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Abstract. The purpose of this paper is to construct non-perturbative deformation 
quantizations of the algebras of smooth functions on Poisson supermanifolds. For  
the examples U 111 and C ml", algebras of super Toeplitz operators are defined with 
respect to certain Hilbert spaces of superholomorphic functions. Generators and 
relations for these algebras are given. The algebras can be thought of as algebras of 
"quantized functions," and deformation conditions are proven which demonstrate 
the recovery of the super Poisson structures in a semi-classical limit. 

I. Introduction 

I.A. Deformation quantization is a natural scheme for constructing non-com- 
mutative spaces, in the sense of [10], as deformations of Poisson manifolds. In this 
framework, the algebra of functions on a manifold is replaced by a family of 
non-commuting algebras of "quantized functions," which are indexed by a para- 
meter ("Planck's constant"). The guiding principle of the deformation quantization 
construction is that the classical algebra of functions is obtained from the quan- 
tized algebras in the limit as Planck's constant goes to zero, with a first order 
correction determined by the Poisson structure on the manifold. This scheme was 
originally proposed in the context of a formal power series in the deformation 
parameter [2, 4], but has recently been extended to the non-perturbative setup (see 
[18, 19], and references therein). 

This non-perturbative scheme was applied to the Poincar6 disc in [12], with an 
approach using Toeplitz operators as quantization maps based on the ideas of 
[3-6]  (Toeplitz operators were also used to quantize the sphere in [20]). The 
techniques of [12] have been applied to compact Riemann surfaces in [13], to the 
n-dimensional complex vector space in [9], to a two-parameter deformation of the 
unit disc [14], and to the four large classes of Cartan domains in [8]. The basic 
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ingredients for the procedure were a group of automorphisms, a symplectic form 
invariant under the action of the group, and a perturbation of the invariant 
measure depending upon a parameter related to Planck's constant. The Toeplitz 
operators were defined with respect to the Hilbert spaces of holomorphic functions 
which were square integrable in the perturbed measures. 

In this paper, we extend these techniques to the case of Poisson supermanifolds 
[7, 15, 16]. The basic concepts of Poisson supermanifolds and of our procedure are 
outlined below. 

I.B. Let J# = (M, (9) be a smooth supermanifold (see e.g. [7, 15, 17]) of finite 
dimension. Here, M is an ordinary smooth manifold, called the base of ~ ,  and (9 is 
a sheaf of supercommutative superalgebras, called the sheaf of smooth functions on 
M/t. Let C ~ (J~) denote the superalgebra of global sections of (9. In this paper, we 
will be concerned with Poisson supermanifolds, i.e. supermanifolds for which 
C oo (Jd) is a Poisson superalgebra [7, 16]. This means that C oo (d/l) is equipped with 
a bilinear mapping 

(., .}: (I.1) 

called a super Poisson bracket, which satisfies the conditions: 

{ f  g} = (_  1)v(Z)p(o)+x {g, f } ,  (1.2) 

(-1)P(Z)P(h){f {g, h}} + (--1)P(h)P(~ {h, { f  g}} + (--1)P(~ {h,f}} = 0 ,  (I.3) 

{f, gh} = {f, g}h + (-1)P(I~P(~ h} , (I.4) 

where f, g, h e C~176 and where p ( f ) e  {0, 1} is the parity of the (homogeneous) 
elementfc C oo (~).  Conditions (I.2) and (I.3) say that C o~ (Jet) is a Lie superalgebra, 
while condition (I.4) says that the super Poisson bracket obeys the super Leibniz 
rule. Poisson supermanifolds arise in physics as phase spaces for classical systems 
involving both bosons and fermions. 

In the examples discussed in this paper, J/t is supersymplectic (in fact, super 
Kfihler), i.e. it comes equipped with a supersymplectic (by which we mean even, 
closed and non-degenerate) two-form co. Furthermore, the superalgebra C ~176 
has a natural .-structure. A supersymplectic form defines a super Poisson bracket, 
just as an ordinary symplectic form defines a Poisson bracket. This comes about 
as follows [7, 15]. In local coordinates, 

co = ~ dXk /~ dXj cojk, (I.5) 
j ,k 

where the supermatrix {COjk} satisfies 

COjk = (_  1)(~+ 1)(ek+ 1)O.)kj, (I.6) 

with ej:= p(Xfl. Let {co jk} be the inverse of {COjk}, i.e. ~,O~J*e.hk = 6jg. Then 

{f, g} := ~ (_  1)(p(f)+~,>~kcoj k Of Og (1.7) 
j,k ~X j OXk 

is a super Poisson bracket. 
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The examples studied in this paper are the super unit disc U 111 and the 
superspace ~2 ml'. These supermanifolds and their supersymplectic structures are 
defined in Sects. I! and VI, respectively. 

I.C. The goal of this paper is to study, in a rigorous, non-perturbative way, 
quantizations of Poisson supermanifolds. We restrict attention to the two examples 
mentioned in Sect. I.B. We believe that the methods explained here can be 
generalized to include, for example, super Grassmannians and Cartan super- 
domains (for the bosonic case see [8] and references therein). 

By a (deformation) quantization of a Poisson supermanifold .M, we refer to 
a family of normed *-superalgebras ~4,(~),  parametrized by a Planck's constant 
# e(0, 1) (say), and a grading preserving ,-homomorphism of vector superspaces 
C ~ (Jl) ~ f ~  T( ' ) ( f )  e d , ( ~ )  such that 

lim ~ [T(')(f), T(")(g)] - r(")({f, g}) . = 0 ,  (I.8) 
#~0 

where [I'ILu is the norm on du(d//). In the above formula and throughout this 
paper, [ ' , - ]  denotes the graded commutator. This notion of quantization is 
closely related to that of [18, 19]. We think of the elements of du (~')  as "functions 
on the (quantized) non-commutative superspace." In our examples, d u ( ~  ) gener- 
ates a C*-algebra, and this could be made part of the definition (it is natural to do 
so in the purely bosonic case). It appears to us, however, that 112*-algebras are 
rather unnatural in the super-context. 

The central notion of our construction is that of a super Toeplitz operator, 
defined in Sects. III and VI. Super Toeplitz operators are super-analogs of the usual 
(bosonic) Toeplitz operators (see e.g. [1, 21] and references therein) and share some 
of their properties. They are defined on certain 7Z2-graded Hilbert spaces of 
superholomorphic functions on ~ .  The quantization map C ~ (Jr ~ f ~  T(U)(f) 

sJ,(J/l) introduced above is just a map assigning to a symbol the corresponding 
super Toeplitz operator, and d u ( ~ )  is the .-algebra generated by super Toeplitz 
operators with smooth bounded symbols. 

I.D. The paper is organized as follows. In Sect. II, we study the properties of the 
super unit disc U 111. In Sect. III, we construct a quantization of U 111 by means of 
super Toeplitz operators. The structure of the resulting II;*-algebra of "quantized 
continuous functions" is studied in Sect. IV. Section V contains the proof of the 
deformation estimate (I.8). In Sects. VI and VII, we construct the quantization for 
the superspace C ml". 

II. The  Supermanifo ld  U ~ t 1 

II.A. In this section we describe the simplest hyperbolic supermanifold, namely 
the super unit disc. We will discuss the quantization of this space in the next 
section. The super unit disc 0?/- = U 111 is the supermanifold (U,(9), where 
u = {z e ~ :  I zl < 1} is the open unit disc, and where (9 is the sheaf of superalgebras 
on U whose space of global sections is C~~ C~174 where /~(~) 
denotes the exterior algebra over 112 ~ IR 2. In the following, we will refer to the 
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elements of C ~ (~#) as smooth functions on q/. We denote the standard generators 
of A(IE) by 0 and ~ An element f e  C o~ (u#) can thus be written as 

f (z ,  O, 0) =/0o(Z) + flo(z)O + fol(Z)6 + fal(z)Og, (ILl) 

where fjk e C ~ (U). 
A function f e  C ~ (~/) is called bounded if all the components fjk and their 

derivatives are bounded functions on U. We let C~ (~') denote the superspace of 
bounded functions on ~.  We give C~ (og) the topology of a Frechet space. This 
topology is defined by the family of norms: 

Ilf]l~ :-= E ~ sup [0~m~?}fjk(Z)[, (II.2) 
m+n<t  O < j , k < l  [zl<l 

where t > O. 
A function f ~  C ~ (q/) is called superholomorphic, if 3~f--  ~fff-- 0 or, equiva- 

lently, if 

f (z ,  O) --fo(z) +fl(Z)O, (II.3) 

withfo and f l  holomorphic. We will find it convenient to use a collective notation 
for the generators of C ~(q/), namely Z:-- (z, 0). 

II.B. The super unit disc ~//admits an action of the Lie supergroup SU(1,111). 
Recall that this supergroup is defined as follows. Its base manifold is SU(1, 1), 
and its structure sheaf is generated by 7jk and Pjk, 1 __< j, k _-< 3, with the parity 
assignments: 

0, if l<j,k__<2 o r j = k = 3 ,  
P(Tjk) = P(~Tjk) = 1, otherwise. (II.4) 

Let ~ = {~jg} denote the supermatrix with entries 7jk and let 7* denote its hermitian 
adjoint, ~ := 7ki. We require that 

where 

and that 

~*J7 = J ,  (II.5) 

J =  0 - 1  , (II.6) 

0 0 - 

Ber 7 = 1 , (11.7) 

where Ber denotes the Berezinian. Recall that the Berezinian of a block super- 
matrix 

(ii ) 

with A, D even, D invertible, and B, C odd, is defined by 

Ber M := det (A -- BD - 1C)det D - 1 . (II.9) 
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Conditions (II.5) and (II.7) are the relations defining the structure sheaf of 
SU(1, i I 1). The multiplication on SU(1, i I 1) is defined in the obvious way. In the 
following, we will refer to the supermatrices of generators of SU(1, l I l) as the 
elements of SU(1, 111). A simple calculation shows that the formulas below define 
an action of SU(1, i I 1) on ~: 

Z --* Z':= ])llZ -'}- 712 -t- ])a3 0 
721Z + ])22 + 723 0 ' 

O____~,O, :~.])31Z -~- ])32 -}-733 0 (11.10) 
721z + ])22 + 7230 " 

The expression (721z + ~22 "~ ])230) -1 is defined in terms of the standard Taylor 
series for superfunctions [7]. By a slight abuse of notation, we write (II.10) as 
Z '  = ~(Z). 

Define 

])'(Z) = Ber 

0z' 00' 

0z 0z 

0z' 00' 

00 90 

0Z' 
- Ber 0-Z- " (ILl 1) 

Proposition II.1. If7 ~ SU(1, 1[1), then 

1 
y'(Z) = (II.12) 

Y21Z -{- 722 + 723 0 

Proof The proof is by explicit computation. The supermatrix of derivatives, 
written in the notation of (II.11), is the following, 

~ Z t  1 ( ] )11 -  ])21Z' ] )31-  ])210'~ (11.13) 
0Z ])21Z 31- ])22 q- ])23 0 \713 ])23 Zt ])33 -I- ])23 0' / " 

Taking the Berezinian of this supermatrix, we have 

])l(Z) = [ ] ) 1 1 -  ])21Zt - (731 -- ])210')(713])33 -~- ~)23 0'- ])23Zt)J ])33 +1 ])23 0/ (II.14) 

We substitute the expressions for z' and 0', and with a little manipulation we obtain 

Ber ]) 
7'(Z) = [] (11.15) 

])21Z -I- 722 "J7 7230 " 

We set 

Zig':= z# + 0O, (II.16) 

where Z = (z, 0), W = (w, ~/), and consider the expression 1 - ZW. 

Proposition II.2. With the above definitions, 

1 - 7(Z)y(W) = (1 - ZIYV)7'(Z)y'(W). (II.17) 

Proof The identity follows immediately from the requirement (II.5) and from 
Proposition II.1. [] 
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II.C. The superalgebra C + ( ~ )  can be equipped with an SU(1, 111)-invariant super 
Poisson structure. This arises as follows. Let Q I ( ~ )  and ~ - * ( ~ )  denote the 
C+~ of 1-forms and vector fields on q/, respectively. The following 
elements of f2 * (og) | ~2 - * (ql), 

Q:= Y a & |  , 
o <_j<= 1 c~Z] 

(~:= Z d Z j |  (II.18) 
o<j<l  ~Zj 

are clearly SU(1, 111)-invariant. Consider the following two-form, 

co:= Q(~log(1 - Z Z )  

_ 02 
= ~ (--1)v(Zk)+ldZk A dZj _--log(1 -- Z Z ) .  (II.19) 

j,k OZjOZk 

Proposition II.3. co is an SU (1, 111)-invariant supersymplectic form on q[. 

Proof To see that co is SU(1, l ll)-invariant, we note that, as a consequence of  
(II.17), 

l o g o  - ?(Z)?(Z)) = log(m - Z Z )  + log f ( z )  + log f ( Z ) .  (II.20) 

Since ? '(Z) is holomorphic ,  

Q(~log ? ' ( z )  = QQlog ? ' ( z )  = 0 ,  (II.21) 

and so 7"o9 = co, as claimed. 
To see that co is supersymplectic, we write 

co = - d z  /x dSco~ + dz /~ dOco=g + dO/x d~cooe + dO/x dOcoog, (II.22) 

where 

1 - 0 0  1 1 + z 5  
co~s= - -  + - - 0 6 ,  

( l  - -  ZZ - -  0 6 )  2 (1 - -  ZZ) 2 (1 - -  ZZ) 3 

50 ~0 

c.o~# = (1 - z5 - 06) 2 = (1 - zS) 2 ' 

zg zO 
coo~ = (1 - z5 - 00) 2 (1 - ze) 2 ' 

1 - z i  - 206 1 

(1 - zE - 00) 2 (1 - z5)" 
co0g = (II.23) 

It is clear from these explicit formulas that  co is non-degenerate and closed and 
[] thus supersymplectic. 

Observe that  
/ \ 

Ber {co~ co'g} = (I - ZZ) -I . (II.24) 
<coo~ COo~/ 
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As explained in the introduction,  a super Poisson bracket  may  be constructed out 
of co. Explicitly, using (II.24) we obtain, for f, 9 ~ C ~ (u#), 

{ f  g} = - (1 - z ~ -  00)(1 -- z f ) ( O z f O ~ g -  3 ~ f ~ 9 )  

+ (1 -- z ~ ) z g ( ( -  1)P(I)~f0g9 - ~ g f ~ g )  

+ (1 -- zS)iO(aofO~9 -- ( -  1)P(S)OefOog) 

+ (1 -- z~ - ziOO)(-1)P(r + OgfOog). (II.25) 

This super Poisson bracket  is SU(1, 111)-invariant, as a consequence of the invari- 
ance of co. We have thus proven the following theorem. 

Theorem II.4. The pair (C o~ (o#), { . , .  }) is a Poisson superalgebra with a S U (1, 1 [ 1)- 
invariant super Poisson bracket. 

l l .D.  Define the following form ("super Poincar6 measure"),  

d#(Z)  := 1(1 - Z Z ) - l d 2 z d 2 0  , (II.26) 

where  d Z z  = (i/2)dz A d~ and d20 = dO/x d& As a simple consequence of (II.17), we 
obtain the following proposit ion.  

Proposition II.5. The form (II.26) is SU (1, l [1)-invariant. 

III. Quantization of U 111 

I I I .A.  The main object of this paper  is the following per turbat ion of (II.26). For  
r > 2 we set 

d#r(Z) := (1 - ZZ)rd#(Z)  : 1 (1 - Z Z )  ~- idZzd20.  (III.1) 
7r 

Proposition III.1. The form (III.1) has the properties: 

= 1 ,  
oil 

d I A r ( y ( Z ) )  -~ y ' ( z ) r T ' ( Z f  d # r ( Z )  . (III.2) 

Remark. Since r does not  need to be an integer, the r th power of 7'(Z) in the above 
formula has to be defined carefully. Using Proposi t ion ILl ,  we can write 

7'(Z) = (az + b + ~0) -1 = (az + b) -1 - (az + b)-2e0 (III.3) 

with a, b even and ~ odd. We now define 

logT ' (Z) :=  - l o g ( a z  + b) + (az + b)-~eO , (III.4) 

where logz  is a fixed branch of the logari thm (for concreteness: l o g z : =  loglz] 
+ iargz ,  where - ~  < a rgz  =< ~), and set 7 ' (Zy  := exp{r log? ' (Z ) } .  

Proof. The second statement is a consequence of Proposi t ion II.2 and Proposi t ion 
II.5. The first s tatement is remarkable  in that  the integral is independent  of r, even 



56 D. Borthwick, S. Klirnek, A. Lesniewski, and M. Rinaldi 

though the normalizat ion constant  in (III.1) does not  involve r. This is a manifesta- 
tion of supersymmetry and comes about  as follows. We have the expansion 

(1 - z~ - 00) ~-1 = (1 -- z~) ~-I -- (r - 1)(l -- zS)~-20g, (III.5) 

and so 

r - 1  1 
fd#r(Z)= ~ ( 1 - z S ) ~ - 2 d 2 z = ( r - 1 ) I ( 1 - t ) ~ - 2 d t = l .  [] (III.6) 
q/ 7~ U 0 

III.B. F o r f  geCf(ql) ,  we set 

( f  g)r := 5 f(Z)g(Z)dp,(Z).  (III.7) 
q/ 

For  f and g arbitrary,  (III.7) is not  positive definite. When restricted to super- 
holomorphic  functions, ( f  g)~ turns out to be positive definite and so it defines an 
inner product.  The complet ion of the resulting inner product  space in the norm 
]] �9 ]]~ induced by ( ' ,  ")~ is a Hilbert  space and we denote it by ~g,~(ql). 

Because the measure used to define the norm involves Grassmann integration, 
we must  be careful about  applying the usual analytic facts. The  following proposi-  
tions show that we can extract sup norms from an integral over dl~,(Z), just as we 
could from an ordinary integral. In the following, ]1 f 11 o := SUpz~ v If(z) r denotes the 
usual sup norm of a bounded  function f on U. 

Proposition III.2. For ~, ~ e ~(ql) ,  and f e C~~ such that f (Z) =foo(Z), we have 

[. ~9(Z)f(Z)~(Z)d#r(Z) <= rlfoo IIo II O Irr II ~b II~. (III.8) 
og 

Proof To simplify the notation,  we will suppress the subscript r in I] " [In. First, note 
that in terms of components ,  

II q~ II 2 = r -~ 1 v y I ~b~ (z)12 (1 - zS)'-2d2z + 1~ ! 1~1(z)12(1 - -  z,~f- ld2z . (Ill.9) 

Since f (Z)  = foo (z), we have 

O(Z)foo(Z)4)(Z)d#,(Z ) = _1 ! Ol(z)foo(Z)Oi(z)(1 -- zi) ~- ldZz 
ql 7C 

r - 1  
+ I ~]o(Z)foo(Z)~)o(Z)(1 --  z z ) r - 2 d 2 z ,  (III.10) 

7r U 

and so 

r foo(zlr 

< [Ifoo Iio J" ]@*(z)12( 1 - zz)~-ld2z 5 I~l(z)12( 1 - z-Yf-ld2z 
U U 

+ - -  ~ I~'o(Z)[2( 1 - z~)~-2d2z ~ [ ~ o ( Z ) 1 2 (  1 - z ~ ) r - z d 2  Z . 
7r u u 

OIL 11) 
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In view of (III.9), this implies that 

~(Z)f(Z)4,(Z)d#r(Z) <= I1/00 [Lo IltP [1114, [I, (III.12) 

and the claim is proven. [] 

Proposition 111.3. For O, 4, e Jgr(all), and f e C~ ~ (og), we have 

f O ( Z ) f ( z ) O ( Z ) d # r ( Z )  ~ E r-U+k)/2llfjkilollt~HrH4,LI r . (III.13) 
og O<_j,k<=l 

Proof The claim is an immediate consequence of Proposi t ion III.2 and the 
following inequality, 

1104, LI <-_ r-i/2 hi 4 Jb �9 (III.14) 

To prove (III.14), we write 4,o(z) = ~n_>_o a, zn and compute: 

1 
1104,112 = 1 ~ 14,o(Z)12( 1 _ iz12)r_ld2z = ~ [an[ 2 5 p '(1 - p)r-ldp 

7~ U n>-O 0 

n!F(r) 1 n!F(r) 
-- }-" la~12 r(~7~- 1) =< r -  ~ ]a,I 2 F(n + r) 

n>0  n>0  

r - - 1  
= r - ~  - -  S 14,o(z)l 2 (1 - I z12) r -  2d2z = r -  ~ II 4, II 2 ,  

7~ U 

where we have used (III.9). [] 

For  future reference we formulate the following proposition, whose proof  is an 
immediate consequence of Proposi t ion III.3 and (II.2). 

Proposition III.4. For ~, 4, ~ Jfd~ and f~  C~(ql), we have 

O(Z)f(Z)4,(Z)dl~(Z) < II f [Io I1 ~ II~ 114, L .  (III.15) 

III.C. The Hilbert  space Jg~(~ carries a natural  projective unitary representation 
of the supergroup SU(1, 111). This is given by 7 ~ U(?), where 

U(y)4,(Z) = {(7-1)'(Z)}~4,(3'- 1 (Z) ) .  (III.16) 

Proposition III.5. Formula (III.16) defines a projective unitary representation of 
SU(1, 111) on Yf~(ql). 

Proof Set 

(((7172)- 1)'(z))* 
0"(~1, ~22) : =  ( 7 1 1 ) ' ( z ) r ( 3 ' 2 1 ) ,  (~11(z) )r  " ( I I I .  17)  

We verify easily that a(3'1,72) is indeed independent  of Z (as our notat ion suggests). 
As a consequence, 

U(7~3'2) = 0-(3'1,72)U(3'~)U(72) �9 (III.18) 
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From the independence of (III.17) on Z we easily derive the following cocycle 
condition: 

0-(72, 73)0-(7a72, 73)-10-(71, 7 2 7 3 ) 0 " ( 7 1 ,  7 2 )  - 1  = 1 , (III.19) 

which shows that (III.16) is consistent with associativity. The unitarity is a conse- 
quence of Proposition III.1. [] 

III.D. We now define a projection map P taking C f ( ~ )  to 2/f~(~ 

Proposition III.6. For f ~ C~ (~), set 

Pf(Z):= ~ K~(Z, W)f(W)dp~(W), (III.20) 

where 

Kr(Z, W) = (1 - Zff7) -r . (III.21) 

Then Pfe ~,(all) and Pf = f if f e  ~:r(~ 

Proof We verify easily that the sequence {r where 

(F(n + r)']l/Zz, 
r  = \ ' 

(r(n +r + 1!) 1:2 
r = \ ~V-~)-n~ z'O, (III.22) 

forms an orthonormal basis for ~ ( q l ) .  Consequently, 

Kr(Z, W):= ~ r = (1 - ZI~/)-~ (III.23) 
n,j 

is the Bergman (or reproducing) kernel for ~ ( ~ )  and the claim follows. [] 

To each point Z s Y/, we will associate an element 7z of SU(1, l I 1), such that 7z 
maps the origin in 0//to the point Z. This element is defined by 

1 Z C-1(0-- zO) I 

7z:=C -1 ~ 1 c-1(50-0) 1 , (III.24) 
/ 

g o c- ' (1-ze) /  
where 

c = (1 - z 5 -  00) 1/2 . (III.25) 

For  future reference, the action of 7z on W = (w, t/) s og is given explicitly by 

1 - z g  (1  - z~) 1/20tl (1  - zg) 1/2 (~0 - g)wtl 
7 z ( W ) o = Z + ~ W +  l + e w  ( l + g w )  2 ' 

- -  Z 0  ( ]  - -  ZZ - -  0 0 )  1/2 
7z(W)l = 0 + w + rl. 

1 + 5w 1 + 5w 
(III.26) 

The Bergman kernel given by (III.21) has the following properties with respect 
to SU(1, liD. 
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Proposition III.7. The Bergman kernel transforms under the action of SU(1,111) 
according to 

Kr(y(Z), 7(W)) = y'(Z)-rT'(W) -rK(Z, W). (III.27) 

Furthermore, for Kr (Z, Z) we have 

Kr(Z, Z) = 7~(0)-r7~(0) -r . (111.28) 

Proof. The first statement follows immediately from Proposition 11.2. The second 
is a direct consequence of the first and the fact that K~(0, 0) = 1. [] 

III.E. For f~  C~(~)  and ~b ~ ~ ( ~ ) ,  we set 

(T~(f)4~)(Z) := ~ K~(Z, W) f (W)O(W)d~(W) .  (Ili.29) 

P r o p o s i t i o n  III.8. T~(f) is a bounded operator on jufr(q]). Furthermore, 

IlT~(f)ll _-< ~ r-r I/fj~llo, (111.30) 
O<=j,k<=l 

Proof. Clearly, (T~(f)dp)(Z) is holomorphic. From the reproducing property of 
K~(Z, W), 

(~b, T~(f)#J)= S ~(z)u(z)~(Z)dl2r(Z).  (III.31) 
qz 

The inequality follows immediately from Proposition III.3. [] 

We call the operator T,(f)  a super Toeplitz operator with symbol f, and we let 
~--~(qg) denote the ,-algebra generated by all super Toeplitz operators with 
bounded symbols. Observe that 

Tr(f  o ~) = U(?)- 1T,.(f) U(7), (111.32) 

where U(?) is defined by (111.16). 

111.F. We now come to the main result of this section, which is that the map 
C{(~ ~ Y-~(q/) given by T, is a deformation quantization. Define 

W . Fjk(Z):= ~ ?z( )k (III.33) 
awj tw=0 

In Sect .  V,  w e  will prove the following two theorems. 

Theorem III.9. For f~C~(ql) ,  we have 

lim l[ T~(f )11~ = [[foo no �9 (111.34) 
r--~ oo 

The above theorem is a rather peculiar fact, showing that the classical limit of Tr(f) 
"forgets" about the fermionic degrees of freedom. 
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T h e o r e m  III.10. For f g e C~~176 with the components f ~  compactly supported, 
there is a constant C = C ( f  g) (depending on f and g), such that 

T ~ ( f ) T , ( g ) -  T , ( f g ) -  r -1 ~ ( -  " - - < Cr -2 , (III.35) j,k,l 1)~P(I)+ l Tr(FUrlkC~kfOJg) 

for r sufficiently large. 

As a consequence of this theorem, we conclude that Y ~  (~//) is a quantum deforma- 
tion of the Poisson superalgebra C~ (~//), with the ratio # = (r - 1)-1 playing the 
role of Planck's constant. The assumption tha t fhas  a compact support is certainly 
not optimal and we regard it as a proviso. However, a closer look at our proof 
shows that some kind of decay of at least one symbol at the boundary of U is 
needed. On the other hand, it is easy to verify that for polynomial f and g, the 
conclusion of the theorem remains valid. 

T h e o r e m  III.11. Under the assumptions o f  Theorem III.10, 

IIr[Tr(f),  T~(g)-] -- T~({f ,  g})lr~ < Cr -1  , 

for  r sufficiently large. 

(III.36) 

Proof  We see from (III.26) that 

Foo(Z) = 1 - z s  

F l o ( Z )  = - (1 - z~)1/20, 

F o l ( Z )  = O -  ~0 , 

F11(Z) = (1 - z5  - 00)  1/2 . (III.37) 

The proof follows immediately from Theorem III.10 and the explicit form (II.25) of 
the super Poisson bracket. [] 

IV.  The  112*-Algebra o f  Super Toepl i t z  Operators  

IV.A. In this section we study the structure of the Z2-graded tl;*-algebra ~-;jq2) 
generated by all super Toeplitz operators with symbols f whose components 
fjk extend to C Q-functions on the closure of the unit disc U. This tY*-algebra is 
generated by a := Tr(z), ~ := Tr(~) = a*, Z := Tr(0), and 2 := Tr(O) = Z*. 

Propos i t ion  IV.1. The generators o f  ~ (o~)  satisfy the following relations, 

[6, a] = p( I - a~ -- )~2)( I - 5a) , 

[a, Z] = # ( I  - 5a)6~ , 

[z ,  2 ]  = ~ ( 1  - a a  - ~ a z 2 ) ,  

[~,  z ]  = 0 ,  

Ix ,  x ]  = 0 ,  (~v.1)  

and their hermitian conjugates, where # := (r - 1)-1. 
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Proof  The easiest way to obtain these relations is to observe that 

r = -J- r Av q ~ n + l ' k ( Z )  ' 

( 6G,~( z )  = + r + k -  G - ~ , k ( Z ) ,  

z C . , ~ ( z )  = (1 - k) (n  + r ) - ~ / 2 C . , ~ + l ( Z ) ,  

2~, ,k(Z)  = k(n + r)-1/2~)n,k_l(Z) , (IV.2) 

where {qb,,k} is the orthonormal basis defined by (III.22). [] 

IV.B. Let Yf denote the ~2-graded C*-algebra of compact operators on o~,.(~ 
and let C(S 1) be the trivially 772-graded C*-algebra of continuous functions on the 
unit circle. The following theorem describes the structure of J;(q2); namely it states 
that J ; ( ~ )  is an extension of C(S 1) by ~ .  

Theorem IV.2. There is a short exact sequence of  77 2-graded 112*-algebras, 

0 --, X -~ ~-;~(~) ~ C(S 1) ~ O. (IV.3) 

Furthermore, as C*-algebras, ~ ( ; # )  ~- J-~(~),for all r, s > 1. 

Proof  Let J denote the commutator ideal in ~ ( ~ ) .  It follows immediately from 
(IV.I) that the quotient G*-algebra ~ ( ~ ) / J  is generated by a single element and so 
Y-;~(~)/d ~- C(S1). We claim that ~r - dC. Indeed, as a consequence of (IV.l) and 
(IV.2), [6, o-] e dC. Furthermore, from (IV.2), ;/e Y and so all the commutators 
involving )~ and 2 are compact. This shows that J ~ ~Y. On the other hand, since 
Y-;,(~) is irreducible, Theorem 5.39 in [1 1] implies that 5C c ~-~(~). Consequently, 

is a non-zero ideal in dC and so it must be equal to xC. This proves (IV.3). 
To prove the second statement, we realize the 112*-algebras J~dq/) and 3-~ (q2) on 

the 77z-graded Hilbert space l 2 (77 + ) �9 1 2 (77, + ) and denote the corresponding gener- 
ators by G, O's, etc. Obviously, )~, G - G ~ X ~ G ( ~ )  and so ~ ( ~ )  ~ Y-~(~). By 
the same argument, J;~(q/) c ~(q)), and the claim follows. [] 

IV.C. We now show that the G*-algebra ~ ( ~ )  can be characterized in terms of 
generators and relations. Let r be the unital algebra generated by cr, 6, Z, 2 with 
relations (IV.l). A representation ~: N~--* ~(Yg) of N~ on a Hilbert space ;/f is 
called a ,-representation, if ~(a)* = ~(6) and ~00" = ~z0~). 

Theorem IV.3. Let ~: ~ ~ Y ( ~ )  be an irreducible *-representation of  ~ on 
a Hilbert space ~ .  Then, zc is unitarily equivalent to either the one dimensional 
representation 9ff = IE, with 

~z(Z ) = 0, ~(~) = e i~ , (IV.4) 

for some 0 ~ [0, 2~), or to the representation (IV.2). 

Proof  Let zc be an irreducible .-representation of ~ on a Hilbert space Yr. 
Consider first the subspace 

W = Ker(1 - g-a) c~ Ker(~) . 
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Using the c o m m u t a t i o n  relations, it is easy to see that  W is an invariant,  closed 
subspace for the representat ion ~z, and so either W = 24 ~ or W = 0. If W = Yt ~, then 
the representat ion rc is one dimensional  and it is unitarily equivalent  to a repres- 
enta t ion of the type (IV.4). 

Assume f rom now on that  W = 0 and set ~ o  := Ker0(). It  is easy to see that  24% 
cannot  be zero. Let 5S be the subalgebra  of N, generated b'y o- and ~ with the 
commuta t i on  relation 

1 
= (1 - o a ) ( 1  - a G ) .  (IV.5) 

The representat ion ~z induces a representat ion ZOo of 5 P. on ~ o .  We claim that  this 
representat ion is irreducible. Indeed, suppose we have an invariant  proper  sub- 
space Vo ~ Yt%. Pick a non-zero vector  ~ e ~ o ,  ~q~ Vo. The spaces Vo and Z(Vo) are 
clearly or thogonal .  Consider  now the or thogona l  sum Vo @ Z(Vo). Using the 
algebra structure, it is easy to show that  the representat ion rc restricts to a repres- 
entat ion of ~ ,  on Vo | Z(Vo). It  is clear that  ~. r for Z(Vo) is o r thogona l  to 
Ker(2). This shows that  ~o is irreducible. At the same time, the above  a rgument  
shows that  

J g  = Jdo | ~ ' ~ ,  (IV.6) 

where ~ = Z(Yt~o). N o w  we can invoke Theorem III .2  of [12]: there is an 
o r thonorma l  basis qS,, o, n = 0, 1 , . . . ,  for Jt~o such that  a and ~ act according to 
(IV.2). 

Now,  using this result it is easy to check that  

r(1 - 8a) = (r - 1)(1 - o-f(1 - #(1 - 6a ) ) ) ,  

on Yt%. The relation, Z6 - ~Z = #)~(1 - ~a), yields 

rg((1 - fro-) = (r - 1)(1 - o-f)Z, (IV.7) 

on Yt'o. Finally, we have 

[G G]X = #(1 - ~o-) [(1 - a6-)Z - #Z(1 - o'a)] , 

on ~ o ,  which by means  of (IV.7) can be rewrit ten as 

= ! ( I  - -  e)z. 
r 

This implies the following relation on 24~1: 

= 1 ( 1  - - ( I V . 8 )  
F 

As a consequence,  • induces a representat ion nl  of 5P,+ 1 on ~ .  
We now show that  n~ is irreducible. To  prove  this, observe first that  )~[go is 

injective. Indeed, if a vector  ~b is in the kernels of both  Z and )~, then the 
commuta t i on  relation [Z, 2] = #(1  - (Ta - ~a2Z ) implies that  (1 - ~cr)q5 = 0. But 
this is impossible because W = 0. Let  now V~ c ~4~ be a closed, invar iant  subspace. 
I t  is then easy to verify that  X - l ( V 1 ) e ~ o  is an invariant  subspace for the 
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representation no of Y~, and so ;g-I(V~) = ~/fo. By the injectivity of ;~, we conclude 
V1 = ~ .  We use Theorem III.2 of 112] to determine the action of ~ + ~  on 2/fl. 
There is an orthonormal basis q$,, z for J'cfi and the action of 6P+ 1 on the elements 
of this basis is given by (IV.2). Finally, the commutation relation of # with Z tells 
that )~(Ker8-c~ ago) = Ker(8-c~ ~1). Denoting by Y(~,~ the one dimensional space 
spanned by q$,j, we easily see that ;~: J f , , o -+~ , ,~ .  Furthermore, an explicit 
computation shows that 2xl~.,o = ( n  + r)-~I. This completes the proof of the 
theorem. [] 

A standard_consequen_ce of the above two theorems is the following character- 
ization of r Let cg,.(~) denote the universal enveloping Ig*-algebra of N~, i.e. 
the closure of ~ , / ~ /  in the norm N x l[ := sup,{ II rc(x)ll }, where the supremum is 
taken over all .-representations of Nr, and where .A/" := {x e P,: Ilx II = 0} is the 
nil-ideal. 

Theorem lV.4. As C*-algebras, ~ ( ~ )  ~- %(~1). 

Proof The proof follows the proof of Theorem III.5 in [12]. [] 

V. Proof of  Deformation Estimates for U 111 

V.A. Proof of Theorem III.9. From Proposition III.8, 

rl Tr(f)N < HfooNo + 0(r-1/2), (V.1) 

as r --+ oo, i.e. lim sup,-+oo N T~(f)N < Hfoo I[o. We will show below that 

II/oo[Io =< II Z~(/)ll + o(1), (V.2) 

as r ~ o% i.e. l iminf,~o II T~(f)ll >= [Ifoo IIo, and this will prove the claim. 
To prove (V.2), we set Z = (z, 0) and write 

f(Z) =foo(Z) = (~bo,o, T(f  ~ 7z)~bo,o) 

+ {foo(Z)- ~ f(Tz(W))d#,(W)}, (V.3) 

where qSo, o = 1. Using (III.32), (III.5), and (III.26), we rewrite the above equation as 

foo (z) = (,%, o, U(Tz)- 1T~(f) U(Tz)~o, o) 

+ { oo,z, r l! oo W+< } rc \1 + ~w] (1 - Iw12)~-2dZw 

1 !f l~ ( w  + z ' ~  1 - I z l  e (1 Jwr2) ~-ldgw. (V.4) 
- 1 -  - -  rc \ ~ )  (1 +-ew) 2 

The first term in (V.4) can be bounded by II T,(f)H, as U(Tz) is unitary. By Lemma 
VI.3 of [12], the second term is o(1) uniformly in z, as r --> oo. Finally, using the 
inequality [(1 + ~w)- 11 -5_ (1 - I wl)- 1 we bound the third term by 

4 4 
- I I f ~ l l o  [. (1-1wl2) ' -3d2w = Nf~lllo, 
7z v r - 2  

and the claim follows. [] 
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V.B. Proof of Theorem III.10. Our procedure will be to expand [12] 

(~o, Tr(f)T,.(g)~)= ~ ~(Z)f(Z)K"(Z,X)g(X)~J(X)dl4.(Z)dl2~(X), (V.5) 
~ •  

where t~, q5 ~ 2/Y~(o~) a n d f  g e C ~ (~'), in a power series in r. We make the substitu- 
tion X = 7z(W), and use the transformation properties of the Bergman kernel to 
rewrite (V.5) as 

(c~,r,.(f)rr(g)~J)= ~ r K"(Z,Z) qt xqz Kr (?z (W) ,  Z )  g ( ~ z ( W ) ) ~ ( T z ( W ) ) d l ~ ( Z ) d # ~ ( W )  " 

(v.6) 

The next step will be to expand g(Tz(W)) in a Taylor series. We will expand out to 
fourth order, as follows: 

g(Tz(W)) = g(Z) + ~ ( w f  ,j(z)Ojg(Z) + wtr~j(Z){jg(Z)) 
j,l 

1 1 
+ ~ ~ ~ w~rdz) w~r~m(z)a~g(z) + ~ Z w~ Wmr~,j(z)eje(z) 

�9 jJ,m 

+ E Wftj(Z)WJmk(Z)e~#jg(Z) 
j,k,l,m 

1 1 

j,l,m 

+ 3rd order terms 

+ G(Z, W), (V.7) 

where 

7z(W)j w o rl~(Z):= ~ : , 

c~ ~z(W)j w=o (V.8) r,.~j(z):= ~Wm ~W~ 

and where the fourth order remainder term is given by 

d 4 
G(Z, W):= ~1 oi ds(1 - s) a ~ g(Tz(SW)) . (V.9) 

Denote by l~,q the contribution to the integral from the term in the expansion of 
g with p powers of W and q powers of W, and let R denote the contribution of the 
remainder term. In evaluating these terms, we will make use of the following facts. 
Suppose we have a holomorphic function h on q/. Then one can easily check that 

1 Okh 
~kh(W)d#r(W)- k! ~ (0) ~ Iwl2kd#r(W), (V.10) 

and 

wk~h( W ) d # r (  W )  - 

where W = (w, r/). 

1 ~k+lh 
I wlEk~ld~(W) k! ~ - ~  (o) ~ (V.11) 
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For the lowest order term in the expansion, we have 

K~(Z, Z) 
1o,o = ~ dp(Z)f(Z)K~(-~z(W~-Z)g(Z)O(?z(W))d#,(Z)dl2r(W ) . (V.12) 

~ ' x ~ '  

The integrand is holomorphic in W, so we apply (V.10) to get 

Io, o = ~ O ( Z ) f ( Z ) g ( Z ) O ( Z ) d l # ( Z )  

= (r T~(fg)O). (V.13) 

The same fact also easily implies that Ip,q = 0 for p > q. 
The next non-zero term is thus Io, 1, which is given by 

~,(~z(W)) 
Io,1 = ~ ~x~ ~ O(Z)f(Z) W~F~j(Z)Sjg(Z) K~(Tz(W),Z ) dl~(Z)dp~(W) , (V.14) 

where we have incorporated the Kr(Z,  Z)  term into the super Poincar6 measure 
d/~(Z), defined by (II.26). We now apply (V.10) and (V.11), using the integrals 

1 
S IwlZd#~(w) = ~ @ d~,~(W) = - .  (V45) 

qZ r 

This gives 

lo, 1 = r j ,  t l  2 (-- 1) ~'(p(~ ~ O(Z) f (Z ) ru (Z)O;g(Z)  ~ K'(Tz(W), Z)Jw=o dl~(Z), 

(V.16) 

where e~ = p(Z~), and the sign arises from the permutation of elements of the 
integrand (keeping in mind the fact that WF = F W). Applying the chain rule gives 

[ r ]+(z) Io~ = 1 E ( - l Y  ~ '̀̀ ~,+~') j" r  K~(Z ' z)J  
' r ; ~ z  

1 ~ (--1)(*J+~)P(I)+~(P(o)+~J) 
r j , k , l  

F q,(z) 1 d "z" x ~ 4)(z)ru(z)rMz)f(z)?jg(z)ok I_K~Z,k)j ~t ~. (V.17) 

Next we integrate by parts, 

10,  1 - -  
r j, k,l qz k I - Z Z  J 

x r - Z2)dMZ) 
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r j , k , l  ~, 

x ~(Z)(1 - ZZ)d#r(Z) 

1 
_ _ ~, ( -  lyJp (f) ~ 4(z)ru(z)rzk(Z)~kf(Z)-~jg(Z)O(Z)dl#(Z) 

r j , k , l  ql 

_ 1 ~ ( -  1)(~j+~)p(f ) ~ (4z)r,~(z)r.(z)y(z)a~j#(z),(Z)d~XZ). 
Y j , k ,  1 ql 

(v.18) 

Observe that, as a consequence of the assumption that r is sufficiently large, no 
boundary terms are present. One can quickly check that 

2 (-1)~k(~J+ 1)gk [ -ffU(-Z)Flk(z)] = O .  (V.19) 
k,l L 1 - Z Z  3 

This leaves two terms in (V.18). 
Now consider the term It, 1, which is given by 

It , = ~ ~ dp(Z-~)f(Z) Kr(Z' Z) Wfu (Z)  W,,F,,k(Z)OSjg(Z) 
' j,~,z,m ~ •  K ~ ( ~ z ( W ) ,  Z )  

x O(Tz(W))d#r(Z)d#r(W). (V.20) 

Using (V.10) and (V.11), together with (V.15), we can perform the W integration to 
get 

1 
11 t = -  ~ ~ (o(Zif(Z)F~j(ZiF~k(Z)(?k~g(Z)~(Z)d#~(Z) 

' r j , k , l  

=-1 ~ (-1)(~J+~)P(f) ~ 4)(z)rdz)&~(z)f(z)~k~ja(z)o(z)d~(z) (v.21) 
r j , k , l  oil 

This exactly cancels the third term in (V.18), so that we finally obtain 

1 
lo, 1 + Ii,t = 7 ~' ( -  lY'P(f)+t(O' T~(fuF'k3kf@g)O)" (V,22) 

j ,k ,1  

Of the remaining second order terms, 12, 0 = 0, and I0, 2 is given by 

Io2 = 1 5 0 ( Z ) f ( Z ) K ~ ( ? z ( W ) ,  Z) - t  [ ~ w~r,~(z)w.r.~(z)a~a,a(z)  
' 2 ~ •  t_ j,k, ,m 

~ W~F~u(Z)Sjg(Z) ] r (V.23) + 
j , l , m  d 

We want to bound this term for large r. First, we use (V.10) and (V.11) as before, to 
evaluate the W integration. Noting that 

2 
I w [ 4 d # r ( W )  - r(r + 1) ' (V.24) 

q/ 
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and 

1 
f IwlZ@dl#(W) - r(r + 1)' (V.25) 
qg 

we can make the bound 

I/0,21 ~ C r  - 2  ~ O(Z)f(z)[r,j(Z)Fmk(Z)ekOjg(Z) + 6jkrmlj(Z){kg(Z)] 
j ,k , l ,m 

o ~ O(~z(w)! 
• ow~ow,, I~(~z(w), Z)Jw=o 

d#(Z) . (V.26) 

As before, we can apply the chain rule to convert W derivatives into Z derivatives, 
and then integrate by parts to move these derivatives onto f and g. Because of the 
compact support o f f  the derivatives which hit the F's do not affect the result. We 
get a maximum of two derivatives o f f  and four derivatives of g. Using Proposition 
III.4, we can extract the sup norms of the derivatives o f f  and g from the integral. In 
this way we obtain 

IIo, z[ < Cr-2llf(Itllgll,([Ol( [[q~[[ , (v.27) 

for  some  t. 
We can apply the same arguments used for Io, 2 to the bound the third order 

terms. The terms are more complicated to write out than in the case of Io, 2, but the 
approach is exactly the same. The result is that 

IIp,ql <~ cr-2llfrl~llg[],]l@JI rlOIr, (v.28) 

for some t for p + q = 3. 
Now we turn to the remainder term, which is 

w' r R = ~ O(Z) f (Z )G(Z ,  )K~(~z(W~,-z)dl~(Z)d#~(W). (V.29) 
~ x q l  

Note that 

O(7~(w)) 
K~(Tz(W), Z) 

-/z(W)%(o)'O(~z(W)), 

(v.3o) 

where U is the projective unitary representation of SU(1, 111) on Jfrffg), and we 
have used the fact that 7}(0) is real. Denote U(Tzl)O(W) by Oz(W), noting that 
II Oz [[ = [1 ~ [I. The remainder term can thus be written 

R= ~ c)(Z)K~(Z,Z)~/2f(Z)G(Z,W)~/z(W)dkt~(Z)dlJ~(W). (V.31) 
~xq~ 

We can write the components of the function G(Z, W) as 

G(Z, W):= ~ ajk,,,,(z, w)gOkO'~ '' 
O<-<j,k,l,m< l 

(v.32) 
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For  some positive integer N, we claim that we have the bound 

W]4-l-m 
sup IGjkz,,,(z, w)l < C 119 lit (1 - Iwl2) u '  (V.33) 

Z 

for some t. This may be established as follows. Consider the definition of G(Z, W), 
Eq. (V.9), which involves taking five derivatives, and the explicit form (III.26) of the 
function 7z(W). First of all, each derivative with respect to s in (V.9) brings out 
a factor of W, since only the combination sW appears in the definition. This 
accounts for the Iw[ 4-t-m appearing in (V.33). 

One can see by inspection of the formulas (1II.26) for yz(W) that divergence will 
come only from a denominator term of the form 1 + siw, raised to some power. 
Observe that such a term can be bounded using 

[1 + sSw1-1 < (1 - Iwl) -~  

< 2(1 -Iw12) -a , (V.34) 

which follows from s < 1, [z[ < 1, [wl < 1. One can check fairly quickly that the 
best bound one can make is N = 12, but this will not really matter. 

Lemma V.1. For u, v e C ~(ql ), 4)~ 2/~r(~), we have the inequality: 

I ~ u(W)v(W)(9(W)d#r(W) 

{~ J) 1/2 < Cllq~ll Ilvllo ~ r -(J+k)/2 lujk(w)12d~r(W)~ �9 (V.35) 
O-<j,k~ 1 

Proof. To prove this lemma, we view d#r as a positive measure on the space of 
functions of the form ff, where f~  C o~ (q/) such that ~f/36 = 0. We write 

[ .(wlv(w)r <= 
j,k,l,m ~ll 

j,k,l,m 

We apply the Schwarz inequality to obtain 

u(W)v (W)4) (W)d~ , . (W)  < ~ IIv,,,lloll~jk~~tll It~k~"q~ll. (V.37) 
ql j,k,l,ra 

The lemma then follows from Proposition III.3. [] 

Applying Lemma V.1 to both W and Z integrations in (V.31), together with the 
bound (V.33), we obtain 

I _ 2dZz 1/2 
IRl=<Cllgll~llfll, ll011[l~ll ~ '(I--  

K 

y--(j+k)/2 W [ [WI2(4-j-k) ~1/2 
i,.',Z [_~(1 E ~ d # , . ( W )  A ' (V.38) X 
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for some t, where K is a compact set in whichfhas support. The integral over K is 
finite and independent of r, so we can absorb it into the constant, which we now 
write CK. For the remaining integral over W, we have 

~ lw[ (4-j-k) r - 1 ~ [wl2(4_j_k)(1 _ iw[2),_2_Nd2w 

r - 1  
- - - B ( 4 - j - k +  1, r - l - N ) .  (V.39) 

For large r, we can bound this term by Cr -4+j+k. Applying this to (V.38), we have 

[R[ ~ CKr -a [[ffll~ [If[l~llqS[I ([ g'[[, (V.40) 

which completes the proof. [] 

VI. Quantization of C "1" 

VI.A. In this section we describe a quantization of the superspace C "r". The 
scheme is similar to that of Sect. III, and so some of our arguments will be rather 
sketchy. Recall that C "1" is the trivial supermanifold (112", (9), where (9 is the sheaf of 
superalgebras on 112" whose space of global sections is C~(II?")| Let 

?1 co r a i n  01, �9 �9 �9 0, denote the standard generators o f /~ (~  ). Then a n y f e  C (~ ) can be 
written as 

f ( z ,  O) = ~ f~p(z)O~U p , (VIA) 
e, fl 

where the summation runs over all multi-indices c~ =(cq . . . . .  C~m), fi =- 
(ill . . . .  , ft,), ej, /?ke {0, 1}, and where 0~0 ~ = 0 ~ . . .  0 ,~"0~. . .  0,~". 

In analogy with Sect. II, we say that f e  C ~ (IIW I") is bounded if the components 
f,~ and their derivatives are bounded functions on C". We let C~ (C '<") denote the 
superspace of bounded functions on 117 "1". We give C~(II7 "1") the topology of 
a Frechet space by introducing the following family of norms: 

/z v [If([~:= ~ ~ sup[~ ~f~r (VI.2) 
lul+l~l_-<t ~,/~ 

where # and v are multi-indices, I/~1 : =  ~ l < j < " # j  �9 
A function f is called superholomorphic if ?~jf = ? & f =  0, or equivalently if 

f ( z ,  O) = ~f~(z)O ~ , 

with f~(z) holomorphic. Also, we will use the notation Z := 
(zl . . . . .  z,,, 01,: . . ,  0,). 

The space i~"1, has a natural structure of an abelian supergroup. This super- 
group acts on ~,,I, by supertranslations defined by 

Z ~ Z '  = Z + W. (VI.3) 
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On the superalgebra C~~ one can define a supertranslation invariant 
super Poisson structure. The two-form 

co = ~ (-1)=J+ldZ 2/x dZ; = - Q Q Z Z ,  (VI.4) 
l < j < r n + n  

where Q and (~ are defined in analogy with (I1.18), is closed, non-degenerate and 
supertranslation invariant, and so it is supersymplectic. The associated super 
Poisson bracket is 

{ f g } = -  ~ (Ozjf~ejg-~e~fOzjg) 
t <=j<=ra 

+ ( - 1 )  p(y)+I ~ (~ojfe~jg + 3ojfdgjg). (VI.5) 
l <-_j<=n 

VI.B. Let us now consider the following family of Gaussian measures on ~2 ml", 

r r a - n  
d#r(Z) = ~ - -  exp(-rZz)de'%d:'O . (VI.6) 

Proposition VI.1. The form (VI.6) has the following properties 

S d#,(z)= 1, 
IE,~I. 

d#r(g + 14/) = e x p ( - r Z l / V -  r W Z -  rWW)d#~(Z). (VI.7) 

Proof The statements follow by a direct calculation. [] 

F o r f  geC~(Cmln), we define 

( f  g), := ~;!~, f(Z)g(Z)d#r(Z). (VI.8) 

As before, when restricted to superholomorphic functions, (f, g)~ defines an inner 
product. We denote the resulting Hilbert space by ~(112~1"). 

Using the methods explained in Sect. III, we easily establish the following 
technical fact. 

Proposition VI.2. Let q~, ~ ~ J/f,(IE~l'). Then, for f ~ C~ ((12 ~1"), 

O(Z)f(Z)4)(Z)dp~(Z) < ~ r -(l=l+lel)/2 IILello II~llrll~bll,. (VI.9) 
r rain a,fl  

In particular, 

.[ O(Z)f(Z)4(Z)dP~(Z) <- II f IIo [I O 1[~ l/4)[I,. (VI.10) 
I. 

The space )f~(ll? ml") carries a natural projective unitary representation of the 
supergroup of supertranslations, W ~  U(W), where 

U (W) 4 (Z) := exp (rZ IY - r Wff'/2) 4) (Z - IT). (VI. 11) 

Indeed, we verify easily that 

U(W + Y) = a(W, Y)U(W)U(Y) , (VI.12) 
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where the cocycle o-(W, Y) is defined by 

~(W, Y):= e x p r ( W y  - Y~ ' ) .  
Z 

VI.C. We set 
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(VI.13) 

Kr(Z, W):= exp(rZff / ) ,  (VI.14) 

and make the following proposition. 

Proposition VI.3. Kr(Z, W) is the Bergman kernel for 24~r(cmln). Furthermore, 

K~(Z + Y, W +  Y) = e x p r ( Z Y  + YIT/)K~(Z, W) . (VI.15) 

Proof The sequence {~bu,~},/~ = (#1 . . . .  , #m), #j = 0, 1, 2 . . . . .  e = (cq, . . . , e,), 
c~j = 1, 2, defined by 

r(lul + 1~1)/2 
qS,,~(Z):= ~ / ~  z"O ~ , (VI.16) 

where •! = #2! �9 . .  #m!, is an or thonormal  basis for Jf~(Cml"), and so 

( rlul ] 
zU~U 

u,~ ~ #. ) 

= exp(rz#)exp(rO0) = exp( rZW).  [] (VI.17) 

VI.D. For feCb~(C "1") and ~bs~(tEml"),  we define the corresponding super 
Toeplitz operator: 

(Tr( f)O )(Z) := r K~(Z, W) f ( W)~b(W)dI#(W) . (VI.18) 

As an immediate consequence of Proposit ion VI.2 we obtain the following esti- 
mate. 

Proposition VI.4. T , ( f )  is a bounded operator on 9f,(ll2ml"). Furthermore, 

[I Tr(f)  IJ < ~ r -(r~l+lpl)/2 IIf~pll0 �9 (VI.19) 
a, fl 

The algebra 3--2(C ml") generated by all super Toeplitz operators is a Lie 
superalgebra whose generators a j :=  T~(zi), Xk:= T,(Ok), ~j:= T~(i~), 2k:= T,(Ok), 
j = 1 . . . .  , m, k = 1 , . . . ,  n, satisfy the following relations, 

[ %  2k3 = 0 ,  

[)~j, 2k'] = r -  l(~jk , 

[ %  zk] = 0 ,  

[zi, Zk] = 0 ,  (VI.20) 
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and their hermitian conjugates. Strictly speaking, the operators er and ~ are not 
elements of the algebra Y-2 (C m I,), as they are unbounded. The algebra Y'2 (if;'<") 
is generated by Z, 2 and certain bounded functions of o- and ~, but we will not 
elaborate on this point here. 

V1.E. We now formulate the main result of this section, namely that the map 
C~(Cmln)-+Y-~(C ml") given by T, is a deformation quantization. In the next 
section, we will prove the following two theorems. 

Theorem VI.5. For f e  C~~ we have 

l im II Tr(f)tit = II fog II o .  (VI.21) 
t - + c o  

Theorem VI.6. For f,g~C~(igml"), such that the components f~  are compactly 
supported, there is a constant C = C ( f  g) (depending on f and g), such that 

T r ( f )T , (g ) -  T , ( f g ) -  

for r sufficiently large. 

r - '  y , ( - 1 ) P ( z ' ) ' u ' } + l T ~ ( O j f ~ g )  < Cr -2  , (VI.22) 
j r 

We can now conclude that Y 2  (~;,,I,) is a quantum deformation of the Poisson 
superalgebra C~(~Y'<"), with the ratio r-1 playing the role of Planck's constant. 

Theorem VI.7. Under the assumptions of Theorem VI.6, 

IIr[Tr(f), Tr(g)] - T, ({ f  g})ll, _-< Cr -1 , (VI.23) 

for r sufficiently large. 

VII. Proof of Deformation Estimates for ~?~1, 

VII.A. Proof of Theorem VI.5. We follow the steps of the proof of Theorem IIL9. 
From Proposition VIA, we obtain the analog of (IV.l). To prove (IV.2), we use the 
decomposition (IV.3) with qSo,o = 1 and 7z(W) replaced by W + Z. The estimates 
are straightforward, and we leave the details to the reader. [] 

VII.B. Proof of Theorem I/'1.6. As before, the starting point will be to expand 

(~b, T~(f) T~(g)~b) = S O(Z)f(Z)K~(Z, X)g(X)r (VII.l) 
C rain x ~mln 

where 4, qS~a/gr(C'<"), in a power series in r. We make the substitution 
X = W + Z, and use the transformation properties of the Bergman kernel to 
rewrite (VII.l) as 

(0, Tr(f) T,(g)r = r162 O(Z) f ( Z ) e x p { - r W Z  } 

x g(W + z ) r  + Z)d,u~(Z)&t~(W). (VII.2) 
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The next step will be to expand g ( W  + Z)  in a Taylor series. We will expand out to 
order M:=  max(4, 4 + r n -  n), as follows (see [9] for the purely bosonic case 
/'t = 0 ) :  

g(w + z)  = g(z) + y~ (w~o~g(z) + w~ojg(z)) 
J 

+ 1 E (wj w~a~ja(z) + 2#j  w~oZja(z) + w~ w ~ j g ( z ) )  
Z j ,  k 

+ terms of order 3 through M - 1 + G (Z, W), (VII.3) 

where the M th order remainder term is given by 

1 
i ds(1 - s) M- 1 

d M 
G(Z, W) - (M - l)! ~ s ~ g ( s W  + Z)  . (VII.4) 

0 

Denote by Ip.q the contribution to the integral from the term in the expansion of 
g with p W's and q ff/'s, and let R denote the contribution of the remainder term. In 
evaluating these terms, we will make use of the following facts. For a holomorphic 
function h on C ml" and a multi-index/4 

Ouh(W)d#~(W) = 1 cm, . ~. a"zh(O) 1-I fw/2~'d~,(w) , (vn.5) 
In l < j < m  

and 

#Uq~h(W)d#,(W) = 1 0o ~h(O) [ I-I (VII.6) 
" l < j < m  

The lowest order term in the expansion is 

lo, o = ~ ~ ( Z ) f ( Z ) e x p { - r W 2 } g ( Z ) ~ , ( W  + Z ) d / 4 ( Z ) d M W  ) . (VII.7) 
II~ thin X I ~  rain 

The integrand is holomorphic in W, so we apply (VII.5) to get 

Io.o = [. ~ ( Z ) f ( Z ) g ( Z ) O ( Z ) d # , ( Z )  = (dp, T,(fg)O) , (VII.8) 
117 ~ [ " x ~ l , 

which gives the first term in the expansion of T , ( f ) T , ( g )  in Theorem VI.6. In the 
same fashion we also easily show that Ip, q = 0, for p > q. 

The next non-zero term is thus Io, ~, which is given by 

Io,1 = ~ I @Z)f(Z)exp{-rWZ} WjOjg(Z)O(W-k- Z)d# , (Z )d#r (W) .  
j IE~l" x @ "1" 

(VIL9) 

We now use (VII.5) and (VII.6) as well as the integrals 

1 
_f Jw=Pdl~r(W)= 5 s (VII.IO) 

I. c~r .  r 
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I 
Iol  = - ~ ( -  1) ~jCpCg) + 1) ; O(Z)f(Z)~jg(Z)exp(rZZ) 

' F j ml. 

l ~i~y-,~ O(W + Z )exp{ - r (W + Z)Z} d#~(Z), (VII.11) 
W=O 

where ej := p(Zj). Applying the chain rule gives 

1 ~(_l/j(p(g)+l} S ~(Z)f(Z)~jg(Z) 1 0 1  ~ - -  
' r j {]~mln 

•  j{O(Z)exp(- rZi)}exp (vii.12) 

Integrating by parts we obtain 

Io 1 = ---1 ~ (_  1)~jp(f) ~ 4(Z)Qjf(Z)~3g(Z)tp(Z)d#,(Z) 
' r j mq,, 

1 ~ (_l)p@~j ~ ~b(Z)f(Z)Oj~g(Z)O(Z)d#,(Z). (VII.13) 
r j cmln 

Now consider the term I~, ~, which is given by 

1~,~ = ~ ! (o(Z) f (Z)exp(-rWZ} WjWkbk~g(Z) 

x O(W + Z)d#,(Z)d#,(W). (VII.14) 

Using (VII.5) and (VII.6), together with (VII.10), we can perform the Wintegration 
to get 

I~ ~ = 1 ~ ( _  1)v(o)~ S ~(Z~)f(Z)~S;g(Z)t~(Z)d#,(Z) " (VII.15) ' ~ '--7 

This exactly cancels the second term in (VII.13), so that we obtain 

lo, t + I~,1 = - 1 ~  (-1)"P(Y)(qS, r~(~jf~g)~), (VII.16) 
g 

J 

as desired. Of the remaining second order terms, I2, o = O, and Io, z is given by 

1 
Io,2 = ~ ~ r ! r (~(Z) f (Z)exp(-  r WZ) Wj WkC~keig(Z) 

x ~O(W + Z)d#,(Z)du~(W). (VII.17) 

We want to bound this term for large r. First, we use (VII.5) and (VII.6) as before, to 
evaluate the W integration. Then observe that for any N > 0, 

Y l-[ WkjIZVkfl#,(W) = ~CN(kl . . . . .  krOr -N , (VII.18) 
mtn I <-j<--" N 
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with tcN(kl,. �9 �9 kN) independent of r, and so we can make the bound 

110,21 < Cr-2 Z ~,~ (Z) f (Z)Ok~jg(Z)exp(rZZ) 

x r  Z ) e x p { - r ( W +  Z)Z,}jw=oCl#r(Z) (VII.19) 

As before, we apply the chain rule to convert W derivatives into Z derivatives, and 
then integrate by parts to move these derivatives o n t o f a n d  9. Using Proposition 
V1.2, we can extract the sup norms of the derivatives o f f  and g from the integral. In 
this way, we obtain the bound 

I/0,21 < Cr -z Ilfl[, IF9[I,[I ~'[I H61I, (VII.N0) 

for some t. 
We can apply the same arguments used for Io, 2 to bound the explicit terms of 

order three through M - 1 in (VII.3). The result is that 

Ilp,ql < Cr -2 [Pfll, IIg lit rl 0 II 1[ ~b [[ , (VII.N1) 

for 3 < p + q <  M - 1 .  
Now we turn to the remainder term, which is equal to 

R = f ~(Z)f(Z)G(Z, W)r  Z)exp(-rW2)d#r(Z)dfr(W). (VII.22) 
C ~r~ x ~ml~ 

Note that 

O(W + Z ) e x p ( - r W Z )  = exp(rZZ/2)(U(-Z)4')(W), (VII.23) 

where U is defined by (VI.11). Denote U( -Z)4 ' (W)  by 4'z(W), and observe that 

II 4'z II = II 4, II �9 ( w ~ . 2 4 )  

The remainder term can now be written in the form 

R = ~ (~(z)u(Z)G(Z, W)4'z(W)exp(rZZ/2)dl#(Z)dpr(W) (VII,25) 
C ml" x C ~1" 

Lemma VII.1. For u, v~C~~ ~r(l~mln) ,  we have 

~,~ u(w)v(w)4~(w)d#~( W) 

f ~ ] 1/2 

< C limb II IIVl'o Z r-(l'l+'al)/2 ~ e" )J'~ " (VII.26) 
e, fl 

Proof The proof follows closely that of Lemma V.1. [] 
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We write the function G(Z, W) as a sum of terms of the form GuY(Z, W)fl~'tl ~. 
W e  use L e m m a  VII.1 to ob ta in  

I ~m,, !era,, (~ f (Z)GU~(Z' W)flutlV exp(rZZ/2) ~z( W)dl~(Z)dl~,(W) 

{ }1/2 < C~r (m-")/2 ILfll, JlgLItllq~LI II@ ~ r-(b"l+lvl)/a S Iwla(~-I"L-I~l)d#~(W) 
~ , v  IE 'hI" 

CK r-(M-m+n)/2 HflttJ)glJt]Jr II0Jl ,  

which completes  the proof,  since M - m + n > 4. [] 

Acknowledgement. We would like to thank Lewis Coburn for very helpful comments on the 
manuscript. We also wish to thank the anonymous referee for a constructive remark. 

References 

1. Axler, S., Conway, J.B., McDonald, G.: Toeplitz operators on Bergman spaces. Can. J. Math. 
34, 466-483 (1982) 

2. Bayen, R., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory 
and quantization. Ann. Phys. 110, 61-151 (1978) 

3. Berezin, F.A.: Quantization. Math. USSR Izvestija 8, 1109-1165 (1974) 
4. Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR Izvestija 9, 341-379 (1975) 
5. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153-174 (1975) 
6. Berezin, F.A.: Models of Gross-Neveu type are quantization of a classical mechanics with 

nonlinear phase space. Commun. Math. Phys. 63, 131-153 (1978) 
7. Berezin, F.A.: Introduction to Superanalysis. Dordrecht: D. Reidel 1987 
8. Borthwick, D., Lesniewski, A., Upmeier, H.: Non-perturbative deformation quantization of 

Cartan domains. J. Funct. Anal., to appear 
9. Coburn, L.A.: Deformation estimates for the Berezin-Toeplitz quantization. Commun. Math. 

Phys. 149, 415-424 (1992) 
10. Connes, A.: Non-commutative differential geometry. Publ. Math. IHES 62, 94-144 (1986) 
11. Douglas, R.: Banach Algebra Techniques in Operator Theory. New York, London: Academic 

Press 1972 
12. Klimek, S., Lesniewski, A.: Quantum Riemann surfaces, I. The unit disc. Commun. Math. 

Phys. 146, 103-122 (1992) 
13. Klimek, S., Lesniewski, A.: Quantum Riemann surfaces, II. The discrete series. Lett. Math. 

Phys. 24, 125-139 (1992) 
14. Klimek, S., Lesniewski, A.: A two parameter deformation of the unit disc. J. Funct. Anal., to 

appear 
15. Kostant, B.: Graded manifolds, graded Lie theory and prequantization. Lect. Notes in Math. 

570. Berlin, Heidelberg, New York: Springer 1977 
16. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-dimensional 

Clifford algebras. Ann. Phys. 176, 49-113 (1987) 
17. Martin, Yu.: Gauge Field Theory and Complex Geometry. Berlin Heidelberg New York: 

Springer 1988 
18. Rieffel, M.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 

531-562 (1989) 
19. Rieffel, M.: Deformation quantization for actions of IR d. Preprint 1991 
20. Sheu, A.J.-L., Lu, J.-H., Weinstein, A.: Quantization of the Poisson SU(2) and its Poisson 

homogeneous space the 2-sphere. Commun. Math. Phys. 135, 217-232 (1991) 
21. Upmeier, H.: Toeplitz IE*-algebras on bounded symmetric domains. Ann. Math. 119, 549-576 

(1984) 

Communicated by A. Jaffe 


