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Disclaimer

The views expressed in this talk are mine and do not
necessarily reflect the views of Ellington Management
Group.
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Term structure modeling

The purpose of a term structure model is to generate
future rates scenarios in a manner consistent with current
markets.
A term structure model should be constructed so that it is:

Arbitrage free

Realistic

Tractable

A good choice is the LIBOR Market Model (LMM).
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Dynamics of the LMM

We consider a sequence of approximately equally spaced
dates (standard tenors)

0 ≤ T0 < T1 < . . . < TN ,

A standard Libor forward rate

Lj, j = 0, 1, . . . , N − 1,

is associated with a forward rate agreement which starts
on Tj and ends on Tj+1. Usually, we assume N = 120, and
the Lj ’s are 3 month Libor forward rates.
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Dynamics of LMM

We model Lj as a continuous time stochastic process
Lj (t), 0 ≤ t ≤ Tj−1 (killed at t = Tj−1!). The dynamics of
the forward process is driven by an N -dimensional,
correlated Wiener process W0 (t) , . . . ,WN−1 (t). The
probability measure associated with this Wiener process is
denoted by P.
We let ρjk denote the instantaneous correlation between
Wj (t) and Wk (t), i.e.

EP [dWj (t) dWk (t)] = ρjkdt .
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Dynamics of LMM

The dynamics of LMM is given by a system of stochastic
differential equations:

dLj (t) = ∆j (L (t) , t) dt + Cj (L (t) , t) dWj (t) .

The first term on the right hand side is called the drift term,
and the second term is called the diffusion term. The no
arbitrage requirement forces a relationship between the
drift and the diffusion terms. The form of the drift term
depends on the choice of numeraire (asset in units of
which all prices are expressed).
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Dynamics of LMM

If the numeraire is chosen to be the zero coupon bond
Pk (t) maturing at Tk, one finds that:

dLj (t) = Cj
(

Lj (t) , t
)

×



























−
∑

j+1≤i≤k

ρjiδiC
i (Li (t) , t)

1 + δiLi (t)
dt + dWj (t) , if j < k,

∑

k+1≤i≤j

ρjiδiC
i (Li (t) , t)

1 + δiLi (t)
dt + dWj (t) , if j > k .
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Dynamics of LMM

The functions Cj (Lj (t) , t) are the local volatilities defining
the volatility structure of the model.

These equations are supplied with initial values for the
Libor forwards:

Lj (0) = L
j
0,

where L
j
0 is the current forward.
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Calibrating LMM

To calibrate the model:

Choose the initial condition to match the current curve

Choose the local volatilities to match the swaption and
cap vols

Choose a realistic correlation matrix ρ
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Uses of LMM

Can do:

Generate future scenarios consistent with current
markets

Price interest rate sensitive instruments

Quantify interest rate and volatility risk

Help identify mispricings in the markets

Cannot do:

Handle event risk (such as prepayments & defaults)
embedded in MBSs or credit sensitive instruments
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Securities with event risk

Event risk is largely exogenous to the rates process. In
order to model it we assume that:

Interest rates dynamics is modeled by LMM

Event dynamics is modeled by a random time T

There exists intensity process λ (t) ≥ 0, so that

Prob ({T > t} |Ft) = exp

(

−

∫ t

0

λ (s) ds

)

In the context of prepayment, λ (t) is the SMM.
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Securities with event risk

The intensity λ (t) is itself stochastic. The stochastic
process

S (t) = exp

(

−

∫ t

0

λ (s) ds

)

is called the survival probability, while

F (t) = 1 − S (t)

is the event probability.
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Securities with event risk

Valuation of securities with event risk is done by means of
Monte Carlo simulations. Each MC scenario produces the
value:

∑

j

(

cjP (tj) S (tj) + rjP (tj)
[

Fj (t) − F (tj−1)
]

)

,

where cj are the known cash amounts, and rj are the
recovery rates in case an event occurs. The intensity
process defining the survival probability is modeled outside
of LMM. The price of the security is calculated by taking
the average of the values computed above.
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Modeling prepayments

Factors affecting S (t):

Interest rates

Unobserved heterogeneity characteristics of
borrowers

Characteristics of loans

Macroeconomic factors
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Modeling prepayments

Decomposition of S (t) into competing risks:

Turnover

Refi

Total payoff

...

S (t) = C (S1 (t) , . . . , Sr (t)) ,

where Sj (t) are the survival probabilities corresponding to
the latent risks.
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Modeling prepayments

A convenient framework for modeling prepayment is the
Cox model.

Conceptually easy

Works for non-path dependent risks such as turnover

Does not capture the path dependent burnout
phenomenon of refi risk.
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Modeling heterogeneity

Probability distribution G (x), x ∈ X, of borrowers

⇓

Each borrower has intensity λ (t, x)

⇓

Each borrower’s survival probability is

S (t, x) = exp

(

−

∫ t

0

λ (s, x) ds

)
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Modeling heterogeneity

The average (population) intensity is

λb (t) =

∫

X
λ (t, x) S (t, x) dG (x)
∫

X
S (t, x) dG (x)

⇒ the population survival probability is

Sb (t) = exp

(

−

∫ t

0

λb (s) ds

)

Needed: choice of λ (t, x).
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Modeling heterogeneity

Two dimensional heterogeneity space x = (a, c).

a = alertness, c = cost threshold

Borrower’s intensity process

λ (t, x) = a 1C(t)≥c λ0 (t)

Incentive process C (t)

⇑

Interest rates, loan characteristics, ...
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Modeling prepayments

The full intensity:

λ (t) = λb (t) exp
(

∑

βjVj (t)
)

Vj (t) = stochastic factors affecting prepayments

Factors Vj (t)

⇑

Macroeconomic factors, loan characteristics, ...
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Calibrating prepayments

To do:

Given historical SMMs for thousands of pools of
mortgages or single loans

Find the model parameters (collectively denoted by θ)
that give the best fit

Do it efficiently
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Calibrating prepayments

Kullback-Leibler divergence between the probability
distributions: {pi} (observed) and {pi (θ)} (theoretical):

D (p‖p (θ)) =
∑

i

pi log

(

pi

pi (θ)

)

Then

D (p‖p (θ)) ≥ 0

“Best” value of θ ⇒ minimum KL divergence.
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Duration risk (delta)

Traditional measures of the portfolio’s market risk are:
duration and partial durations. Problems:

Inflexible

Calculations incompatible with modern curve
construction methodologies

Do not capture well complicated curve moves

A more flexible approach is based on perturbing the
forward curve.
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Duration risk (delta)

Choose a hedging portfolio consisting of swaps,
Eurodollar futures, etc.:

Πhedge = {B1, . . . , Bn}

Let C0 denote the current forward curve, the base
scenario. Choose a number of new micro scenarios

C1, . . . , Cp

by perturbing non-overlapping segments of C0
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Duration risk (delta)

The vector δΠ of portfolio’s sensitivities is

δiΠ = Π (Ci) − Π (C0) , i = 1, . . . , p,

where by Π (Ci) we denote the value of the portfolio
given the forward curve Ci.

The matrix δB of sensitivities of the hedging
instruments is

δiBj = Bj (Ci) − Bj (C0)

Always use more scenario than hedging instruments!
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Duration risk (delta)

The vector ∆ of hedge ratios is calculated by
minimizing

L (∆) =
1

2
‖δB ∆ − δΠ‖2 +

1

2
λ‖Q∆‖2

Here, λ is an appropriately chosen small smoothness
parameter, and Q is the smoothing operator. Explicitly,

∆ =
(

(δB)t
δB + λQt Q

)−1
(δB)t

δΠ

This methodology is called ridge regression.
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Convexity risk (gamma)

The gamma of a portfolio is sometimes calculated as its
global convexity characteristic. This is a rather crude
measure, as portfolios typically exhibit complex convexity
behaviors. A better way is to construct the portfolio gamma
as the change in its delta under specified macro scenarios:

Ξ0,Ξ1, . . . ,Ξr,

with Ξ0 base scenario (no change in rates).
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Convexity risk (gamma)

For example:

Ξ+50 All rates up 50 basis points.

Ξ+25 All rates up 25 basis points.

Ξ−25 All rates down 25 basis points.

Ξ−50 All rates down 50 basis points.

For each of the macro scenarios, we calculate the deltas

∆1, . . . ,∆r.
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Convexity risk (gamma)

The quantities:

Γ1 = ∆1 − ∆0,

...

Γr = ∆r − ∆0,

are the portfolio gammas under the corresponding
scenarios. For intermediate market moves, the portfolio
gamma can be calculated by linearly interpolating the
macro scenarios.
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Volatility risk (vega)

Traditional way of calculation the vega risk of a portfolio is
to perturb vol inputs: shift selected swaption and/or cap
volatilities. Problems:

This may be incompatible with the term structure
model

Does not capture well shearing moves in the volatility
surface (e.g. large upward move of short dated vol
accompanied by no move in longer dated vol)
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Volatility risk (vega)

Instead one may perturb the internal vol parameters of the
term structure model. LMM builds its internal “volatility
surface” S. We construct volatility micro scenarios by
accessing S and shifting selected non-overlapping
segments. Let us call these scenarios

S0,S1, . . . ,Sq,

with S0 = S being the base scenario.
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Volatility risk (vega)

We choose a hedging portfolio Πhedge which may
consist of liquid instruments such as swaptions, caps
and floors, Eurodollar options, ...

The rest is a verbatim repeat of the delta story. We
calculate the sensitivities of the portfolio to the
volatility scenarios. We calculate the sensitivities of
the hedging portfolio to the volatility scenarios. Finally,
we use ridge regression to find the hedge ratios.
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Prepayment risk

Quantify the prepayment risk by perturbing the parameters
of the prepayment model such as:

Mortgage rate

Loadings of the stochastic factors

...
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