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We define and study a two-parameter deformation of the unit disc. This deforma-
tion is described in terms of a family of typel C*-algebras C, ,,(U). We study
the representation theory for C, (U) and construct an action of the quantized
universal enveloping algebra U, (s/(2)) on C,, q(U ). 0 1993 Academic Press. Inc.

I. INTRODUCTION

In [KL] we constructed and studied the C*-algebra C,(U), 0<pu<1, of
“continuous functions” on a non-commutative unit disc. The family
#— C,(U) is a quantum deformation of the algebra of continuous func-
tions on the unit disc U in the direction of the SU(1, 1)-invariant Poisson
structure given by the Poincaré symplectic form. Our construction may be
viewed as a non-perturbative implementation of the program of deforma-
tion quantization proposed in [Be] and [BFFLS] (see [KL] for a more
complete list of references).

The present paper extends some of the results of [KL] to the case of
a two-parameter quantum deformation of the unit disc. We study a
two-parameter family of C*-algebras C, (U), 0<p<l1, 0<g<],
(1, ) # (0, 1), which are non-commutative deformations of a family of
Poisson structures on U. Motivated by the work [SLW] on the quantum
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sphere we show that the C*-algebras C, ,(U) are extensions of certain
standard C*-algebras. They are not isomorphic for different values of the
parameters (y, ¢) and fall into three distinct categories depending on
whether u<1—¢q, u=1—g¢q, or u>1—gq. This is related to the fact that all
SU(1, 1)-covariant Poisson structures on U can be subdivided into three
classes with different symplectic leaf structures.

All infinite dimensional irreducible representations of C, (U) are
generated by hyponormal weighted shift operators. These operators admit, in
almost all cases, a Bergman space representation. For each (4, ¢) we construct
a probability measure du on a subset D of U, and consider the Hilbert space
H (D, du) of holomorphic functions square integrable with respect to du. The
measure du is concentrated on a discrete set of circles contained in U. The
associated Bergman kernels can be expressed in terms of certain functions of
g-analysis [GR]. The C*-algebra C, (U) is then represented as the
C*-algebra generated by the Toeplitz operators on #(D, du) with symbols in
C(D). This construction should be important for a non-perturbative analysis
of the trajectory of a smooth function on U under the deformation map.

The paper is organized as follows. We begin with a general overview of
multiparameter deformations of a smooth manifold (Section II). In par-
ticular, we remark that each curve in the parameter space starting at the
classical value gives rise to a Poisson structure on the manifold. In
Section III we classify, following [LW ] and [SLW ], the SU(1, 1)-covariant
Poisson structures on U. In Section IV we define C, ,(U) and study all of
its irreducible representations. Section V describes the structure of C, (U).
In Section VI we construct holomorphic (Bergman space) representations
of C, ,(U). In Section VII we show that C, ,(U) admits a natural action
of the quantized universal enveloping algebra U (s/(2)). Formally, C, (0)
admits an action of the quantum group SU (1, 1) but, since SU (1, 1) does
not seem to admit a C*-algebraic description, we do not know how to for-
mulate this fact rigorously. In Section VIII we discuss some open questions.
Finally, in the Appendix we review certain facts on the structure of
C*-algebras generated by weighted shifts.

I1. NoN-COMMUTATIVE DEFORMATIONS OF SMOOTH MANIFOLDS

A natural method of constructing non-commutative spaces is to
“deform” an ordinary (smooth) manifold M. Such a deformation
is parametrized by the points of a topological Hausdorff space S.
“Continuous functions” on the non-commutative deformation are elements
of a non-commutative C*-algebra &/, s€ S.

To be more specific, let M be a smooth manifold and let C(M) denote
a C*-algebra of continuous functions on (a suitable compactification of)
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M. Let S be a Hausdorff space with a base point O. We refer to S as the
parameter space. By a non-commutative deformation of M we understand
a quadruple ((«, S, =, D) satisfying the following conditions D1-DS5 (these
conditions are very closely related to the conditions defining “strict
deformation quantization™ of [Ri]).

D1. .« is a Hausdorff space and n: &/ — S is a continuous surjection.

D2. Each fiber o ;=" Y(s), s€ S, is a C*-algebra.

D3. o, = C(M).
Let /=10, 1] and let y: I— S be a continuous path such that y(0)= 0. By
a connection we understand a mapping assigning to each y a continuous
curve I: I — o in such a way that no /"=y We write D_,(f) :=1(1), if
I'0)y=fe C(M).

D4. The mapping C(M)>f — D, (f)e &, is linear and
continuous.
We do not require, however, that f— D_, () be multiplicative; this would
lead us to commutative deformations. Let C*(M)c C(M) denote a
suitable algebra of smooth functions on M.

D5. For f, ge C*(M), the limit
1
lim {0,y (/) Dy (8) = Dy (f)} = he C™(M) (IL1)

exists.

To be more precise, the last requirement says that for f, ge C* (M) there
is he C*(M) such that

) 1
lrlln(} H? {D','(ll(f) Dy(r)(g) —Dy(t)(fg)} - Dy(r)(h)

=0, (I1.2)
%)
where |||, denotes the norm in 7.

We should emphasize that the above conditions form a system of natural
guidelines for constructing deformations of smooth manifolds rather than
a stringent system of axioms. In particular, the choice of C(M) and C* (M)
1S a matter of convenience.

The proposition below states that a deformation (&, S, 7, D) of M
defines a family of Poisson structures on M.

ProrosITION I1.1.  For each y,
1
(/; g}, i=tim - [0, (/) Dy (8)] (IL3)

defines a Poisson bracket on C*(M).
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Proof. Clearly, {f, g}, is linear in f and g. Using the Jacobi identity for
commutators, the fact that commutators are derivations, and condition
D5, it is easy to verify that {-, -}, satisfies the Jacobi identity and Leibniz
rule. |

The proposition above says, roughly, that each direction in S from
which the classical limit may be reached determines a Poisson structure
on M.

I11. PoissoN STRUCTURES ON THE UNIT Disc

In this section we discuss the Poisson structures on the Lie group
SU(1, 1) and its homogeneous space U= SU(1, 1)/U(1), the unit disc. Our
analysis follows the methods of [LW] and [SLW], where the case of
SU(2) was considered.

SU(1,1) is the group of complex 2x2 matrices y= {y,} such that
T11="722> T12=%21, and |y,;|?=1|y,;2l>=1. We wish to define a Poisson
structure on SU(1, 1), i.e., a Poisson bracket on the algebra C*(SU(1, 1))
of smooth functions on SU(1, 1). This algebra is generated by the functions

a(y) =711, ay) =y,
_ (ITL.1)
b(7) =712, b(y) =7y,

and so it is enough to specify the Poisson brackets between these functions.
For A e R, we set

{a,b}zélab, {b,a}=ézba,
{a,[5}:%ia5, (6,5} =0, (I11.2)
{a,a) = ibb, {B,a}=§u;a.

The proof of the following proposition is straightforward.

ProposiTiON I11.1. (i) Equations (111.2) define a real Poisson structure
on SU(1, 1); i.e., they are consistent with the relations defining SU(1, 1) and
{fg}=1{/ ¢}

(it) SU(1, 1) with the bracket {-, -} defined by (111.2) is a Poisson Lie
group; ie., the multiplication map SU(1, 1)x SU(1, 1) - SU(1, 1} induces a
homomorphism of Poisson algebras.
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Now let U be the unit disc{{ € C : {{| < 1} with the usual SU(1, I)-action

SU(L D)x U3 (3, 0) = (il +y)Fnl+7u) el (I11.3)

We wish to determine all real Poisson structures on U such that the action
(I11.3) is a Poisson map. Note that the set of all such Poisson structures is
an affine space modeled on the vector space of SU(1, 1)-invariant Poisson
structures on U. The latter space is one dimensional; an arbitrary SU(1, 1)-
invariant Poisson structure is given by

{z, 2} = ip(1 — z2)?, ueR, (111.4)

where z({):={, z({):=C Therefore, in order to determine all SU(I, 1)-
equivariant Poisson structures on U, it is enough to find one of them.

Observe that U(1)< SU(1, 1) (the subgroup of diagonal matrices) is a
Poisson Lie subgroup with zero Poisson bracket. Therefore, by [LW], the
homogeneous space SU(1,1)/U(1)=U inherits the Poisson structure of
SU(1, 1). Furthermore, the natural projection p: SU(1, 1) = U and the left
action of SU(1, 1) on U are Poisson maps. Now, the projection p is given
by

PY=712/F 115 (111.5)

and it follows that the projection of (II1.2) to U has all the desired proper-
ties. Explicitly,

{z,z}={ba ', ba™"}
=iA[ba'ba~'—(ba~')? (ba~')*]
=ii[zz—(z2)*].

We have thus proven the following proposition.

ProrosiTION IH1.2.  Every real SU(1, 1)-equivariant Poisson structure on
U is of the form

{2, 2} =i(1— |21)u+ (2 —p) |2I), (I1L6)

where A, ueR.

In the following sections we will study a two-parameter deformation of
U. It will then become clear that the Poisson structures (II1.6) are precisely
those of Proposition I1.1 with A, u parameterizing the direction from which
the classical limit is approached.
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We also note that the Poisson structures (I11.6) have different behaviors
for different ranges of the parameters 4 and u. If =0, U has two symplectic
leaves: {0} and U\{0}. If u#0, then

{z, 2} = iu(1 —|2| )( (1——)| |)

and so for i/u <0, U has the following symplectic leaves: each point of
the circle |{|>=(1 —A4/u)~", the disc [{|*< (1 —A/u) "', and the annulus
(1—4/u)~ "' <|¢|><1; while for A/u=0, the Poisson structure (I11.6) is
symplectic.

IV. DEFORMATIONS OF THE UNIT DISC: REPRESENTATION THEORY

In this section we define a family of C*-algebras C, ,(U), where
(4, 9)eS:={(p,q):0<pu<1, 0<g<1}. We choose the basepomt to be
O = (0, 1) and the corresponding algebra C, ,(U)= C(U), the C*-algebra
of continuous functions on the closed unit disc U. Following the usual
procedure, we define C, ,(U) as the universal enveloping C*-algebra of an
algebra given in terms of generators and relations. This C*-algebra has a
rather interesting structure which we study in this and the subsequent
sections. We classify all irreducible »-representations of C, ,(U) and show
that they fall into two categories: one-dimensional and infinite-dimensional.
All the infinite-dimensional representations are generated by hyponormal
weighted shift operators.

The algebra C, (U), (1, ) # O, is defined as follows. Let 2, , denote the
unital algebra generated by two elements, z and Z, with the following
relation

gz —zZz=q— I+ pu(l—zz)(1 —zz). (IV.1)

Let 3 be a Hilbert space and let n: 2, , —» #(#) be a representation of
2, , by bounded linear operators in #. m is called a *-representation if
n(z)=n(z)*. Clearly, *-representations of 2, , exist, as we can set # =C
and n(z) =€, n(Z)=e"" for 0< 0 < 2m.

PROPOSITION IV.1. Let (u, q) e S\{O} and let n be a x-representation of
C,.,(O). Then
(1) fu<l—gq, then n(z}|=1;
(Il) if u=1—gq, then either n(z)=0 or |(z)|| =1;
(III) if u>1—gq, then either |n(z)|| =/ (t+qg—1)/uor |n(z)] =1.
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Proof. We introduce the notation
X :=zz yi=zz (Iv.2)

Note that for 0 < g < 1 the operator un{x)+ 1 — u is invertible, as n(x) = 0.
Using (IV.1) we can thus write

n(y)={(g+pu)n(x)+ 1 —g—p}{un(x)+1—p} " (IV.3)

By the functional calculus, the norm of the right-hand side of (IV.3) is
equal to

{(g+ ) llm) Nl +1—g—p}{pnCol +1—p} "

Since | n(x)] = n(y)|l = lln(z)|®>=:1, Eq.(IV.3) yields the quadratic
equation

ur+ (1 =2u—qlt+q+u—1=0. (IV.4)

For 4 =0, this equation has only one solution: =1. For x>0, there are
two solutions: =1 and t=(u+ ¢ — 1)/u. The claims follow. |

Let us now define, for ue %, ,,

l[ull := sup [z(u)], (IV.5)

ki

where the supremum is taken over all *-representations of 2, .. As a
consequence of Proposition IV.1, |lul < . Let 4" ={ue?, ,:|u]| =0} be
the nul-ideal in 2, ,. We define C, ,(U) as the completion of 2, /4" in
the norm obtained as the projection of (IV.5). By construction, C, (U) is
a unital C*-algebra.

Observe that as a consequence of (IV.3),

zZZz=17ZzzZ (IV.6)

in C, (0).

The main goal of this section 1s to classify all irreducible *-represen-
tations of C, (U). As expected from Proposition IV.1, the character of
these representations varies depending on the range of (u, g). We will
analyze them case by case. Observe first that for all (y, g)€ S we have the
following family of one-dimensional s-representations p, 4, 0< 8 <2n, of
C, U

P1,0(3)="m- (IvV.7)
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Case 1. pu<1-—gq. Set
1 n
A . q

n .=m, n=0, 1,2, ey (IVS)

where R} is defined by

Rf]. H

—TTT (IV.9)

LEMMA IV.2.  Let = be a *-representation of C, ,(U). Then

Spec(n(x)) = {4, },50u {1},
Spec(n(p)) = {Zn}ns 10 {1}

(IV.10)

Proof. By Proposition IV.1, |z(x)| =ln(y)ll=1, and so Spec(n(x)),
Spec(n(y)) = [0, 1]. Furthermore,

Spec(n(x))\ {0} = Spec(n(»))\ {0}. (IV.11)

Let 7,, n=0, 1, 2, ..., be the sequence of open subintervals of [0, 1] defined
by

In = (lns A~'n+1)' (IVIZ)

We claim that I, Spec(n(x)}=1,nSpec(n(y))=. Indeed, (IV.3)
implies that

=41

so that 7, n Spec(n(y)) = and, by (IV.11), I, n Spec(n(x)) = . We now
proceed by induction. Assume that [, 0<j<n—1, do not intersect the
spectra of n(x) and n(y). If A€/, is in the spectrum of =( y), then by (IV.3),
A={(g+p) i+ 1—g—p{(l+1—p)" " with 7 in the spectrum of n(x).
But Ziel, ,, which is a contradiction. Hence, I, does not intersect
Spec(n(x)). By (IV.11), it does not intersect Spec(n(y)) and the lemma is
proven. {

THEOREM IV.3. Let (u, q)e S with p<1—gq, and let 7 be an irreducible
=-representation of C, ,(U). Then n is unitarily equivalent to one of the
Sfollowing representations:
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(i) pyres

(i) an infinite dimensional representation defined as follows. Let
H =17 ) and let {$,},-, be the canonical basis for #. Then

nl(z)¢n=\/}'n+l¢n+l’ n>0’
n=_0,

L 0
”(2)¢"={\/Z¢n_l, nel.

Proof. We write # = Ker(] —n(x))® #, where # is the orthogonal
complement of Ker(/—n(x)). Observe that both direct summands are
invariant under n and so one of them must be zero. If # =0, then
n(z) n(z)* =n(z)* n(z) =1, ie, =(z) is unitary. As a consequence, # is
one-dimensional and 7(z) = e for some 0 <8 <27

Now, let Ker(/—n(x))=0 and let 4,, n=0, 1, 2, ..., be the eigenspace
of m(x) corresponding to the eigenvalue i,. By the spectral theorem,
H =@ %,. Since

n=1n

(IV.13)

n(z):gn_’gmcd’ n(f):gn+1 _’gn’
and
7t(x)l\gnzﬂ"n’ n(y)rgn:in-i-l’

it follows that all ¢, are mutually isomorphic. We claim that they are
one-dimensional. Indeed, if e,, e, € %, are non-zero and orthogonal to each
other, then the subspaces spanned by {n(z")e;},.o, j=1,2, are non-
trivial, invariant under =, and mutually orthogonal. This contradicts the
assumption that = is irreducible.

Now let ¢y %, with |¢o] =1 and let ¢,, n =1, be defined by

¢ = 1n(2)" ol ~' 7(2)" $o€ %, (Iv.14)

Then {4,}.-0 forms an orthonormal basis for #. A simple computation
leads to formulas (IV.13). |

Case 1I. u=1—g¢q, g<1. Let t>0 be arbitrary and let
pa(8) = +1g") ", nelZ. (IV.15)

LEMMA IV.4. Let nt be an irreducible *-representation of C, , ,(U).
Then there exists t >0 such that Spec(n(x)) and Spec(n(y)) are contained in

{‘un(t)}nelu {0’ 1}
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Proof. There is nothing to prove unless Spec(n(x))n (0, 1)# .

Suppose there is 4ieSpec(n(x)) with 0<i<1. We set f=4 '—1 and
define p, (1) by (IV.15). Observe that
Ha(1) <y 41 (2), (IV.16)
and
lim g, (2)=0, lim p,(t)=1. (Iv.17)

n— —x ">

Using (IV.11) and (IV.3) we verify easily that u,(7) e Spec(n(x)), for all
ne Z. We claim that this is the entire spectrum of n(x). Indeed, let A - E(4)
denote the spectral family of the self-adjoint operator n(x) and let o, v be
such that

g<t<o<l, (IV.18)
Consider the sequence of intervals

L= ((L+atg”) ' (T4 11g") 1) < (1), 1 (2)),
and define P'" :=E({),., 1'>"). We will prove first that the closed sub-

neZ ' n

space P D of # is invariant under =. Using the formula ([DS], p. 921)

h—2o
E((a, b)) = s — lim 5 — lim (2m‘)-1f [R(u—ig)— R(u+ic)] du, (IV.19)
340 £l0 a+d
where R(u) = (u—n(x)) "' is the resolvent of n(x), and (1V.3), we easily see
that
n(z) (I} ") = E(1), 7)) m(2),

n+1

n(z) E'" )= E(I'" ) n(2).

n—1

(IV.20)

Since E is strongly c-additive, Egs. (IV.20) imply that [n(z), P“" "] =
[n(z), P** D] =0, and P> 5 is invariant under n. Since = is irreducible,
either P9=0 or P "=I But P°?=] contradicts {u,(t)}c
Spec(n(x)). Therefore, P =0, ie., I'"* n Spec(n(x)) = ¥, and the claim
follows as g, T satisfying (IV.18) are arbitrary. ||

THEOREM IV.5.  The following representations include all unitarily non-

equivalent irreducible x-representations of C, , _,(U), 1>0:

(i) p 1,05
(11) a one-dimensional representation p defined by

polz)=po(2)=0; (IV.21)
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(iii) infinite-dimensional representations defined as follows. Let
H =1*Z) and let {¢,},., be the canonical basis for #. Then

n:1(2)¢n=\/ .un+l(t)¢n+l’
"51(5) ¢n=\/ ”n(t) ¢n71'

Proof. Let (m, #) be an irreducible =-representation of C, ; ,(U). We
write # as an orthogonal sum,

(IV.22)

# = Ker(n(x)) @ Ker(] — n(x)) @ #, (IV.23)

and verify that each direct summand in (IV.23) is invariant under n. Using
Lemma IV.4 and repeating the steps of the proof of Theorem IV.3 we easily
prove the above theorem. ||

Case TII. u>1-g¢q, g<1. (For the analysis of the g=1 case, see
[KL1].) According to Proposition IV.1, we either have ||z(z)| =\/§, with
0 < R <1 defined by (IV.9), or ||n(z)|| = 1. Assume first that ||z(z)| = \/R.
Let

1 _qn
%= Ry (IV.24)

LemMA IV.6. Let mn be a =*-representation of C, ,, p>1—gq, with

In(z)|| = /R. Then
Spec(n(x)) = {a,}, 510 {1}, (1V.25)
Spec(n(y)) = {&, }ns0v {1}

The proof of this lemma uses similar arguments to those of the proof of
Lemma IV.2 and we omit the details.
Assume now that |n(z)]| = 1. For 1> 0 we set

14+ tRq"
) =—— Z 1V.26
b0 =g € (IV.26)
LEMMA IV.7. Let n be an irreducible -representation of C, ,(U),
u>1—gq, (4, q)e S\{O}. Then there exists t >0 such that
Spec(n(y)) < {B.(1)},. v {0, 1},
p N {BD} ezl } (IV.27)

Spec(n(y)) = {B()}pez 0 {0, 1}

We omit the proof of this lemma as it is similar to the proof of
Lemma IV4. As a consequence of the last two lemmas we obtain the
following theorem.
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THEOREM IV.8.  Any irreducible x-representation of C, ,(U), p>1—gq,
(1, g) € S\{ O} is unitarily equivalent to one of the following representations:

(i) pie;
(il) a one-dimensional representation pg,, 0<0<2n, defined as
Jfollows:

pro(z)=+/Re® (IV.28)

(iii}) an infinite-dimensional representation defined as follows. Let
H =1%Z.) and let {$,}, - be the canonical basis for #. Then

n"I(E ¢n=\/ an+l¢n+l’ I’I?O,

n=0, (IV.29)
(L VTR

(iv) infinite-dimensional representations defined as follows. Let
H =1%(Z) and let {$,},-0 be the canonical basis for #. Then

7.':Ilnr ¢ \/:Bn+l t)¢n+l’ HGZ,
Hl(")¢n vV ﬁn(t ¢n719 nEZ.

(IV.30)

V. DEFORMATIONS OF THE UNIT DISC: STRUCTURAL THEORY

In this section we study the structure of the C*-algebra C, ,(U),
for (u,q)e S\{O}. It turns out that the structure of C, ,(U) depends
dramatically on whether u<1—¢q, u=1—¢q, or u>1—gq.

Let (n, #°) be a *-representation of C “_q(U ), and let n(C, ((7 )) denote
the C*-algebra of operators on ## generated by n(a), aeC ,(U). By X
we denote the C*-algebra of compact operators on #.

ProPoSITION V.1, Let (u, )€ S\{O}. We have the following short exact
sequences of C*-algebras:

for u<l—gq,
0— A —aC, () - C(S') - 0; (V.1)

(I for p=1-gq,
0 —n(C, (0))- C(SHDC -0, (V.2)

(Ill) for u>1—gq, g<1,
0— A >nag(C, (U)—-C(S")-0, (V.3)
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and
0 - (C, (U)-C(SHDC(S') 0. (V.4)

Proof. Each of the C*-algebras n(C, ,(U)) listed in the above proposi-
tion is generated by a unilateral or bilateral weighted shift satisfying the
assumptions of Theorem A.1 or Theorem A.2, respectively. |

CoroLLARY V.2. C, (U) is a type 1 C*-algebra for all (u, q)e S\{O}.

CoroLLARY V.3. Let aeC, (U). Then
(I) foru<l—gq,0<60<2m,

=" ()l = oy, o(a)li; (V.5)

(I) for u=1—¢q,0<0<2m, 1>0,
I (@) = max{lp, o(a)l, llpo(a)ll }; (V.6)

(IT) for u>1—-q, g<1,0<0<2n,
ImR' @)l = o & o(@)l, (V.7)

and for t>0,0<8, ' <2n,

Iz} (@) = max{llp, o(a)ll, g o(a)l}. (V.8)

The structure of C, ,(U) is described by the following theorem.

THEOREM V.4, For (u,g)e S\{0} we have the following short exact
sequences of C*-algebras:

(I) for u<l—gq,

0= = C, (0)—C(S)~0; (V.9)
(1) for u=1-g,
O—-»C(S’)@.)f—-)C“vq(l—])——»C(Sl)@C—»O; (V.10)

(II1) for u>1-—gq, g<1,
0- X @(C(SHRA)-C, (U)->C(SHBC(S')—~0. (V.11)
Proof. For a C*-algebra .o/ we have the exact sequence

0—[—.of - C(c) =0, (V.12)
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where I is the commutator ideal of ./, and where o is the spectrum of o/
(i.e., the space of all multiplicative functionals on 7). Since C, ,(U) is
defined in terms of generators, it is easy to determine o:

o=, it p<l—g, (V.13)
o=S'u{0}, if u=1-gq (V.14)
c=S'uUS!, if u>1—gq, g<l. (V.15)

To prove (V.9) observe that, as a consequence of (V.5), n' is a faithful
representation and so n'(C, (U))~C, (U). The claim follows from
(V.1).

To prove (V.10) note that n!" and =" are unitarily equivalent if and only
if t/seq? with unitary equivalence given by a shift ¢,—>¢,, ., neZ
(indeed, Spec(n!'(x)) = Spec(n''(x)), if and only if t/s = ¢*, ke Z). We can
regard the commutator ideal 7 as a C*-subalgebra of C(S' &)
C(SYHYy® # with the identification given by Isa-n"(a)e C(S!, X)),
where 7''(a) denotes the function S's¢—n!(a)en!'(I)=#". The map
a—n'"(a) is injective because, as a consequence of (V.6), {Qn}'df is a
faithful representation of C, ,(U). Now, since C(S', ") is type I and
I=C(S', #") is clearly rich, PropositionIl.1.6 in [Di] implies that
I=C(S', A).

To prove (V.11) note that =n}", and n}" are unitarily equivalent if and
only if #/ses® Since by (V.7) and (V.8), nk'@[& n|", dr is a faithful
representation of Cu,q(U), the above arguments show that /=4 @
(C(S')® A7) with the first summand coming from n'{' and the second one
coming from [§ =", dr. |

"oy

VI. BERGMAN SPACE REPRESENTATIONS

The representations of C, ,(U) constructed in Section IV are equivalent
to representations by Toeplitz operators on certain Hilbert spaces of
holomorphic functions (Bergman spaces). This implies, in particular, that
the hyponormal shifts n(z) are, in fact, subnormal.

Let us recall the definition of a Toeplitz operator. Let D<C be a
(bounded) domain and let du be a probability measure on D. By
H(D, du)c XD, du) we denote the Hilbert space of holomorphic
functions on D which are square integrable with respect to du. Then the
orthogonal projection P: £*(D, du)-— #(D, du) is an integral operator
whose kernel K(, ) is called the Berman kernel. For fe C(D) we define
T(f):=PM(f), where M(f) is the operator of multiplication by f. Then
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1T <|fll and T(f) maps #(D) into itself. We call T(f) a Toeplitz
operator with symbol f. Explicitly, for ¢ € # (D),

(T(f)¢)(C)=ID K(C n) 1 (n) (n) du(n). (VLI)

Case 1. p<1—gq.Let D=U and let

1-R' (11’ 4:9)x »
. (KPR YS9w o
where (a;q), :=[1.50 (1 —aq"), where &(|{|*—p>)d* is the Dirac

measure concentrated on the circle |{|2 = p?, and where R ' <0 is defined
by (IV.9). Then, for neZ ,,

dpl({) = "o(l1P—q") d?,  (VI2)

_ (¢" " 4)s
znd 1 =(1=~R 1 m+ nm
J 107 ') = )Y T R g
_ . 145 9) .
[] jﬂ (tq q)acdt’

where reC is defined by ¢"=R~', where [r],:=(1—¢")/(1—g), and
where jé,f(t) d,t is the Jackson integral [GR]. By the familiar formulas of
the g-calculus [GR], the last expression can be rewritten in terms of the
g-gamma function I',(z) := ((4; 9) /(g% ¢)..)(1 —gq)' ~7 as

Fn+ 1) (r) Fn+ )L (r+1)
“ Tn+r+1)  T(ntr+1)

(r]

(in particular, du' is a probability measure). As a consequence, the

functions

Fn+ 1), (r+1)
F(n+r+1)

—1/2
¢n(C):={ } ", neZ,, (VL3)

form an orthonormal basis for #(D). The corresponding Bergman kernel
is

L n+r+1)

1 _ —1 —\n
K'(( =T, (r+1) EO e (&h)
RUARTIE U ) P
(9 ngzx ntrrlig), &
_ r+1,Q)
..go (q:9)a @,

$80/115/1-2
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n—1

where (a;q),:=117_, (1 —agq’). Using the g-binomial formula [GR] we
finally obtain

(gln/R; 9) o
K'Y, n)=—"——=, V1.4
(&) (- (Vi4)
Consider now the Toeplitz operator T({). We find
1— qn+l 172
T(C) ¢, = {?q,rrrr} Gt 1s (VL5)

and so we have proven the following proposition.

PROPOSITION VIL.1. With the above definitions, representation wn' is
equivalent to the following representation on (U, du'):

=T, 2T

Case II. u=1—gq, g<1. Let D=U*:=U\{0} and let

n(a-+1)/2

1
du''(() = v 4 (0 —g")d¥.  (VL6)

(=19 9w ,To (459)n
Then, for neZ,
[ e P
us (—14:9) o (& Dim

=(_tqn+l; q)ac
(—19;9)

As a consequence, the functions

. 172
$.({) = {L’"i;?_)ﬁ—}/ ¢",  nelZ, (VL)
(_tq ’q)oo

from an orthonormal basis for #(U*, du"). The corresponding Bergman
kernel is

1
0 ({n)"

KN m=(—19;:9), Y, e

neZ (_tq

=Y (—1g;9), ()"

neZ
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Using Ramanujan’s summation formula [GR] we thus obtain

(—qrlit; q) . (—1/(¢87); ),
Cha)(—1/tq),

Consider now the Toeplitz operator T({). From (VL17),
T(C)¢n=(l+tqn+])7l/2¢n+l’ (VIg)

and so we have proven the following proposition,

KNG =(g9)s (VL8)

PROPOSITION V1.2. With the above definitions, representation w'' is
equivalent to the following representation on #(U*, du™):

z=>T(), 2T

Case 1II. p>1—gq, g<1. Let us first consider the case of n}'. We set
D=Ug:={{:|{| <R}, and define the measure

2 -1,
UEaR” D 5 prgie1— Rg %L (V110)

1
W0 =2 =R =y
’ 0 nz0

Then, for neZ .,

(t9; 9)

n DA gt

(t9°;9)s *

=Rn1“q(n+1)1“q(s+1)
I(s+n+1)

J, 10 a0y = R, | o

>

where ¢° = R. Consequently, the functions

1/2
F(s+n+1) } o (VL12)

$.(0) = {R‘" Tn+ DIs+1)

form an orthonormal basis for #(Ug, du'd"). The corresponding Bergman

kernel is easily found to be

_ (gl 9)x
((7/R; )

The Toeplitz operator T({) satisfies

KR'(&n) (VL13)

1—grtiyw2
n0m={Rrj%n} s 1>

and so we have the following result.
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PROPOSITION VI.3. With the above definitions, representation n%' is

equivalent to the following representation on # (U, duk'):

z—-T(), z— T({).

We were not able to find a Bergman space representation for n}'",, except

for s=log, ReN. In this case, we set D=Ug := {{eC:R<|{}<1} and
define

1 (q: 9), :
d HI,(C)= f" aln+1)/2 5(|C|2_ n dZC
Hi, n(—tq;q)sosz,;@(q;q)n(q; Dn 7)
(VL14)
Then, using the g-binomial theorem, we find that
—1 n+l;
[ pprauno =20 e g, (VL15)
vs : (—1q9;9),
and so the functions
(—1q; 9), }”2
A(0) = {*____ ¢ (VI.16)
#ut0) (—tq"'; q),

form an orthonormal basis for # (U}, du}",). The Toeplitz operator T({)

satisfies

1+lqn+1R}l/2¢
n+1s

T(C)¢n={T+—th+—r

and so we have the following proposition.

PrOPOSITION VI4. Let s=log, ReN. The n, is unitarily equivalent to

the following representation on #(U%, dl"ll,[, :

z=>T(), zZ-T()

VIL U, (sl(2))-AcTtion oN C, (U)

In this section we construct an action of the quantized universal
enveloping algebra U, (s/(2)) [Dr] on the C*-algebra C, ,(U). This action
is implemented by certain unbounded linear operators on C, (U) and
hence it is defined only on a dense subalgebra. More generally, if € is a
(Hopf) algebra and &/ a C*-algebra, we say that € acts densely on & if
it acts on a dense subalgebra o, of .«/.
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Recall that U, (s/(2)) is a unital Hopf algebra with generators E, F, K,
and K ! and relations

KK '=K'K=1,
KEK~'=4q'?E, KFK '=q '7F, (VIL1)

K'—K?

(E, Fl=——3

ql‘,z_q 12

Let C, ,(U)o<= C, ,(U) be the dense *-subalgebra of all polynomials in
z and Z. We set

E()=0, Ez)=1 E(Z)= -7,
F(I)=0, Flz)=—2% F(z)=1, (VIL2)
Kh=1, Kz)=q "z  K@E)=¢"%,
and require that for all g, be C,, ,(U),,
E(ab) = E(a) K(b) + K~ '(a) E(b),
Flab) = F(a) K(b)+ K~ (a) F(b), (VIL3)
K(ab)= K(a) K(b).

In other words, K is an automorphism of C, (U), and E and F are
K-twisted derivations. Conditions (VII.3) are natural in the sense that they
are consistent with the coproduct structure on U, (s/(2)).

ProrosiTION VIL.1.  Formulas (VI1.2) and (VIL.3) define linear maps of
C, (O), into itself.

Proof. We have to verify that E, F, and K are consistent with (IV.1).
Observe first that

K(zz)=1zz, K(zz)=1Zz, (VIL4)
and so K preserves (IV.1). Apply now E to the left-hand side of (IV.1):
E(gzz—:z)=qE(z) K(Z) + qK '(z) E(Z) — E(Z) K(z) — K '(2) E(2)
=q*?(I—z2)z—q 21— zz). (VILS)

On the other hand, applying E to the right-hand side of (IV.1) and using
(VIL.4) we obtain

—uE(zZz)(I—zZ) — p(I — zz) E(zZ2)
= —pug "I — Zz) (I — z2) — ug 31 — Zz)(1 — zZ}) 3,
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which, upon using (IV.1), is equal to the right-hand side of (VIL.5). As a
consequence, £ is consistent with (IV.1). In the same fashion we verify that
F is consistent with (IV.1). }

ProposiTioN VIL2. E, F, and K define a dense action of U (sl(2)) on
Cu.q(ﬁ)'

Proof. We verify that E, F, and X satisfy the algebra (VIL.1). The first
pair of relations holds trivially. To verify the second pair of relations we
note first that E' ;== KEK~' and F' := KFK~! are K-twisted derivations in
the sense of (VIL.3). Indeed,

E’(ab)=KE(K '(a) K~ '(b))= K(EK '(a) b+ K *(a) EK~'(b))
= E'(a) K(b) + K~ '(a) E'(b).

Consequently, it is sufficient to verify these relations when applied to
the generators of C, ,(U). Clearly, they hold when applied to . Further-
more,

KEK™'(z)=q'?KE(z)=q'?K(I) = q'*I = q'?I = q'"E(z),
and
KEK '(Z)=q '?KE(Z)=q "’K(z*)=q'?:* = ¢'?E(3).

In the same manner we verify that KFK~'(z) =g~ "*F(z) and KFK~ ‘()=
g 2F(3).

To verify the last relation in (VIL1) we set V:=[E, F] and W:=
K?*— K2 We claim that ¥ and W are K*-twisted derivations. Indeed,

V(ab) = EF(ab) — FE(ab)

= E(F(a) K(b)+ K~ '(a) F(b))— F(E(a) K(b)+ K '(a) E(b))

= (EF(a)— FE(a)) K*(b) + K *(a)(EF(b) — FE(b))

= WV(a) K*(b) + K~ *(b) V(a),

and
W(ab) = K*(a) K*(b)— K *(a) K~2(b)

= (K*(a)— K~*(a)) K*(b) + K~ *(a)(K*(b) — K~ (b))
= W(a) K*(b)+ K *(a) W(b).
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As a consequence, it is sufficient to verify the relation when applied to the
generators. It clearly holds when applied to I. Moreover,

K*(z)— K7 *(z)

(£, F1(s) = —EG)= —(g "+ 2= ",

and

205y K2z
[E FID)=FZ)= —(q’/2+q’/2)2_=£{—q(15/2)—1§7/2(i)’

and the proposition is proven. [

VIII. CONCLUDING REMARKS

In conclusion, we would like to discuss briefly two points which seem to
be interesting and which were not touched upon in this paper.

First, it would be interesting to study the norm limits (IL2). Given our
experience from [KL], we believe that the Bergman space representations
of Section VI should provide a convenient framework for studying this
problem. Formally, the structure of the limits is as follows. Let
7: [0, 1]~ S be given by

ulty=pt (VIIL1)
gy=1—-(1—-g)r
Then
(2 2] = 11 — 22)(u — (1 — q) — uEz) + O(2), (VIIL2)

and so the classical limit along y yields a Poisson structure of the form
(I11.6). Observe that the three ranges of the parameters (i, g) discussed in
previous sections give rise to Poisson structures of entirely different charac-
ters: For u<1—g, the Poisson structure is symplectic, for uy=1—g, it
has two symplectic leaves, {0} and U\ {0}, while for u>1—g, it has the
following symplectic leaves: the points on the circle |[{| = R, the disc [{| < R,
and the annulus R < |{| < 1, where R is given by (IV.9).

Second, it would be interesting to describe the quantized unit disc as a
quantum homogeneous space. Formally, the algebra C, ,(U) admits an
action of the quantum group SU (1, 1). However, due to domain problems
of the unbounded generators of SU (1, 1) a quantum space description of
SU,(1,1) is unknown [Wo]. The dense U, (s/(2))-action constructed in
Section VII seems to be a residue of this putative SU (1, 1)-action.
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APPENDIX. C*-ALGEBRAS BY WEIGHTED SHIFTS

In this Appendix we summarize some results on the structure of
C*-algebras generated by hyponormal weighted shifts. More details and
proofs can be found in [Co].

Let A be an irreducible operator on a Hilbert space # such that
[A*, A] is compact. Let C*(A4) denote the unital C*-algebra generated by
A and let I be its commutator ideal. Then /= X"(3#), the C*-algebra of
compact operators on #, and so the C*-algebra C*(4)/% is Abelian.
Therefore, we have the short exact sequence of C*-algebras

0—H > C*(A4)- Cla)—0, (A1)
where ¢ is a compact space (the spectrum of C*(A4)). ¢ can be identified

with the essential spectrum of 4. Another useful characterization of ¢ is
o= {AeC: there is a multiplicative functional ¢ on C*(4) such that

$(A)=2).
In this paper we are concerned with A4, a weighted shift. Let # =/*(Z )
and let {4,},.,, be the canonical basis for #. Then A is a unilateral

weighted shift on # if 4¢,=0a,¢,,,, neZ, a,eC.

THEOREM A.l. Let A be a unilateral weighted shift satisfying
O<ag<o, < o0 <, <0y y g < vom (A.2)
Then A is irreducible and [ A*, A7 is compact. Furthermore,
o={AeC:|i|=a,}, (A.3)

where o :=lim, _, . o,=|A4].

Now let # =1*Z) and let {¢,},., be the canonical basis for #. Then
A is a bilateral weighted shift on ¢ if A¢,=ad,,,, neZ, a,cC.

THEOREM A.2. Let A be a bilateral weighted shift satisfying
0 - <o, <, < -~ (A4)
Then A is irreducible and [ A*, A] is compact. Furthermore,
c={ieC:|i=0_,}u{ieC:|i=a,}, (A.5)

where %, i=1lim, , 4 . a,.
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