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Abstract. We establish bounds uniform in the ultraviolet cutoff (i.e., in the 
number of degrees of freedom) for a family of two-dimensional Wess-Zurnino 
models. These estimates are useful in proving existence of the models, as well as 
in investigating their properties. For example, we require these estimates for 
the analysis of the supercharge and of the Hamiltonian. These are the 
fundamental a priori estimates for elliptic regularity in infinite dimensions. 

I. Introduction 

In this paper we establish the fundamental, elliptic a priori estimates required for 
our analysis of two-dimensional Wess-Zumino models on a cylinder [1, 2]. These 
estimates are required for the construction of the models, as well as for the study of 
their detailed properties. We study the N = 2 models in this paper as defined in 
[1, 2]. We follow the notation introduced in [1, 2]. These models are defined on 
the loop space of functions ~0: T I ~  ~. 

The estimates here provide the first steps toward developing an analytic theory 
of Dirac operators on infinite dimensional manifolds. The extensions of these 
estimates to the N--1 and other frameworks, as well as to more general target 
spaces, are interesting questions under investigation. 

We use the Feynman-Kac representations of [1, 2]. Our estimates generalize 
the methods used in the construction of the Y2 and P(~o)2 field theory models [3, 4]. 
The work here reduced the analysis of the models we study to standard estimates 
developed in Chap. 8 of [3]. Thus constructive field theory provides a suitable 
framework for this set of problems in infinite dimensional analysis. 

It is useful to estimate operator norms of the heat kernel exp(- f lH)  using 
Schatten class norms t[" lip defined by the lp summability of the characteristic 
values. Thus if 2i are the eigenvalues of (T'T) 1/2, the Ip norm is 

[I T[I,p= lIT[I,= (~. 2}') 1/" =(Tr(T*T)p/2) 1/'. 

* Supported in part by the National Science Foundation under Grant DMS/PHY 86-45122 
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The 12 or Hilbert-Schmidt norm is especially useful. The advantage of this estimate 
is that it automatically takes into account the dependence on both fermionic and 
bosonic states. A further advantage is the structure of the Feynman-Kac 
representations for the Hilbert-Schmidt norms; they all involve LI norms on path 
space of functions of the basic form 

det3(1 - K )  e x p ( -  d ) ,  

that have occurred already in many contexts. The fact that Ip operator norms 
reduce to L 1 function-space estimates is essential for the preservation of the 
regularity properties which involve cancellations of local singularities. After such 
cancellations we can (and do) use Lp estimates on path space. 

It is convenient to rewrite certain functions of the bosonic field • as Wick- 
ordered expressions, since on a 2-cylinder the Wick-ordered polynomials have well 
understood regularity properties, see [3]. Let us mention here a general form of 
Wick's theorem for complex fields. This identity can be regarded as a definition of 
Wick monomials. This definition extends by linearity to polynomial functions of 
~, and when convergent to limits of polynomials. The general algebraic structure is 
summarized by the identity: 

Wick's Theorem. For F a function of • and ~*, 

where 

:F(~, ~*):c = e x p ( -  OC~-) F(~, ~*), (1) 

where in this case 

with inverse 

F(~b) = exp (½ A c) : F(rb):c, 

In the following we suppress the subscript C. In estimating Gaussian integrals with 
respect to a measure d#c we perform Wick ordering with respect to the covariance 
C. 

A second basic property that we use is hypercontractivity of the Gaussian path 
space measure dl~c, where C is one of the covariance functions below. If R is a 
polynomial in q0 of degree ___< n, then for p_>__2, the following hypercontractivity 
bound holds: 

IIRIIL~, ~(P-- l) n/2 ItRIIL2. (5) 

a t ? -  ¼ Ac = I ~ (x5  C(x, y ) ~ y ) ,  dx  dy. (2) 

The inverse to (1) is the transformation 

F(¢~, ~*) = exp (6C~-) :V(~, ~b*):c. (3) 

We note that corresponding identities also hold for real fields and have the 
form 

:F(~):c = e x p ( -  ½ Ac) F(~) (4) 
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Here, and elsewhere, Lp will denote path space norms. The case n = 1 reduces 
estimates on moments of the measure d#c to Gaussian type estimates on the 
second moment. More generally, for any polynomial R of degree n in ~, 

[RI 2p dl~c N (2p-- 1) "~ }l R N 2~. (6) 

See Nelson [-5] for a discussion of this bound. To establish the bound in our model, 
we view the complex field ~ = R e ~  + i I m ~  as a two-component real field (~a, ~2) 
=(Re~b, Im~)  and appeal to the general theorem. The hypercontractivity 
estimates could be replaced in our proofs by other explicit estimates on "Feynman 
graphs." 

II. Proof of the N, Estimate (Generalized G~rding Inequality) 

The goal of this section is to prove a uniform estimate on the Hitbert-Schmidt 
norm of the heat kernel for H~(~), with ~ < 1 and with ~ sufficiently small. We fix z 
and ~ in these estimates. 

Theorem ILl.  Let  fl > 0, 0 < z < 1 and let ~ > 0 be sufficiently small. Then there exists 
a constant C = C(z, (, fl) < oo (and independent of  x )  such that for  all ~ > O, 

[l exp(-- fl H~(~))Jl 2 ~ C . (7) 

It follows from (7) that -H~(tc)</3-1 log C, since the Hilbert-Schmidt norm 
dominates the operator norm of the heat kernel. This establishes Theorem III.l of 
[2]. 

We use Lemma VI.4 and Proposition VI.8 of [2] to write 

1[ exp( - flH,:(tc))t12 = ~ ,  t, 2~ I I~.:, t,  2p(t~) d#c,, ,, 2~(~). (8) 

We first establish the existence of the Lp convergence of the integrand as x--+ oe. 
Let 

~(~) _ (~) ~(K) ! ~(~) 2 ,,~,a - [At, p(~) + TrK,  a,a(~b) + = TrK~a,a(4~) ] .  (9) 

Proposition IL2. (i) Let fl > 0, 0 <= z < I, and 1 < p < oo. Then the limit 

exists in Lp(d#c~, z, ~)" 
(ii) The limiting action has the Jbrm 

s~,,,, p((/,)= f :rn~ aPffO)* + rag,* aP(,~)+ [0P(~)I z :dx 
T2 

n - - 1  

+ 5. f (a=P(¢') * + a2P(~)) dx + Y~ ak I :[ ak+ ~P('/')l z: dx 
T 2 k = 1 T 2 

n - - 1  

+ ~. ~ t?k+~P(4)(x))*Mk(X--y)t?k+~P(~(y))dxdy, (10) 
k = l  T 2 

where a k are constants independent of  Z, where 2CI k are functions independent of  Z, 
and where 1C4 k e L 1 + , ( r  z) for some e > O. Here ak, 6k, and 2C4 k depend on ~, l, and/3. 
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Pro@ We establish here that ~(~) has a representation of the form (10), and that ~ z , l , f l  

the bounds on the corresponding cutoff coefficients 6~k ~), ~ ) ,  and M~k ~) are uniform 
in x and convergent as x - ~ .  Note that Wick polynomials of the form (10) are 
Lp(dl~c,,,,~) for l < p < ~ ,  as follows by standard constructive field theory 
estimates, see Chap. 8 of [3]. The L~ convergence as K~o~ then follows by the 
convergence of Z~, of a~k ~) and of M~k ~). The proposition therefore follows by 
establishing such bounds on 6, ~, and j~t 

Using Wick's theorem, where we Wick order a(~) with respect to the 
(z-dependent) covariance Cz, z,a, 

(~) _ A ~ , ~ ( ~ ) -  ~ C m4~ 8P(4~)* + m~* 8P(4~) + 18P(4~) 12:) dx 
T 2 

/~(~) tO) +'~,t,p~ I ~ (m0ap(~)  * +mO2P(~) )  dx 
T 2 

n - 1  1 

+ E I (11) 
k = 1 • T 2 

where C~, a(x) = (Z~ * C~,z, p) (x), and where C~,  ,(x) = Z~ * C~, z, ~ * Z~(x). The second 
and third terms on the right-hand side of (11) are singutar in the limit x =  ~ ,  
because (~) C(~) t0~ O(log~), for C~,t,p(O) and ~,z.¢~ J are large. 

The singularities of the second term on the right-hand side of (11) and 
Tr(/~,~,a(4~)) cancel. The remainder is the second term on the right-hand side of 
(10). The coefficient 6k can be given in closed form as 

6 k = lim 6~k ~) , 
K--~ cO 

where 6Ck ~) is just the difference ½Tr(S(~)(0)-S(~)(0)) of the regularized Green's 
function for O between boundary conditions which are periodic and antiperiodic in 
time. The 6k is exponentially small in the length I of the circle T x. Note  that for 
boundary conditions which are periodic in time (rather than the antiperiodic 
conditions here) the cancellation between the second term in (11) and Tr( /~ ,~(~))  
would be exact, i.e., 6~k ~) = 6k = 0. These boundary conditions enter estimates on the 
super (graded) trace. The same exact cancellation occurs for free boundary 
conditions in the time (i.e., for the vacuum functional, rather than the trace state). 

The main fact about  the cancellations is that 

lira 5Tr/~,~,~(~ C (0)) ~ ' (~) 12+ ~,~,~ i :18a+~P(~b~)] z :ex  , (12) 
~:'-+ ~o k = 1 /~ .  T 2 

has the form of the last terms in (10). In other words, the cancellation of½TrK 2 in 
the sum (12) can be controlled. The cancellation of the logarithmic divergences 
takes place in such a fashion that the finite remainder terms are independent of the 
cutoff function ~(. 

i ~ ( r )  2 An explicit computation shows that the singularities of iTrK~a,~(@) are 
contained in: 

- L ~ C, ,Lt~(x-y ) a , ,Lt~(x-y) .8  P(~,,(x)) 0 P(4~(y)).dxdy," 
2 k=okS r~×r~ 

(13) 
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where 

0-(~) t~- ~, ' t --  ~, l, fl~.,v - -  y !  - -  [. Tr(S~,t,p(x-z)z~(zl-Yl)A+~,l.a(Y-W)Z~(wl-xOA- 
T 1 x T 1 

+ g~,t,a(x- Y) Z~(Yl - zO A+g~,,,a(z- w) z~(Wl-- XO A-)  dz, dw 1 . 
(14) 

The difference between (13) and ± w ~ ( ~ )  ~2 has the form of the last term in (10). 2 " t ~ , a X z ,  l ,  f l)  

Next we write P(q~(y))=P(~(x))+{P(q~(y))-P(~(x))). We extract the 
singular part of (13), 

1 "~  2 1 , - -  dx} f:lOk+2P(~(x))12:dx, (15) C~,,, p(x) a~, ~, ~(x) ~ 

the remainder having the limit of the required form. In fact the remainder has the 
form 

I ,,~2 1 
- {C~,La(x--y ) a~,t,~(x--y)-D~,,,pa(x--y)} 2 k =o M T 2 ! T 2 (1~) k 0¢) (~c) 

: ~ + 2 p ( ~ r ( x ) ) ,  ok  + 2 p ( ~ ( y ) ) :  dx dy, ( 1 6 )  

where 

r~(r )  _ (r) k (x) ~ , , , ~ -  i C~, ~, ~(x) a~,,, ~(x) dx  
T 2 

( r )  (x)  k ( r )  Let H (p) denote the Fourier transform of C,~,t.a(x-y) a,:,t,a(x-y). The Fourier 
(r) (r) transform of the expression in (16) in brackets is H ( p ) - H  (0). The function 

H(~)(p) diverges as a power of logx as x ~  oo. It follows that the subtracted integral 
is convergent, uniformly in x. The limit 

lim (H(~)(p)- n(')(O)) = nren(P) 

exists and is independent of Z. Furthermore H~en(p) is a bounded function of p, and 
hence its Fourier transform M ( x - y )  is the kernel of a bounded operator. The 
singularity of this kernel on the diagonal is improved by the subtraction. It is 
O(r- 2 +~) for some ~ > 0, rather than O(r- 2(1ogr)k). Hence M(x - y) is L 1 +~ for some 
e > 0  and (16) has the form required by the lemma. 

Let us return now to the singular expression in the bosonic action (15) which 
cancels the final term in (11). We assert that for some ~>0, and for each 
k = t, 2, ..., n -  1 there exists a constant ak independent of the cutoff Z such that as 
g----r O0, 

(~) _ ! ks C~.I, a(x) k a~,1, e(x) dx + C,,,, a(O) k -  akk. + O(x ~). (17) 

Given this bound, the sum of (16) and the final term in (11) has the x ~ o o  limit 

n--1  
E ~k ~ :lOk+lP(~))12:dx, 

k = l  T 2 

as claimed in (10). 



558 A. Jaffe and A. Lesniewski 

We illustrate the proof of (17) by a calculation which shows the important 
features of the cancellation: the reasons that the first term has a coefficient k/2, and 
the cutoff independence of the limit. We explain the case ( =  0 and use continuum 
propagators in order to clarify the algebraic aspects of the cancellation and the 
regularity of the ~c-~ oo limit. We do not discuss the term proportional to m 2 (which 
gives rise to an absolutely convergent integral) nor the term involving )?~(p~ + q~) 
-)?(P0 which can be bounded by 0(~-1 +,)). We then have 

p2 
#(~)(q) = -- 2(2rc)- 2 S "~- pq ,, 2 

[(p+q)2 +m2 ] (p2 +m z) Z~(Pl) dp+ .... 

Therefore 

~ ~ CO,)(x)k- 1 a(~,)(x) dx + C(")(O) k 

k - 1  

kp~-kp~ Z Pj 
=(2~z)-2kS II(p) ( k-1 ~21 + 1 }  dkp+ck+O(tc-~+~), (18) 

where C k is the constant arising from the suppressed m 2 term and is independent of 
)~. Also 

k 1 ( 2. 
j =  I V j  T ttL 

Using the symmetries of the integral we find that (18) is equal to 

k 1 m 2 
k-1 2 dkp+ck+O(K-l+~) • 

(2~Z)-2k'j~lp2 +m2 (pk_i~=lpj)  +rn 2 

Since the above integral converges absolutely, the claim follows. This completes 
the proof of the proposition. 

We set 

gi~,t,¢(q~)(x, y)= S~,t,t~(x- y) A + t?2P(~I,(y)) + S~,,,p(x- y) A_'(?2p(~y)) * . (19) 

We use the Sobolev space J{~(T2)=..~(TZ)OYt~(TZ), where 9f, is the Sobolev 
space of order e over T 2. We always regard K - / ~ .  t, ¢(~b) as a map Ygl/2 ~ ~'Y'~/2. (If 
K is considered as a map K : S 0 ~ Jr"o, and n > 2, then there is no p < oe for which 
K e Ip.) For instance, if we let K + denote the adjoint of K on ~Xro, then f (K + K) 2 d# c 
has a singularity on the diagonal of order (logtx - Yl)"- 1. On the other hand, as an 
operator on X1/2, 

K* = C U 2 K  + C -  1/2 

and 

(K 'K)  z d#c= ~ C1/ZK + C-  UZKC1/2K + C - ~/z K dta c 

is trace class. 
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Lemma 11.3. As an operator on 0ffl/2, K,,t, a(4})E 13 for almost all 4}, with respect to 
dbtc,a,~. Moreover, 

~ LIg~,t,a(4})-g~,a(4})tlgd~tc~,,,p~o, as ~c-->oo, (20) 

for all 1 < p < oo. 

Proof. For e > O, 

I[K [I ~ = Tr((K*K) 3/2) = Tr((K*K) ~/2 C~(~(CT,~/2K*K)) 

<__ {Tr(C~,aK*K)} 1/2 {Tr(C~,~(K,K)e)} 1/2. 

To prove that K ~ I  3 for almost all 4} it is sufficient to show that for some e>0 ,  

J1 = ~Tr(C~,aK*K) d#c,,,, ~ < 00, 

J2 = [. Tr(C,.~(K*K) 2) dpc:,,.8 < 0o. 

We separate the contributions from the two terms on the right-hand side of (19). 
The contribution to J ,  from the first term is bounded by 

C 1 / 2  J 3 = 2  ~ t,p +'(x -y )Tr( f#~ , l ,a (y -x ) )~!E) t~(y -x )dxdy ,  
T 2 x T 2 

where 
ff.~,t,a(y-x)= ~ A + S * z , p ( u - y ) ( - A  +m2)l/2 S~a, t j (u-x)  du, 

T 2 

. ~ ( 2 )  [~, X" t __ ,,z, ew -- , --  ~ c')2P(4}(Y)) * c'~P(4}(x)) dptc~ ,,,~(4}) 

c,1/2 +~e~a O(1)lxt-a+2~, Since ,~t,p ~ J <  If~,,t,a(x)l<O(1)txl '1 ,  and 

~ ( 2 ) A x ) < O ( 1 ) f  1 ] . - 2  
,,.u, = ~ -->(l°glxi) , 

for Ixl<l ,  it follows that the integral J3 exists. The contribution from the 
second term in (19) is dealt with similarly. 

The contribution to J2 from the first term in (19) is bounded by 

C 1/2 - e [ -¢  _ x 2  ) C 1 / 2 ( x 3  _ x 4  ) Tr (ff~, ~, f l (x  2 - x 3 )  ~.c, l, f l ( x 4  - x 1)) J 4 = 8  f l ,# ~,'~" t 
(T2) 4 

× x , )  . . .  

where 

3/ga~{t4?#(Xl .. . .  , X4) = I ~2P(4}(x1)) ~2P(4}(x2))* 02P(4}(x3)) 02P(4}(x4)) * d/~c,,,,e(4}) • 

Since the singularities of T£.~41!~ are logarithmic where points coincide, it follows 
that the integrand in J4 is integrable and J4 exists. 

To prove (20) we notice that by means of H61der's inequality or the 
hypercontractivity bound we reduce it to p = 3. The proof follows by estimates 
similar to the ones above with/~,~,p replaced by ~ ~(~) "r ' -~, l ,#-- . txz ,  l, fl. 

We conclude from the previous two lemmas that 

if,, ,, 3(4}) = exp( - ~ ,  t, a(4})) det 3 (I - R~, t, e(4})) (21) 

is a random variable. 
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The integrability of ff~,~, a depends crucially on properties of K =/(~,z,a(~) and 
of the determinant in (21). We set d = ~ , ~ , p  and define (following [4]) 

L = (I - K*) ( I - -  K)  - I = - K - K*  + K ' K ,  (22) 

and 

W = d + ¼ t[g iT 44 - Tr( K z K * ) -  ~ Re TrL 3 . (23) 

Proposition H.4. The function W is real and 

]F,,t, al = Idet3 ( I -  K)[ e -  ~ = [det4(I + L)] 1/2 e -  w (24) 

Proof. We derive the above identity for regularized K, after which we may pass to 
the x = ~ limit. To study the question we write S = (D + re)C, where 

75D+D75=0 .  

It is convenient, as an intermediate step, to regularize C, replacing C by C (~'). With 
these definitions, and ~zp = u + iv with u and v real functions of ~, 

K = S u +  iSTsv. 

With this representation, it is clear that T rK  = 2m Tr(Cu) is real. Here we have 
evaluated the trace over the spinor indices, using Trv~ = T r y  5 = 0. A straightfor- 
ward computation, using Tr(7,75)= 0, etc., yields reality of Tr(K 2) after taking the 
trace over the spinor indices. Therefore 

Idet3(I-K)[2 = d e t 3 ( I _ K )  d e t 3 ( I -  K*) 

= det 3 (I + L) e x p ( -  ½ T r ( K * K K * K )  + 2 Re Tr(K2K*)). 

Hence W is real. Now (24) follows as an algebraic identity. 

Proposition 11.5. (i) ff~, l, ~ e Lv(dtzc~,,, ~), for  all 1 <_ p < oo. 
(ii) Let 1 < p < ~  be given, and let tc>=~Co(p). Then there exists a constant C 

independent o f  ~. such that 

ProoJ. Let L+ and L_ be the positive and negative parts of the self-adjoint 
operator L = L + - L_. Using (22), we infer 0 < L_ < I. Also, we define 

R = e x p ( -  W) {det4(I + L+)} ~/z. (25) 

Note that 

and 

det4 (I + L) = det4 (I + L +) det 4 (I - L_) 

d e t 4 ( l -  L_) < t .  

(26) 
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It follows that 

IP~,z, al < R. (27) 

Hence, the proof of the proposition reduces to establishing: 

Proposition 11.6. For 1 < p <  0% and R defined in (25), 

R e Lp(d#c,.,,,). (28) 

Proof. To prove (28) first note that R > 0  almost everywhere. Thus 

v - - log R = W -  ½ log det• (I + L +) (29) 

is a random variable. Let v t~) be given by (29) with • replaced by ~ .  By standard 
arguments (see e.g., [5, 3]) the proof of(28) follows if two bounds hold for all x < oo. 
The first bound is 

v (~) > - O((log ~)"- 1). (30) 

The second bound asserts that on the space L2(d#c~,~,~) there exists ~ > 0 such that 

Ilv- v t'° ![L~ =< O(K- ~) • (31) 

Using the hypercontractivity bound (6), the estimate (31) yields associated Lp 
estimates on v--v (~). 

To verify (30) we notice that 

logdet4(i+L(~)) 1 (~) 2 1 (~) 3 < ~Tr(/2+) - ~Tr(/2+) , 

and this is bounded above by 

½ Tr (/3~)) 2 - ½ Tr (/J~)) 3 . 

Thus 

v (~) >= d (~) + ¼ Tr(K(~)K(~)) z -- Re Tr ((K(~)) 2 (K(~)) *) 

- ¼ Tr(L~)) 2 = d (~)- ¼ Tr(K (~) + (Kt~))*) z , (32) 

where d (~) is given by (10) with • replaced by ~ .  We use the inequality 

If f(x)* M ( x -  y) g(y)[ dx dy < ½ f IM(x)l dx {I i f(x)j2 dx + I tg(x)12 dx} (33) 

to bound the nonlocal, cutoff expressions in terms of local ones. In particular we 
k + 2  * k + 2  estimate the 8 P ( ~ )  1~8 P ( ~ )  terms in (10) by a multiple of Ic3P(~k)[ 2. Then 

standard estimates, see e.g. [3], yield 

d (~) > C ~ t~(x)l 2tn- x) d x -  O((log ~c) n- 1). (34) 

A direct computation shows that Tr((K + K*) 2) is bounded uniformly in the cutoff 
~c. This may be surprising, as K ~ I2, but it is a consequence of a cancellation of 
singularities. This cancellation is not related to supersymmetry as it also holds in 
more general models; the property was discovered in the Yukawa model by Seiler, 
see Appendix A of I-4]. We give here a simple argument in the case ( =  0. The claim 
then follows for (4: 0, as the leading asymptotics for the Green's functions S~ in the 
vicinity of the diagonal are independent of z. 
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To study the question we use the representation of D, S, and K used in the proof 
of Proposition II.4. Namely, 

K = Su + iS75v = DCu + iDysCv + regular. 

Here the "regular" terms come from m in S =(D + m) C. This decomposition yields 
K = K~.g + K,og, where K~og has a logarithmic singularity on the diagonal (for 
~=0). Any term in ( K + K * )  2 has a trace which is bounded as x ,~ '~oo.  

Now we compute 

Tr K2,.g = Tr((DCu) 2 + (DCv)Z), 

since the cross terms give 

i Tr(DCuD?sCv + DTsCvDCu ) = O, 

by cyclicity of the trace and {D, 75} = 0. Likewise, using D*=  --D, we have 

2 Tr (Ksi~g) = _ Tr(K~in,K*n, ) . 

Thus 

Tr((K~,g + K*,g) z) = 0 (35) 

and 

ITr((K +K*)Z)I 

is bounded. We now take the g ' ~  oo limit, which gives a uniform bound in K. 
Thus 

[Tr(K (~) + K(~)*)2 [ __< C(~ [ ~(x)[ 2("- 2) dx + 1), (36) 

which inserted in (32), (34) yields (30) as desired. 
This proves (30). 

To prove (31) we use the inequality 

3 

I logdet4(I+A+)-logdet4(I+B+)[<= NA-BI[4 ~ Ci[]AI[~ J[BI] 3- j  (37) 
j = 0  

valid for self-adjoint A, B ~ 14 (see [4]). Using (36) with A = L, B = L ¢~) we find that 

Iv-- v~) I < l d -  d~)[  + ¼ IH K I1 44- II K ~)11 441 

+ [Tr(KZK, _ (KOO)z (K~)),)[ + l jTr(L 3 _ (/3~))3)1 
3 

+ HL--Lt")[14 E CilILIIJ4 ll/3~)ll~-J. (38) 
d=O 

and the bound (31) follows by standard Feynman graph estimates (see Chap. 8 of 
[3]). This completes the proof of Proposition II.5 (i). The proof of (ii) is similar. The 
restriction on ~ is explained in Sect. VI.2 of [2]. 

The arguments of this section also apply to the case where we replaced the pair 
of covariances (C~a,~, S~,z,p) by (Cz, p, Sl, p) or (Cl, St). Denoting the corresponding 
heat kernel densities by Ft,~(4)) and Fz(~) we obtain the following: 

Proposition II.7. (i) Ft,, e Lp(d#c~.~), for 1 <= p < oo. 
(ii) F t ~ Lp(d#c), for 1 <= p < oo. 
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Remark. The path  integral representat ion of the index (II.19) of [2] is an 
immediate  consequence of (i), the corresponding integrability and convergence of 
F(~) and (II.18) of [2]. I , ~ ,  

III. Convergence of the Heat Kernel 

In  this section we prove the following 

Theorem III.1. Let fl > O. Then 

{I exp ( -- fill(x)) -- exp ( - flH(K'))[l 2 = o(1), (39) 

as Kt--"~K or K~K'-'q-~. 

This establishes no rm continuity and convergence of the heat  kernels 
exp( - f i l l (g ) )  as functions of x, and hence yields the proof  of Theorem III.2 of [2], 
since IITtl < IITIt2 for TeI z .  To prove (39) we notice that  

[1 e x p ( -  fin(to)) - exp( - fin(to'))I[ 22 = Tr(exp( - 2fin(x)) 

+ exp ( -  2fln(rc')) - 2 exp ( - fin(x)) exp ( - flH(K'))), 

which can be represented as 

~t, :a f (det (I -/~}~)a(~)) e x p ( -  Al,~)2a( q b)) 

+ det(I  -/~l,~2)a(~)) e x p ( -  A}~)a(~b)) 

- 2 det (I-/£[~i}')(q~)) e x p ( -  AI,~3')(~)) d~c,,~.(~). (40) 

Here 

/£[~ ' ) (~)  (x, y) = gf,~)zp(~) (x, y) Z[o, BI(Y0) +/~[~2)f(&) (x, y) Zrf, 2~j(Yo), (41) 

where Zta, bl is the characteristic function of [a, b], and 

A~,~')(4)) = I Ira(/) aP(q~,~)* + toO* OP(O,~) + [8P((b~)[ 2] dx 
[ 0 , f l ]  x T 1 

+ ~ [me  OP(~,)* + me,* OP(O~,) + iOP(O~,)! 2] dx.  (42) 
[fl, 2f l ]  x T 1 

Let 

/7"i, p(~) = det3 (I - /< l ,  a(~)) exp ( -  ~ t ,  a(~)), 

and let 

/~},~(~) = det(I  --/(},~(~)) exp( - A[~(~)) - det3 (1 -/£1~p)(~)) exp( - ~ ( ~ ) ) .  

Similarly, we write 

ff},~')(~) = det (I - / ( [ ~ ' ) ( ~ ) )  exp ( -  A[~')(~))  

- det3 (I - / ~ [ ~ ' ) ( ~ ) )  exp( - ~ ' ) ( ~ ) ) .  

The convergence s tatement  (39) for x, ~:'~ ~ is an immediate  consequence of(40), a 
2e argument ,  and the following 
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L e m m a  111.2. (i) Jlff l, z#--ff~,)z#JiL1 =o( ! ) ,  as K ~ o e .  
(ii) llffl.2p--P~%')llL,=o(l), as x , x  ~oo .  

Proof. We give a detailed proof of (i). The proof of (ii) is similar, and we do not 
present it. The basic strategy of our bound  is to study a well-behaved interpolation 
between Pl2# and P~)zp. Set l~(s)=sK2, p (~ )+(1 - s )K l~ (~ ) ,  ~ ( s ) = s ~ t # ( ~ )  
+ ( 1 - s )  ~ ( ~ ) ,  and P('s)=det3(I-K2(s))ex{~(-~(s)).  Then using 

d log deta ( I -  = - (I - / ( (s))  l), g(s)) Tr(gT(s) g(s)  2 

we have 
1 p,,:)-Pl::)= 

1 1 
= - S ~'(s)  P(s) ds - ~ Tr (/~'(s) ~(s) 2 (1 - ~(s))-  1) p(g) ds 

0 0 
==-I 1 + I  z . 

First we estimate ~ IIll d#. By means of methods explained in Sect. II, we can prove 
that 

sup ttP(s)tIL < sup I[R(s)ttL~NC (43) 
0<_s51 O_<s_<l 

uniformly in to, where the meaning of/2(s) is clear. Since ~'(s)  = ~t,p(~) - o~,~(#), it 
follows from (43) that  

We infer from Proposit ion 11.2, that this is o(1) as x--* oe. To prove that ~ 1121 dl~ 
=o(1) as x ~ o o  we notice that 

ITr (/('(s) K(s) z ( I -  g(s))-  1) F(s)[ 
< I[ K'(s)[[a I[/~(s) }[ 32 tl (I--/((s))- I det3 ( I - / ( ( s ) )  [[ e x p ( -  ~(s)) .  

Now we use I[ T[[ = N T*TI[ t/z and (22) to obtain 

[I (I - g(s))-  1 det 3 ( I -  K(s)) II exp ( -  ~(s)) 

= [[(I + L(s))-I det4(I + L(s))[[ 1/2 e x p ( -  I7V(s)), 

with self-explanatory notation. This can be bounded by 

C{det,(I  + L(s) +)} 1/2 e x p ( -  f'V(s)) =- CR(s), 

and thus 

f [121 d#CL3 ~ C{I I[ Kl, fl(~)) -- I ~ ( ~ ) H  32 d#c,, #(1~)} 1]2 

x sup {$11g(s)ll~d#c,,~(~)} TM sup ttR(s)I[L4=o(1), 
0 5 s < l  0~s--<l 

as a consequence of Lemma II.3 and (43). This completes the proof  of the lemma 
and the theorem. 
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IV. Continuity of the Heat Kernel 

In this subsection we prove strong continuity at fl = 0 of the semigroup 

T(fl)= lira exp(-flH(~:)). 

This the content of Theorem II1.3 of [2]. Since T(fl) is a semigroup, it is sufficient to 
establish weak continuity. Furthermore, since H(x)= Q(rc) 2 >0,  it follows that 
T(fl) < I  and it is sufficient to show 

lira (f2, (T(fl)- I) f2'> = 0, (44) 
#'~0 

for f2, f2' vectors in a dense subspace of 3/f. In fact, it is sufficient to choose £2 of the 
form generated by a polynomial in fields applied to the Fock ground state, since 
linear combinations of such vectors are dense in W. 

We use Kl(~) defined in Sect. II for the z-independent case ff = 0, and with the 
index fi suppressed (no periodicity in time). Let Ft(q~) be the corresponding heat 
kernel density. We study a series of estimates whose aim is to reduce (44) to simple 
Feynman graph estimates and Proposition II.6. We express inner products of the 
form (f2, T(fl)O'> as a bosonic function-space integral 

(f2, T(fl)O'> = I Ft(~, f, g, h) dpc,(~), (45) 

where 

Ft(~, f, g, h) = Ft(~ ) (I - K,(~))- 1S,hj ~*  (fj), (46) 

and where 4~ denotes possible complex conjugation. The identity (45) follows from 
the finite cutoff Feynman-Kac formula (Proposition VI.8 of [2]), Lemma I1.7 and 
the following: 

PropositionlV.1. Let fjE~Y('_I(FxxT1), gj, h jeJ f_ l /2(~x  T1). Then for all 
l ~ p < o %  

Fz(~, f, g, 11) e Lp(Sf'(~ x T1), dpc,). (47) 

Remark. We already know that Fz(q))eLp, 1 = p <  oo, as a consequence of 
Proposition II.8 (ii). However, we cannot use H61der's inequality. The ( I - K ) - 1  
factors in (46), which arise from the fermion integration, are not Lp(d#c ) by 
themselves. These factors must be combined with det 3 ( I - K l )  to produce an Lp, 
Fredholm minor, as in the proof of Lemma III.2. In order to simplify notation in 
the remainder of the paper, we sometimes write det 3 or det 4 separately from 
factors of ( I - K ) - 1  or ( / - L ) -  1 or other related operators which compose the 
corresponding minor. We do not believe this should cause confusion to the reader. 

Proof. Since ~(fj)eLp(d#c ) for all 1 _<p< ~ ,  we can use H61der's inequality to 
reduce the proposition to the case 

) ( __~1 gJ' j=/~l ( -1Slhj)/\k~.o~Lp" Ft(q~, g, h) = Ft(q~ I - K,(q~)) (48) j= 
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For K ~ Iv, the mapping z ~detp(1 - zK) Ak ( I -  zK)-  1 is an entire, operator-valued 
function ofz. In our case K ~ I3(W1/2), so (48) is well defined for gi, hj ~ ~fl/2. Using 
(25) we have 

lFt( ~,g,h)l < Rz(q~) { det4((1- L-)} l/2 ](j=~ C~/2gj, j~  1 ( I -  Kl(q~))- l Szhj) Akjc , 2 • 

(49) 

We now use the identity for operator norms, 

11 Tlljcl.  = llCi- 1/*TC~/411~.o, 

and we compute the adjoint of K on 3C1/2. Using the Schwarz inequality on ill/z, 
for g, h ~ Xlt2, and 11C1/2hlt~1/2 = l[hlljc~/~, we have 

i(C~/Zg, TS~h)~c~/j < llgll~.~ II TSzhllw.2 < llgllw,. II TS,C[- i/zll~,,~ llhll~.~. 
Note that C 1 and S l commute, so 

Ii S l C l -  1/2 H..~1/2: II S I C [ -  1/2 [l .,~fo : 1 ,  

and therefore 

[(C]/2g, TS~h)~ci/=t < [I Tltw~/= [}gltw~:~ [}hllw,z. (50) 

For  T we choose ( I - K )  -1, and we write IlT[ljc,:~ as (IIT*TIIw~/~) 1/2 
= lJ (I + L ) -  ~ 1/2 Applying the bound (50) on the wedge product space/~:3/f~/2, we -,'¢'1/2" 
bound (49) by 

R~(~) ~ ( I - L _ )  -1 d e t , ( l - L _ )  Y[ [Igjl[w_.= Ilhjll~_ 
Ak:¢1/2 j = 1. ~/z 

k 

<=Rt(q~) ek [I [lgjll~_ ~. llhj!l~c_~.. (51) 
j = l  

The final bound is a consequence of the following inequality, Lemma 4.2 of [6]: 

f k  p -11)  llAk(I - T) -1 detv( I -  T)II <exp  ~ j~l j-~' (52) 

valid for T~ Ip with 0 < T < I. 
We now study the difference between the operator defining the right side of(46) 

and the identity, namely 

Y = FzA* ( I -  K) - I  __ [ ,  (53) 

where Fl=-Ft(q~). This operator acts on the space A*Jf~/z (for fixed ~). Write 
Y = YI + I72, where 

I/1 = ( F , -  1)1 (54) 

and 

Y2 = Fl(/~(I -- K)-  I _ I). (55) 
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For  0_< s < 1 we set 

where 

and 

Rl(s) = exp(--  W(s)) {det4(I + L(s) +)} 1/2 

L(s) = -- s K - -  sK* + s 2 K * K ,  

W(s) = s d  + ¼ s 4 II K [[ 4 4 - s a Re Tr (K2K *) - -~ Tr L(s) 3 . 

(56) 

(57) 

(58) 

The bound  on J1 is 
1 

]Jlt < ]all S Rz(s) ds,  (61) 
o 

which is the first term in (59). 
Let us now turn to J2. By H61der's inequality on the Schatten spaces Ip, 

[ r r ( K 3 ( I - s K )  -1 de t3 ( I - sK) ) ]  ~ [JK][3 a l l (I--sK) -1 d e t a ( I - s K ) l [ ,  (62) 

and therefore using (60) and (26), 

1 
[Y2 -< IIK31133 ~ H(I-  sK) -1 d e t 3 ( I -  sK)lJ s2 e x p ( -  s~C) ds 

0 
1 

= IlK I[ 33 [ [](I + L(s) ) - I  det4(i  + L(s))l[ 1/2 e x p ( -  W(s)) ds 
0 
1 

[IKII ~ ~ [l(I-- L(s )_) -  1 det4(I-L(s)_) t l  1/2 Rt(s ) ds 
0 

1 
e 11/12 l[ K[[ 3 a ~ R~(s) ds,  (63) 

0 

We now give separate estimates on Y1 and Y2. 

Lemma IV.3. With the above definitions, 
1 

II I(1 [I < {[dl  + e II K i133} ~ R,(s) ds. (59) 
0 

Here I1" II denotes the operator norm on/\k:.u1/2. 

Proof. We use an interpolation argument.  Let s~ [0 ,1 ]  and consider 
d e t 3 ( I - s K )  e x p ( - s d ) .  We follow the proof  of (27) to obtain the bound  

Idet3 ( 1 -  sK)] e x p ( -  s d )  = [de t4 ( l+  L(s))] 1/2 e -  w(s) < Rz(s), (60) 

where Rt(s ) is defined (56). For  each s, we remark below that  Rt(s) is Lp(d#c,) for 
p < oo. Thus it is natural  to write 

l d  
Y, -- F , -  1 = ! dss {deta ( I -  sK) e x p ( -  sd )}  ds 

1 
= - d S det 3 ( I -  sK)  exp ( - s d )  ds 

0 
1 

- ~ Tr (K a(i - s K ) -  1 det 3 (I - sK)) s 2 exp ( - s d )  ds 
0 

= J l + J 2 .  
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where in the last line we have used (52) with k = 1, p = 4. The lemma follows from 
(61) and (63). 

Lemma IV.4. The following estimate holds on/kk:U~fz: 

k 

ttY2tl <ek2kR~ ~ IlKII'~. (64) 
m = l  

Proof. We write 

Y2=Fz ~ D ~I/ ' , . . .AD ~k, (65) 
e :~0  

~j~{O, 1} 

where D = ( I -  K) -  1 K. Using (27), 

II Y211 <R, E II{det,(I-L-)} 1/2D~ A ... AD'klt 

k 

< 2kR, Z 11 {det4(I - Z_)} 1/2 AmD ]13. (66) 
m = l  

Note that D * D = K * ( I + L ) - I K < K * ( I - L _ ) - ~ K .  We then have 

t l {det4(I - L_)} 1/2 A,,DI [ 3 = Tr { det,  (I - L_)} a/2 (A,,(D.D)3/z) 

< IIgll3"lldet4(l-Z_)l/2Am(I-L_)-~/ellS< I lgl l  ] " e  3"  . (67) 

The estimates (66) and (67) yield (64). 

Lemma IV.5. There exist tl > 0 and C < ~ such that for fl small, the following two 
bounds holds 

I t[Kt(~)[[~ d#c, ~ Cfl", (68) 

and 

}ldt(~)IIL2< Cfl". (69) 

Proof. We use the Schwarz inequality to relate the 13 norm to I z and 14 norms. 
Since Kq~I2, we transfer a small power of C from the 14 to the Iz norm. For 5>0, 

{t Kz(~)tl ] < {Tr(C~Kt(~)* Kt(~)) } 1/2 {Tr (C~-"(Kt(~)* K~(~))2)} ,/2 

After integration over dltc, we then obtain by another Schwarz inequality 

III K~(cb)II ~ d#c, < {I Tr (C~Kt(~)* K,(~)) disc,} '/2 

× {J" Tr(Cl-'(K,(~)* K,(~)) =) d#c~} ,/z. (70) 

We claim that there exists ~/> 0 such that both factors on the right-hand side of (70) 
are O(fl") as fl-+0. In fact, 

I Tr (C~K,(~)* K,(~)) d#c, 

= f ,2C~/2+~(x-y) C~/2(x-y)B2(x-y)dxdy,  (71) 
([0,/~1 x T ) 

where 

B2(x-- Y) = I O2 P( ~(x)) * Oz P( ~(Y)) dltc~ (72) 
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has only logarithmicc singularities at x = y. Since 

G 1/2+~(x-y) < O(Ix[-: +2~)< O(lxol- ~j2+~ix:l- +9, 

for txl < 1, it follows that (71) is O(fl") as fl--->0. 
To bound 

Tr(Ct-~(K,(q~)*Kt(q?))2)d#c,, 

we write it as a sum of terms of the form 

f ~(x)B4(x)d'x,  
([0, t] × T1) 4 

where 

569 

(73) 

(74) 

II~-II~p= liftl3,,311gllL,,3 = II(CY2)( • 3p 1/2-~ )HL,p/~ll(Ct )(')llL~/~- 

Using (73) we find that 

i i (Cy=- 9 ( ,  )ii L,,,~ <= O(f13/ap-  1/2 - e ) .  

Thus for p < 3/(2 + e) 

]I ~ It L~ < O(fl 3/p- 2-~) , (76) 

for fi small. (The constants depend on I.) 
The second factor II ~4  IlL, in (74) is the integral of a product of integral kernels 

C,(x , -x , . )  with logarithmic singularities on the diagonal. Extracting the volume 
dependent factor we obtain thus 

11~4 IlL --< C fl4(log fl) ~ , 

where N is some fixed number (which grows with the degree n of the 
superpotentiat), and since we fix q, we infer that for ~/> 0 sufficiently small, 

ll.~'4 t[.t" ~ O(fl"), 

for fl small. 
These estimates establish (68). The proof of (69) is similar. 

and so 

~ ( X )  -~- C 1/2 - e ( x  1 - -  x 2 ) C l / 2 ( x 2  - -  x 3 ) C l / 2 ( x 3  - x 4 ) C l / 2 ( x 4  - x t )  , 

where xj e [0, t ]  x T 1 for j = 1, 2, 3, 4, and where B4(x ) has logarithmic singularities 
at points of coincidence. Using H61der's inequality we bound (74) by 

C {j l~(x)Fd4x} u~'{f IB4(x)lqd*x} ~/q, (75) 

where we choose 1 < p < 3/(2 + ~), and correspondingly q = p / ~ -  1)G (3/(1 -e ) ,  ~) .  
The integral ]]~llgp can be bounded as follows. We set f(x)=-](C~/2)(x)l p and 

g(x)= I(C~/Z-~)(x)F. By H61der's inequality, 

I[~ll~,, ~ ~ I(f  * f * f ) (x)g(- -  x)ldx < it f * f * f H L, IIgHL4/3" 

Using Young's inequality 

tif  * f * fi[L, < ][f[iL./~iif * f iir~ < ]l f t[~,/, 
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Lemma IV.6. Let fl be sufficiently small. There is a constant C independent of  fl such 
that 

sup ~ Rl(s)4d#c, < C. (77) 
O=<s<l 

The proof of this lemma is simitar to the proof of Proposition II.6. The 
uniformity in fl follows easily from the fact that the Feynman graphs generated by 
the terms in (37) are O(fl~). This can be established by the method used in the proof 
of Lemma IV.5. 

These estimates now lead to the proof of continuity of T(fl) at fl = 0. Returning 
to the definitions (45) and (50)-(52), we need only estimate 

and to show it tends to zero with ft. Write Y= Y1 -t- Y2, and let us first estimate the 
contribution from Y1- Apply the Schwarz inequality to the d#c, integral of (56) 
squared in order to split the R factors from the remaining terms involving K and 
~¢. These terms can now be estimated by O(fl¢), t / >  0, as follows. We study 

S { I d I + 4 K I I 3  4 3} d#c,. (79) 

Each term in (79) can be estimated using Lemma IV.5 and is bounded by O(fl ") as 
fl-o0. A similar estimate holds for L v norms of d .  Thus 

1 

f I1 Y1 II 2d#c, ~ O(fl 't') f (I R,(s)*d#c,) 1/*ds <= O(fl¢), (80) 
0 

with the last inequality a consequence of Lemma IV.6. 
In a similar fashion, we bound the Y2 contribution by 

k 
O(l)llR, IIf, Z 2m 1/2 {; I{K, II3 d,uc,} • 

m = l  

By H61der's inequality (applied to the m= 1 term) and the hypercontractivity 
bound (5) (applied to the terms with m > 2) we can reduce the above sum to a form 
which can be estimated by means of (68). This yields 

I [1Y2112dtzc, < 0(~')l] R, [[ zr 4 < O(fl'r). 

The continuity of T(fl) then follows since (78) vanishes as fi~0. This completes the 
proof of (44). 

V. Convergence of Q(r) as a Form 

In this section we establish norm convergence of Q(~:) regularized by the heat 
kernel. The following theorem yields Theorem Ili.4 of [2]. The complete definition 
of Q0c) is given in (ILl 1) of [2]. We let 

6Q = 6Q(~:, ~') = (Q(~)- Q(~'))-, (81) 

where - denotes the operator closure. 
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Theorem V.I, (i)Let f l>0  and to, x' < or. Then 

Range(exp(-  flH(~c))) ¢ Domain(f  Q). 

(ii) As x , t ¢ ' ~  and as Ix-~c'l-->0, 

I]exp( - flH(rc'))~Q exp(-/~n(tc)) II ~ = o(1). (82) 

The remainder of this section is devoted to the proof of this theorem. We 
establish convergence in Theorem V.1 as ~c, ~c'~ ~ .  The proof of continuity as 
x ' ~ x  is similar, and we do not present details. 

Let us introduce 
i 

w(x) = - ~ (OP(~o~(x))- 0P(~0~,(x))), (83) 

where x ~ T 1. Then fiQ has the representation on the domain 9o  of vectors in Fock 
space with C ° wave functions and a finite number of particles: 

gO = ~T~ [lp I(X)W(X) + ~p2(X)W(X)* + ~2(X)W(X)* + ~ l(x)w(x)]dx, (84) 

Proof of  Theorem V.I. (i) Since x,~c'< 0% the difference operator 6Q is a 
polynomial in a finite number of bosonic and fermionic degrees of freedom. These 
are the degrees of freedom of the Hilbert space ~ discussed in I-2, following 
(VI.8)]. The Hamiltonian H(tc) has the representation H(x) = H <= ® I  + I ® H g ,  and 
it follows that 6Q acts on oef=<, namely 6Q=fQ<=®I. In [7] it is shown that 
Range(exp(-/~H=<)) is contained in the Schwartz subspace of ~,ut°. Hence these 
vectors lie in the domain of 6Q. 

(ii) By part (i), the operator 6Qexp(-[~H(x)) is defined. We estimate the 
Hilbert-Schmidt norm of exp(-/~H(~c'))bQ exp(-/~H(x)) uniformly in x, to'. Re- 
placing/~ by/~/2, we can write 

T i exp ( - flHOc')/2)6Q exp ( - flH(x)/2)11 z 

= Tr(exp(-- fiH(~:)/2)fQ exp( - flH(K'))6Q exp( - fill(x)~2)) 

= Tr ~ e x p ( -  flH(x))tp x(X)W(X) e x p ( -  flH(x'))~z(y)w(y)*dxdy 
8 

+ 7  similar terms = ~ l j ,  (85) 
j = l  

where we have used the fact that only expectations with an equal number of ~p and 
tb factors are non-zero. Thus only eight of the sixteen pairs of factors from 
expanding the product 6Q exp(-flH(x'))6Q according to (84) will contribute. We 
give the details of how to bound 11 above, the corresponding estimates on the other 
seven similar terms being similar. 

We use the functional integral representation for 11 to obtain 

I1 = ~,. 2p I ((I - KI,~2;)(~))- 181, 2fl)12( X, Y) det3 (I --/(}~';)(q~)) 

x exp ( -- s~}~£}~)(q~))W(x) W(y)*d#c,, ~a(rb)dx 1 dy 1, (86) 

where the notation follows Sect. III. For  convenience, here we let x =(fl, Xx) and 

y = (0, Y0. Also, W(x) = - ~ (OP(<b~(x))- ~3P(cb~.(x))) is the Euclidean counterpart 
to (83). z, 
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We now prove that 11 converges to zero as x , x ' ~  ~ .  We use the smoothing 
operator 

# -~ = # ~  = ( _ d2/dx~ + m e) -~/2 (87) 

and set C = C~, 2p. Let 11 • IlL, denote the Lp norm on path space with respect to d#c. 

Lemma V.2. For any g > 0, 

G - II ~-~WI122 = o(1),  (88) 

as K, x'-+ ~ .  

Proof. Since the only singularities in I[ W[!L2 are logarithmic, smoothing by #-~ 
removes them. The convergence of a to zero as ~:, ~c'--+ oo then follows by standard 
constructive field theory estimates. Explicitly, let 

H(x) = ~ W(x)* W(O)dl~c. (89) 

Then if #-~ has kernel #- '(u, v), for u, v ~ T I, 

f (u  - v) = I#-~(u, v)] < const (1 + [u -- v1-1 + ~). 

Thus for 0 < ( p - l )  sufficiently small, #-~(u,O)~Lv(Tl). Since the integral is 
translation invariant, 

H#-~WI[~ < ~ f(u)f(v)H(O, u-v )dudv .  

Using H61der's inequality, with p -  l + q-  1 = 1, p as above yields 

]l/~ -~ WILL2 < 2  bl f 1[ ~/v(I H(O, u)qdu)1/q] T II1/q, (90) 

where IT ~ ] denotes the space volume. The function H(0, u) is a sum of terms of the 
form 

O( l )C~)(u) ~C ~'~(u) k~ 

with k 1 + k2 = n -  1, where k 2 > 1, and where 

c~'~(u) = ( z ~ -  z~,) * c • (z~-z~,)(o, u). 

Here C~)~ Lq for all q < 0% with [[ C ~)t[L.(T~) < c(q), independent of ~c. Also, given 
q<  o% for K'>~c, there exists 6 > 0  such that 

li C~'~(  ")it~.~r,~ < 0 ( ~ -  ~). 

It follows that (88) can be bounded by O(x-a), and the proof of the lemma is 
complete. 

We study explicitly the integrand G(x, y) in the integral (86) over xi, Yl, namely 

G(x, y) = E ~ ((I-- K) -  *S)I 2(x, y) det3 (I - K)e-°~W(x)W(y)*d#c. (91) 

Here we suppress l, r,  K, tc', ,  etc. We isolate the singularity of G(x,y) in the 
diagonal, and we show that G(x, y) is integrable over xl, Yl as long as f l+0.  In fact, 
we show that if f l=0, then I G(x,y)dy, is singular. 

The isolation of the singular part of G(x, y) can be seen from perturbation 
theory. In other words, we expand 

(I-- K)-  1S = S + KS + K ( I -  K)-  1KS, (92) 
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and insert this into (91). The first two terms in (92) yield contributions to G(x, y) 
which are singular on the diagonal, but which are integrable in xl - Y l  as long as 
fl + 0. The final term in (92) yields a contribution to G(x, y) which exists on the 
diagonal, and hence which is integrable also for fl = 0. Thus the first terms in (92) 
yield the precise singularity as f l ~ 0  of ]JfQexp(-flH(x))lJ2 for K,x '~oo,  as 
opposed to [[exp(-flH(•'))6Qexp(-flH(K))[t 2, which is bounded as f l~0,  uni- 
formly in x, x'. 

Let Jk  denote the contribution of the kth term in (92) to I1, multiplied by ~ -  1. 
Since i < ~_< 1 + O(e-~), it is sufficient to bound Jk. First, we study J1 ,  

J l  = ~ (~ det3 ( I -  K)e- ~(#-~/2 W)(x)(#-~/2 W)(y),dflc)(~,S)(x _ y)dxldyl . (93) 

We bound 0~¢1 using H61der's inequality, 

IJ~l <lZ~l II#~S(/L .)tlL~(T,)H#~/zwtl~,Hdet3(I--K)e-~llL2. (94) 

We bound this product as follows. The singularity of (#"S)(x) on the diagonal is 
lxl-(1 +.) which is not L 1. However, for fl:t:O, (#~S)(fl,.) is pointwise bounded and 
continuous, hence LI(T~). Secondly, using hypercontractivity (5), and Lemma V.2, 

11#./2 WIIL~ < 3~, - t)/2 II#e/2WllL2 = O(1). 

Finally, by Lemma III.1 (ii) the last factor in (94) is 0(1) as x, ~c'~ oo. Combining 
these estimates we obtain 

[Jl  [ < o(1), (95) 

provided fl > 0. 
Next we study J2- The integral J 2  is a sum of terms similar to (93) but with the 

factor (p"S)(x-y) in the integrand replaced by a factor of the form 

v + (x, y) = I (#~/2S)( x - z)A + 02P(O(z))(#~/2S)(z- y)dz 

or v_ with A_ 32P(O(z))* replacing A + 82P(~(z)). We suppress the regularization 
functions in v +_, as they complicate the notation and do not change the uniform 
character of our estimates. As in the bound (94) we then have by H61der's 
inequality 

lJzl < lZlt IllvllJ 1l#~/2Wll~, [Idet3 (I--K)e-~[IL, ,  

where 

lllvlll ~ I(ll v+(x, y)ll J d x l d y l .  

By hypercontractivity, we can bound the L 4 norms by a constant times the L 2 
norm of v + and v_. Thus 

tllvlll<c°nst ( 1 + r, $× rl \ r ( 25× r~ II°glz-  z'll"- l l z -  xl-  l -~lz-  Yl- l -" 

x [z '-  x[-1-~]z'-y]-1-'dZzd2z')l/Z dxldyl) .  (96) 

This integral over dZzdZz ' is bounded if x 4: y (i.e. for fl > 0). Hence IIIvlll _-< const and 
as in the bound of J l  we conclude from (96) that for f l>0,  

[J21<o(1), as x , x ' ~ o o .  (97) 
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Finally, we bound J3- In this case the condition f l>0  is unnecessary. We 
suppress convolutions with the regularization functions and write 

J 3  = ~ (~ e x p ( -  ~¢)(~ g(u; x, cb) det 3 ( I -  K)((I - K ) -  1S)(u, z)h(z; y, eb)dudz) 

x (l~-'W)(x)(#-~W)(y)*d#c(~))dx~dYl + 3 similar terms, 

where in this term 

and 

g(u; x, ~ ) =  (#~S)(x-  u)A + 02P(q)(u)), 

(98) 

(99) 

h(z; y, q)) = A + OzP(:b(z))(Iz"S)(z-- y). (100) 

In the other terms A_ a2P~(z) * may replace A + O2p. Using the technique explained 
in Sect. IV to bound the Fredholm minor, we obtain the bound on part of the 
integrand in (98), 

l exp ( - d )  I g(u; x, qO det 3 (I - K) ((I - K ) -  * S) (u, z)h(z; y, q))dudzl 

< O(1)R(~)fig(. ; x, ¢~)f[~_ i/2ffh(.; y, q))If:c_,2. (101) 

We use (101) to bound J3.  Using H61der's inequality and the hypercontractivity 
estimate we obtain 

IJal < 0(1)1[ #-~WN~211R(~)IIL2{J" IIg(" ; 0, ~)11}_ 1/2d~c(~)} ~/2 

x {I IIh('; 0, cb)ll},:fl#c(eI))}~/z, (•02) 

which, because of Lemma V.2, is o(1) as to, tc'-+oo, provided that 

f I!g( "; 0, 4~)I{~ - l:=d#c(~) < O(1), 
(•03) 

I II h( .; O, ~)II ~_ l/~d#c(cb) <= O(1). 

Let us prove the first of the inequalities (•03) (the proof of the second one is 
identical). The left-hand side of (•03) can be bounded by 

O(1) f C1/4( u - u')C1/4( u - u")lA + T( - u')* T( - u")A + IJtO(u ' - u")dudu'du" ,(104) 

where T - #"S has kernel T ( u -  v) and 

~(u'- u") = f ~ 2 P ( q ' ( u ' ) ) * a 2 e ( ~ ( u " ) ) c l ~ d ~ )  . 

The smoothing kernels C 1/4 arise from the X _  ~/2 norm. Apply H61der's inequality 
to (104), and use the fact that ) f f (u ' -u")  has only logarithmic singularities on the 
diagonal; hence X4feL v for all p <  or. Thus (104) is bounded by 

O(1) {I (C1/4( u + u')C*/4( u + u")) q] T(u')* T(u")] q} 1/"dudu'du" 11 ~ [Ip (105) 

with 0 < q - 1  chosen sufficiently small and p - 1 +  q - l =  1. Let k(u)= 1Z(u)l ~ and 
f ( u ) =  ]C1/4(u)[ q. Then (105) is bounded by a constant times 

Itf* klt~/q<(llfH=llkH=,) 2/'~, 

where e -  * + 0(- * = 3/2. Here we use Young's inequality. Note that the singularity 
of f is bounded by ( L ~  3q/2 1 3q 

If(u)l<O- \lulfl ~Z~,, -~ > --~, 
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and that  of  k is b o u n d e d  by 

]k(u)l~O(l '] `'+",q 1 (1 + t ) q  

Thus  choos ing  e > 0 small, q close to 1, we take c~, e' such that  e -  1 + e , -  1 = 3/2. This 
is possible as 

3q ( l + e ) q  5 5 ( q - 1 ) + 2 e q  

4 + 2 - 4  -~ 4 

can be chosen close to 5/4 and hence less than  3/2. 
It  follows that  I J31 _-< o0), and this completes the b o u n d  on (91) and the p roo f  of  

Theorem V.1. 
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