
s3 ,

Q5r21~bs11cs2!.

Note that we assumeuau,1, sor21 exists. Then for alln>2 we define

Sn5I n22^ v ^ Q.

It follows by direct calculation that for alln>1,

Pn115Pn^ r1 1
2~Pn^ r!Sn111 1

2Sn11
† ~Pn^ r!.

In order to proceed we make the inductive assumption thatPn.0; this implies, in particular that
(Pn1u)21 is bounded for everyu>0. We will prove that (Pn111u)21 is bounded for every
u>0; together with the positivity ofP15r, this will establish the desired result.

Note first thatiSni<iviiQi , and this bound is uniform inn. For convenience we define

w5ivi , q5iQi .

Furthermore, for anyu>0,
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~Pn111u!215~Pn^ r1u!21
„I 1 1

2~Pn^ r!Sn11~Pn^ r1u!21

1 1
2Sn11

† ~Pn^ r!~Pn^ r1u!21
…

21.

Our inductive assumption implies that (Pn^ r1u)21 is bounded foru>0. Choosingubu, ucu
sufficiently small guarantees thatiSn

†i,e for any e.0. Furthermore,

~Pn^ r!Sn11~Pn^ r1u!215„@Pn~ I n21^ v!Pn
21# ^ Q†

…~Pn^ r!~Pn^ r1u!21.

SinceiQ†i5q can be made arbitrarily small by choosingubu, ucu sufficiently small, the bound-
edness of (Pn111u)21 will follow from a bound for the operatorPn(I n21^ v)Pn

21, which is
uniform in n. Accordingly let us define forn>1,

An5Pn~ I n21^ v!Pn
21.

By imitating the derivation above, we obtain the recursion relation

An5~ I 1 1
2An21^ Q†1 1

2Sn
†!~ I n21^ v!~ I 1 1

2An21^ Q†1 1
2Sn

†!21. ~A.1!

It is immediate thatiA1i5ivi<1. We make the inductive assumption thatiAn21i<1; then
~A1! implies the estimate

iAni<S 11
q

2
1

wq

2 DwS 12
q

2
2

wq

2 D 21

. ~A.2!

If we choose

q,2
12w

~11w!2 , ~A.3!

then~A2! implies thatiAni<1. Hence by choosing~A3! we obtain thatAn is uniformly bounded
for all n, and hence that (Pn111u)21 is bounded for allu>0. Therefore the positivity of the
density matrices is proved.
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