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Abstract. We construct a family of supersymmetric,  two-dimensional quantum 
field models. We establish the existence of the Hamil tonian H and the 
supercharge Q as self-adjoint operators. We establish the ultraviolet finiteness 
of the model, independent of perturbat ion theory. We develop functional 
integral representations of the heat kernel which are useful for proving 
estimates in these models. In a companion paper  [1] we establish an index 
theorem for Q, an infinite dimensional Dirac operator  on 10op space. This 
paper  and, another  related one [2], provide the technical justification for our 
claim that  Q is Fredholm, and for our computa t ion  of its index by a homotopy  
onto quantum mechanics. 
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I. Introduction 

In this paper  we construct a family of N = 2, Wess-Zumino quantum field models 
on a cylinder T 1 x ~ [3]. The one-torus (circle) corresponds to periodic boundary  
conditions in space. We use a mixture of Hamil tonian and Euclidean methods to 
construct the generator H of time translations. 
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These models have a local, conserved operator, the supercharge Q, related to H 
by the identity H--  Q2. The operators Q and H are integrals over T 1 of densities 
Q(x) and H(x), respectively. It is a remarkable fact that these models are ultraviolet 
finite - no infinite renormalizations occur in H. Furthermore, the vacuum energy 
of H is identically zero; the models are thus infrared finite and have unbroken 
supersymmetry. We believe that this provides the first complete construction of a 
nonlinear, supersymmetric quantum field model. 

The nonlinear models which we study also have nontrivial vacuum structure. 
We extend the present analysis in a companion paper [ t] ,  where we establish an 
index theorem for Q and prove nonuniqueness of the vacuum state. The 
supercharge Q is a function of an analytic polynomial V(cp), the superpotential. For  
a superpotential V of degree n, there are at least n -  1 linearly-independent, zero- 
energy eigenstates of H. 

We establish the relevant estimates on the Hamiltonian H using heat kernel 
methods. We represent exp(-/~H) by a functional integral which is Gaussian in the 
fermionic degrees of freedom but which, in general, is non-Gaussian in the bosonic 
degrees of freedom. We establish a Feynman-Kac representation for the heat 
kernel which, after evaluation of the Gaussian fermionic integral, yields a 
Fredholm determinant. 

To establish heat kernel representations we first introduce an approximate 
(ultraviolet regularized) Hamiltonian H(t~) and supercharge Q(•), with 
H(~)= Q(t¢) 2. The representation for exp(-H(~c)) involves a Fredholm determi- 
nant of 1 - K  ~). We replace the Fredholm determinant d e t ( I - K  ~)) with the 
regularized determinant det3 ( I -K~)) ,  where 

det (I - K (~)) = det 3 (I - K (~)) exp ( - Tr K ~) - 1Tr (K ~)) 2). (I. 1) 

This allows us to remove the ultraviolet regularization to. The singular terms in the 
exponential, namely - T r K  ~ ) -  ½Tr(K~)) 2 exactly compensate for other singular- 
ities which occur in the bosonic action. The result is that no ad hoc renormali- 
zation is necessary. (This finiteness does not, however, hold in the corre- 
sponding N = 1 models.) 

We use these methods to prove uniform bounds of two types. In the first place 
we establish a lower bound on the Hamiltonian of the form 

~U~__< H(tc) + C. (I.2) 

Here v < 1 and ~ = ~(v) > 0, C < oo are constants independent of ~. Also N~ is a 
quadratic expression interpolating for z el0,  1] between the particle number 
operator N = N  0 and the free Hamiltonian Ho=N1, see Sect. II. This bound is 
useful to establish elementary properties of H, such as the compactness of its 
resolvent. 

In the second place, we establish norm continuity estimates ~c~(H(~)+I)-1 
and convergence as ~c--.oo. This allows us to also prove norm continuity and 
convergence for the supercharge resolvents ~(Q(tc)_+ i)-1. The resulting ~c = oo 
operators Q and H are self-adjoint, eutoffindependent, and H =  Q2. The Feynman- 
Kac representations also have K~oo limits. 

The family of models we study have superpotentials 

V(q~)=½mq~2+P(~o), m>0, (I.3) 
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which are analytic polynomials in the complex-valued field q~ of degree n > 2. We 
use the mass term ½mq) 2 in the covariance of the Gaussian measure, and we 
consider P=V-½rnq~ z as a perturbation. T h e  bosonic energy density of 
self interaction is [OV(q))[ z, a polynomial of degree 2 n - 2 .  The boson- 
fermionic interaction has the form of a "generalized Yukawa" interaction 
~A + ~p0 z V + ~A_ ~p(0 2 V)*, where A + are projections onto chiral subspaces of 
spinors, see below. The q~4-Yukawa theory resulting from the choice of cubic V and 
its renormalizability was studied [-4] from a constructive point of view. In case 
P = 0, this generalized Yukawa interaction reduces to a free field mass term mt~lp, 
and the total Hamiltonian reduces to a free, supersymmetric, mass rn model. 

IL The Model and the Main Results 

We review the notation established in [1]. The Hilbert space ~ of our model is a 
tensor product of the bosonic Hitbert space ~ and the fermionic Hilbert space 
~vf:, namely ~" = ~ ®  J/::. In both cases we assume that the one particle space is 
built over the circle (one-torus) T 1 of length A 

II.1. The Bosonic Fock Space 

The one particle space of the complex scalar field is 

w =  L2( Tt  )O L2( T 1) =- W+ (9 W_ . 

The Fock space ~ is a symmetric tensor algebra over W with the natural inner 
product yielding on the n-fold tensor product [If® --- ® f  II = IIf It", f e  !4:. In the 
Fourier space (momentum representation) we define annihilation operators a + (p) 
on IV+ so that a++Obo=O, f2~=(l ,0 , . . . ,0  . . . .  ), and 

[a_+ (p), a_+ (q)] = [ a  + (p), a ~ (q)] = [ a  ± (p), a ~  (q)] = 0 ,  
(ILl) 

[a+(p), 6pq, a*(q)-I = 

w h e r e p ~ l  2~7/ -= 7 and 6pq is the Kronecker delta. The time zero field is defined 
by 

q~(x) = (2:) - a/2 ~ co(p) - 1/2(a* (p) + a_ ( - p))e -ipx, (II.2) 
pe~  

where co(p) = (p2 + m2)l/z, and m > 0. The canonical momentum is 

zffx) =/(2 0-1/2 • co(p)l/2(a,(p ) _  a +(-p))e  -ipx . (II.3) 

The scalar field satisfies the commutation relations 

[q,(x), q~(y)] = [~(x),  ~Cv)] = [~*(x) ,  q~(y)] = 0 ,  

[~(x),  ~o(y)] = - i6 (x -  y), 
(II.4) 

where 6 ( x - y )  is the Dirac measure. 
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II.2. The Fermionic Fock Space 

The fermionic Fock space ~ I  is the anti-symmetric tensor algebra over 
L2(T1)OL2(T1). The annihilation operators are b±(p), p ~ T~ and they satisfy 

{b + (p), b±(q)} = (be(p), b~(q)} = {b±(p), b*(q)} = 0 ,  
(II.5) 

{b ±(p), b*±(q)} = 5pq, 

where {- , -} is the anti-commutator. The time zero Fermi fields are defined by 

ipl(x ) = (2E) - 1/2 v ~ r  o~(p) - a/2(v( - p)b*(p) + v(p)b +( -p))e - ip~, 
(II.6) 

~pz(x) = (2f)- 1/2 ~ ~o(p)- ~/2(v(p)b* (p) - v ( -  p)b + ( -  p))e-*~, 
pe~'l 

where v(p)=(o~(p)+p) 1/2. Let ~l(x)-~p*(x), ~2(x)-w*(x), corresponding to 

~ = l p * ( ~  ; ) . T h e n  

{lpu(x), ~p~(y)} = 0, #, v = 1,2, 

{t~u(x), tpu(y)} = 0, # = 1, 2, (II.7) 

{v~ t(x), ~Pz(Y)} = {~bz(X), ~P a(Y)} = 6(x - y). 

11.3. The Operators N,  

For 0 < z < 1 we define the operators 

N~,b = 2 ~ (~(p)~a*(p)a~(p), 
j=~ pe~'l 

(II.8) 

j=± p ~  

on dense subspaces of ~ and Jt~y, respectively. Let 

be defined on ~ .  Clearly the number operator is N----No and the free field 
Hamiltonian is Ho = N~. For 0 < z < 1 these N~ operators interpolate between N 
and Ho. It clearly causes no confusion to suppress the tensor products with I. 

11.4. The Cutoff Interaction 

Let V be given by (I.2). The supercharge Q is defined as a bilinear form on Yt'. 

1 S (tPl(rc-O,q)*-iOV(cP))+~P2(~c*-Qxq~-iOV(q~)*))dx+h.c., (11.9) 

where h.c. denotes hermitian conjugate. The domain @0 of Q we choose consists of 
Fock states with finite number of particles and @(T1)-valued wave functions. 
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We use the following smooth approximation to the periodic Dirac measure 
based on a cutoff function Z satisfying 

(i) O < z e  5:(~), 

(ii) ~ Z(x)dx = 1, 

(iii) Z ( -  x) = Z(x), 
(iv) ~(p)__> 0, 
(v) supp2(p )C[ -1 ,  1], 2(p)>0 for ]pl<l/2.  

We set 

z~(x) = ~ Z z(~c(x- nO), (II.to) 
n e ~  

where ~ > O. We define regularized (cutoff) fields by convoluting with )~ on T a, 

~o~(x)= z~ * ~o(x), ~, .~(x)= z~ * ~,(x).  

The regularized supercharge Q0c) is defined as a bilinear form on a/g, 

Q(tc) = Qo + Q,. ~, (ILl 1) 

where 

and 

1 ~ OPl (re-- O~qg* - imp) + ~p2Oz* - 0~(o - imq~*))dx + h.c., Qo=~ (II.12) 

i 
Qi,~- ~/~ ~ OpaOP(go~)+lp2OP(rp,~)*)dx +h.c., (II.13) 

where P(~o) is defined by 0.3). 

Proposition ILl.  The form Q(~) defines a symmetric operator with domain ~ o, such 
that (as a form) its square equals 

HOg) - Q(tc) 2 = Ho + ~T, (mgo*SP(go~)-(Cp l~p 1)rg32p(g0r) + h.c.)dx 

+ [. lOP(q~,~)lZdx. (II.14) 
T I 

-~(Vo~.~Vo,,+gpu~pu,~ ). Thus HOe) extends uniquely to a symmetric Here (~,lp~)~- 1 - 
operator with domain ~o. 

Proof. See [1]. 

11.5. The Zero Momentum Limit 

Set 

~oo = : -  m O O ) .  *&. o = : -  m ~ d 0 ) ,  

where 0 (p)= : -1 /2  ~ dxq)(x)dpx. Define 
T 1 

Q(0) = (2o + Qi.o, 

(II.15) 

(II.16) 
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where 

i 
Qi, o = - ~ f0p 1, oaP(cpo) + ~v2, o~P(~oo)*) + h.c. (II.17) 

We also set H(0) -- Q(0) 2. Here/4(0) is the Hamiltonian of a theory where the only 
interacting mode is the zero mode. 

H.6. The Main Results 

We first state the results pertaining to the regularity of Q(~:) and H(~:) and their 
dependence on regularization. 

Theorem II.2. (i) The operators Q(~) and H(~c) are essentially seIf-adjoint on the 
domain ~o for all 0 < ~ < oo. 

(ii) The resolvents of their closures converge in the operator norm as ~:-* oo to 
the resolvents of self-adjoint operators Q and H = Q2, respectively. 

(iii) Define Q(oo)-Q, H(oo)=_H. The mappings ~-~Resolvent(Q(~:)) and 
~c-~Resolvent(H(~)) are continuous in the operator norm for 0< ~ <_ oo. 

Remark. It is transparent from our proof that the limiting operators Q and H are 
independent of the choice of the regularizing function X- Thus the Hamiltonian and 
supercharge are uniquely determined by the parameters of the superpotential V. 

Secondly, we state our integral representations for the index of Q(K). Let 
F=(- - I )  N°,~ and let P_+ =½(I_+F). Define Q+(K)=P+Q(~c)P_, and let i(Q+(K)) 
denote the index of Q+(~c). In Theorem IV.2 of [1] we established the integral 
representation 

i(Q + (~)) = N,ST2) det (1 -- K(~)(~)) exp(-- A(~)(cP))d#c(fP), (II. 18) 

where C = Ct, ~ is the Green's function of - A + m 2 on the torus, and where d#c is a 
Gaussian measure on periodic distributions. Also det denotes a Fredholm 
determinant, and K (~) and A (~) are given in (IV.7-8) of [1]. In [2] we establish a 
related representation for tc = co. We use the regularized determinant defined 
by (I.l). 

Theorem II.3. With 

d ( ~ )  = l i m  [A(~)(~) + Tr K(~)(q~) + ½TrK(~)(~)2], 

the index has the representation 

i(Q+)= ~ d e t 3 ( I - K ) e x p ( - d ) d #  c. (II.19) 
~'(T 2) 

IIl. Fundamental a priori Elliptic Estimates 

In this section we state the crucial part of our construction, the fundamental a 
priori estimates. These estimates generalize certain classical elliptic estimates for 
differential operators on L2(N M) to operators on L 2 of an infinite dimensional 
(loop) space. The estimates will be proved in [2]. For  example, a fundamental a 
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priori estimate in partial differential equations is Gfirding's inequality which 
bounds an elliptic operator from below by a power of the Laplace operator. Our 
first estimate generalizes G~rding's inequality to an infinite dimensional setting: 

Theorem III.1. Choose "c ~ [0, 1). Then there exist constants ~ > 0 and C < ~ which 
are independent of ~c and for which 

~N~__< H(~:) + C. (III.1) 

The fact that the bound (III.1) is uniform in ~ is characteristic of the a priori 
bounds established here. We use such estimates to establish the existence of the 
~c-~ oo limit. Such a philosophy is standard in the constructive field theory [5]. The 
H(K) with ~ < oe are operators with a finite number of degrees of freedom (plus an 
infinite number of uncoupled degrees of freedom). It is important that the 
constants in our estimates are independent of the number of degrees of 
freedom=O(~c). Thus we develop the theory of infinite dimensional elliptic 
estimates in terms of finite dimensional, uniform approximations. 

We next state the continuity and convergence of the finite dimensional 
approximations for the semigroups 

-,exp(-/~U(~c)), /~>0. (III.2) 

Theorem III.2. For fl > 0 fixed, the map 

~:-~exp ( -  fill(x)) (III.3) 

is norm-continuous for 0 < ~. Furthermore, the family 

{exp(-- fill(x))} 

is norm-convergent as ~--* co. 

We denote the limiting semigroup by T(fl), fi >= O, namely exp(--fill(x))--. T(fl). 
In order to express T(fl) in terms of an infinitesimal generator H, we require 
continuity of T(fl). The consequence of strong continuity at fl=O is the 
representation T(fl)=e -~H, with H a self-adjoint operator on 5~f. The delicate 
domain question of whether H has a dense domain is more subtle in the infinite 
dimensional setting than in finite dimensions. For  example, no vector in the 
smooth domain 9o  of C °~ wave functions with a finite number of particles is in the 
domain of H. This is the case, even though no renormalizations of H are necessary! 

Theorem III.3. The semigroup T(fl) is strongly continuous at fi= O, 

st lim T(fl) = I.  (III.4) 
~ 0  

Corollary to Theorems IIL2, 3. The limiting Hamiltonian H satisfies the G&rding 
estimate (III.1) 

~N~< H + C. (III.5) 

In our examples, the supercharge Q(~c) is related to H(x) by H(lc)= Q(K) 2. We 
wish to construct a limiting Q as well as a limiting H, and we desire H = Q2. The 
supercharge is a Dirac operator on loop space, while H is a Laplace operator. We 
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require continuity of Q(•) in K, as well as convergence of Q(~:) in the following 
manner as tc~ oo. Let 6Q = (Q(tc)-Q0¢'))-, where - denotes the operator closure. 

Theorem III.4. Let fl > O. Then Range(e-Pm~)) C Domain(bQ) and 

I I e - 'm~')fQe - ~u<~>]l = o 0 )  (III.6) 

as [~c-lc'[~0, and as ~,~'~oo. 

IV. The Laplacian H on Loop Space (The Hamiltonian) 

In this section we assume that H(~c) is essentially self-adjoint on ~o  (as proved in 
Sect. VI), and we assume the fundamental a priori bounds of Sect. III. We then 
establish the existence of a self-adjoint H = lira H(t~). The limit exists in the sense 

K ---~ oo 

of norm convergence of the resolvents. Basically, the existence and self-adjointness 
of H is a consequence of the a priori bounds. 

Theorem IV.1. The resolvent t¢~R~ =(H(tc)+ I)-1 is continuous in norm, and the 
family R~ converges in norm as t ¢ ~ .  The limiting operator R =  limR~ is the 
resolvent (H + I)-1 of a self-adjoint operator H. 

We use a standard result in functional analysis: if for one fl > 0, e x p ( -  flHn) is a 
norm convergent sequence of self-adjoint operators, then the resolvents (H n + I ) -  1 
also converge in norm. Thus resolvent convergence is a consequence of the 
estimate on the continuity and convergence of the heat kernels, Theorem III.Z The 
existence of H requires the construction of a dense domain for the infinitesimal 
generator of l imexp( - f lH , ) .  This follows from the strong continuity of T(fl) 

= l imexp( - f lH , ) ,  as stated in Theorem III.3. 

V. The Dirac Operator Q on Loop Space (The Supercharge) 

In this section we establish the properties of Q = lira Q(zc). We use the notation 
/¢ 

S~ = (Q(~) + i)-1,  R~ : (H0¢) + I)-1 (V.1) 

Theorem V.1. The resolvents S~, S* of the supercharge are norm-continuous in K and 
norm-convergent as ~ c ~ .  The limiting operator S= lim S~ is the resoIvent of a 
self-adjoint operator Q, and H = Q2. ~-~ ~ 

I~mma V.2. The operator R~ ~/2S~ is unitary. 

Proof. Note that * * S~S~ = R~ = S~ S~. On the domain ~0,  

(R~ I/2S~)*(R~ 1/2S~) = R~ 1S*S~ = I ,  

and similarly for the product in the opposite order. These identities extend to J f  
by continuity. [The operator R~a/2S~ is actually a square root of the Cayley 
transform of Q0¢).] 
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Proof of  Theorem V.1. Choose 5 > 0. We claim that for to, x' sufficiently large, 

IIS~-S~,tl <7e .  (V.2) 

Let E~=E~(2) denote the spectral projection onto the subspace H(x)<2.  We 
choose 2 = e-2. Since Q(x) commutes with H(x), these operators can be simulta- 
neously diagonalized and E~ commutes with S~. We study 6S = S~-S~,.  Then 

6S = E~,fSE~ + (I-- E~,)fSE~ + 3 S ( I -  E~). (V.3) 

We claim that for x, x' large, 

ll6S(I-E~)ll < 3e, fl(I-E~,)6SE~ll <3e,. (V.4) 

In fact, using the 1emma 

IIS~(I- E~)II = 11R] I/2S~R~/E(I- E~)II < 11R~/2(I-- E~)41 < ( 2 +  1) -1/2 <5.  (V.5) 

Furthermore, for x, x', suffciently large, we infer from Theorem IV.1 that 

II R~/2 -- R~ !2 [I ~ 5. (V.6) 

Here we use the fact that norm convergence of resolvents implies norm 
convergence of the square root. Thus 

llR~/Z(I--g~)ll < IIg~/Z(I- g~)ll + II(R~/E-- g~/Z)(I--g~)ll 
< e + e = 2 e ,  

and by Lemma V.2, 

II S , , ( I -  e~)It <_- It R~, 1/2 S~,R~/,2(I -- E,)II 

< [1R~/2(I- E~)11 < 25. (V.7) 

It follows from (V.5), (V.7) that 

116S(I- E~)I[ < 35, 

which is the estimate on the last term in (V,3). The estimate on (I--E~,)6SE~ is 
similar. Hence 

ll6SII < 6e+ IIE~,fSE~II. (V.8) 

We now use the facts that !IS~IL < i, and that the resolvent identity 

6 s  = s ~ -  s~, = s~, (Q(~' ) -  Q(~))s~ 

holds as a bilinear form. Thus we also have the form identity 

E~,6SE~=S~,E~,bQE~S~, (V.9) 

where 6Q = (Q(r/)-  Q(~:))-. 
By Theorem Ill.4, with fl > 0, and with ~, ~:' sufficiently large, 

IIE~,6QE~]I = ]lE~,e~m~')e-~n(~')6Qe-am~)ea'(~)E~ll 

e2Za II e-Pm"')bQe-am'~)l[ < e2a/~o(1) =< 5. (V.I 0) 

From (V.8-10), we infer tl6S[I <75 as claimed. 
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This completes the proof of convergence of S~ as ~:~oo. The same type of 
argument shows that {S~} is continuous in x for ~:< oo. Since t16Sll = II~S*l[, the 
continuity and convergence of S* follows. This completes the proof of the norm 
continuity S~. 

We now proceed to show that S = hm S~ is the resolvent of a self-adjoint 
/ ¢ - ~  O0 

operator Q. The main technical issue is to show that S is invertible, namely that 
kernel(S) = 0. A similar issue arose in the proof of self-adjointness of H, and it was 
solved by showing that the semigroup T(/~)= lira exp(--]~H(~c)) was strongly 

continuous at /~=0, cf. Theorem IV.3. In this case we have no heat kernel 
representation for Q, but we use the existence of a dense domain for H. In fact, 

S*S = li+m S*S~ = l im (H(~) + I)-1 = (H + I)-1. (V.11) 

Since 0 = H = H*, the null space of (H+ I)-1 is zero. Thus the null space of S is 
trivial and S is invertible. It then follows by Theorem 4 of [6] that S = (Q + i)- 1 is 
the resolvent of a self-adjoint operator Q. Furthermore, 

S:gS =(Q2 +1)-1 ---(n-[- l)- 1, 

so H =  Q2 and the proof of Theorem V.1 is complete. 

VI. The Cutoff Theory 

In this section we define well behaved approximations to the Hamiltonian H and 
to the family of modified Hamiltonians H~, used to establish the N~ bounds of 
Theorem III.1. The integral representations for the heat kernels of these 
approximating Hamiltonians H~(~c) yield elliptic regularity estimates for H~(x), as 
well as continuity properties in x. 

The approximating operators H~(x) are unitarily equivalent to operators of the 
form ho+hl+h2, where h2 is a partial differential operator on Lz(~M), where 
M = O(x) is large but finite. The operator h o can be diagonalized in closed form [on 
a Fock space Jt~kL20R M) of a system with an infinite number of degrees of 
freedom]. The operator h 1 is an infinitesimal perturbation ofh o + h z (in the sense of 
Rellich and Kato). Thus H~(K) is an approximation to H~ whose properties are 
determined by the action of H~(~c) on functions with O(rc) degrees of freedom. Our 
analysis of the K--r~ limit depends on uniformity of the constants in the elliptic 
estimates as a function of ~:. 

In this section we establish the integral representations which we use to 
establish estimates. In [2] we prove the desired uniform estimates. Throughout 
these sections we fix m > 0 and C < ~ (the length of the circle); we do not discuss 
uniformity of our estimates in these parameters. 

VI.1. The Operators H~(~c) and Q(x) 

We begin with the definition of H~(x). Choose 0 < z < 1 and 0 < ~ < m 1 - ~. Consider 
the following operators with domain ~o. 

Ho,~,b=Ho,b--~N~.b, Ho,~,y=Ho,f-~N~,f , (VI.1) 
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W, = I m[q~*8P(~o~) + q~OP(~p~)*]dx, 
T 1 

W2 = ~r, I¢3P(~P~)I2dx" 

H,,b = Ho,~,b + WI + W2 , 

and 
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(VI.2) 

(VI.3) 

(V1.4) 

Hb, y = -- r~ 1 ((~ltpl)~2p(~p~) + (~2~P2)~O2p(qg~)*)dx. (VI.5) 

In terms of these operators 

H~(~) = He. b + Ho, ~, y + Hb, y. (VI.6) 

Note that for co(p) = (p2 + m2)1/2 there exists e = e((, ~) > 0 such that co-  (co* > eco, so 
eHo<Ho,,,b+Ho,~, f. Also note that for ~=0, H,(x)=H(~c) of (II.14). The N~ 
estimate of Theorem III.l is equivalent to 

0 ~ U,(~c) + C, (VI.7) 

where C = C(~, z) is a constant independent of ~:. 

Proposition VIA. The operators He(x ) and Q(~:) are essentially self-adjoint. 
Furthermore, for ( sufficiently small, (VI.7) holds, but with a constant C which is not 
necessarily uniform in tc as ~c~oo. 

Let Ip(a/g), p > 1, denote the Banach space of trace class operators on the 
Hilbert space J f  with the norm ][T]].,= {Tr(T*T)p/2} lip. 

Corollary VI.2. Let fi > 0 and let W denote F ock space. Then e x p ( -  flH~(~c)) ~ Ip( J f)  
for all p >= 1. 

Proof. This follows from the ic-dependent bound (VI.7) and Proposition II.1 
of [1]. 

Lemma VI.3. The operator H,,b(~ ) is essentially self-adjoint. 

Proof. Decompose the Fock space ~ as a tensor product 

= ~ ® Jta>, (VI.8) 

where ~=< is spanned by states of the form RO o, where R is any polynomial in the 
creation operators a*(p) for Ipl<(n-1)~c. Then the operators H~,b can be 

< > > 
represented as H g b ® I + I ® H o ,  where Ho contains no interacting modes. The 
operator H,--<b is equivalent to a Schr6dinger operator - A + v on Lz(~U), with a 
polynomial potential v. See [7] for a proof of this representation and the proof of 
essential self-adjointness of - A + v. This completes the proof. 

Lemma VI.4. Given e > O, there exists a finite constant C = C(e, ~c) < oo such that on 
~o x ~o 

Hb, f(/¢) 2 ~ eW 2 + C. (VI.9) 

Proof. The perturbation Hb, f of(VI,5) can be written as a sum of four terms of the 
form 

--q)~i(P)Z~(p)(O P(q~)) (q), (VI.10) 
]pl--<K Iql =< (n-- 2)~¢ 
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i = 1, 2. Since each ~i(p) is a bounded operator, for C~ sufficiently large, 

H~,:<C~ E 1~2p(%) :'(q)[ 2 
[ql < (n - 2)re 

= C~ r~ ' I~ZP(cp~)12dx. (VIA 1) 

It follows that for e > 0 there exists C < oo such that 

Hg <~ I laP(~°,,)12dx+ c ,  ' f - -  TI 

as claimed. 

Lemma VI.5. Assume n = degP > 3, so deg W2 > 4. Then there exists q = rl(tc ) < 1, 
C = C(q, x)< 0% and ~o > 0 such that for ~ < ~o, 

I !/I,] I _= t/(Ho:,b + l ~ ) +  C. (VIA 2) 

Furthermore, tl(x) is bounded uniformly away from 1. 

Proof. We write ~o(x)= ~01(x)+ rp2(x)+ ¢pt>)(x), where ~ol(x ) denotes the contri- 
bution to ¢p(x) from Fourier modes with [pl<x/2, and where ~o2(x ) is the 
contribution to ~o(x) from Fourier modes with ~c/2<lpl<(n-1)K. Then for 
arbitrary ~ > 0, 

m :~ q)ic3P(cp,~)*dx <m(:, l~pl]2dx) I/2 (:, l{~P(q)~c)I2dx) I/2 

<e {. laP(cp,¢)12dx+O(e-'):, I~o,(x)l=dx. (VI.13) 
T 1 

Since ~(p)  = r~(p)2(p/tc), and 2(P/X) > # > 0 for ]Pl -<-- ~c/2, and 2(p/~c)- 0 for IP[ g x, it 
follows that 

]6qP(rp~)12dx + O(e- 1/.t- 2) {. lcpl(x)12dx< l1- 2 j~ k°,~(x)l 2dx<--~ j~ 
T l 

Thus, after a new choice of ~, 

m ~, ,p~aP(,p~)*dx < ½~ ~ IOP(%)[gdx + large constant. (VI.14) 

Similarly, and using the fact that 0P(~0~)^(p) vanishes for IPl > (n-l)~c, we have 

m :~ (¢P2 + ¢p(>))OP(cp~)*dx = m :~ rp20P(rp~)*dx 

< ½rl ~ IOP(~o,,)12dx + ½m2q-1:1 k°zl2dx" 

Thus 

t 2 1 2 1 2 
~m ~]- :1 tfp21 dx= - ~ I¢~(p)] 2 ~m ~] t</Z<lp[=(n-1)t¢ 

= 1 ~l < ~ I¢9(p)lZm2t1-2 1 4- 1 + 
-~ x/2=lp[=(n-1)~¢ ~ m2J 

< rl Z I¢°(P)12(pZ+m2), (VI.I 5) 
= 2 ip[ <(n- 1)~¢ 
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where 

c~= sup q-z(1 +p2/m2)-1=//-2(1 +KZ/4m2) - t  (VI.16) 
Ipl > K/2 

For  fixed x, m we choose q < 1, but sufficiently close to one that ~ < 1. Note that our 
estimate appears to suggest that q ~ l  as ~:~0. However, our operators are 
constant for ~c < re/(, so it is sufficient to establish the estimate for ~ > re/g, showing 
that q is bounded away from 1. We are not interested here in the fact that our 
constants diverge as ~:~ce, since estimates uniform in ~c are only established 
in [2]. 

We now collect together the bounds (VI.14-15), as well as the identical bounds 
for the complex conjugate term in (VI.2). Thus 

IW~l<(~+tl)Wz+q 2 ]~b(p)I2(P2 + m2) + C1, 
lpl-<(n - 1)~ 

where C1 is the constant from (VI.14). Furthermore, with ~=(pZ +m2)~/z, and 

Ho,b(P) = Z coaj(p)*a~<p)= :l~t(p)12: +~o2:1~(p)12:, 
j = ±  

we have 

0921~(p)! = = ~0 2:1¢(p)12: + o~ 

:l~Co)l = +~ozt~CO)f2: +2o)  

=Ho,  b(p)+ 2~o. 

Here we use 17t12=:1~12:+~0, 1~12=:1~12:+co -a. Summing over the modes 
IPl<(n-1)K and increasing the bound by 0<H0,b(P) for each remaining mode 
yields, after a new choice oft 1 < 1 and C, the desired inequality (VI.12) for ~ = 0, and 
it completes the proof for ~ = 0. A similar proof holds for ~ > 0. 

Proof of Proposition VI.I. The operator H~,b + Ho, r is essentially setf-adjoint by 
Lemma VI.3 and the fact that H,,b and Ho,y operate on distinct factors of the 
tensor product H = ~ b ® J g S .  The bound of Lemma VI.4 shows that 

(1 - ~/)(Ho,~, b + W2) + Ho,f < H~,b + Ho,f + C(~:). (VI.17) 

Using Lemma VI.4 we conclude that Hb, f is an infinitesimal perturbation of W2. 
Thus by the Rellich-Kato bound on the Neumann series, Theorem V.4.3 of [8], 
H~(K) is essentially self-adjoint and (VI.7) holds with small ~ and  a x-dependent 
constant C(~c). The essential self-adjointness of Q(K) follows from (for instance) 
H(K)= Q(K) z and the commutator theorem (Theorem 19.4.3 of [5]). 

VI.2. The Feynman-Kac Formula 

We consider the space ~ ' ( ~  x T 1) of distributions periodic in the x 1 direction. Let 
C e denote the Green's function for - A  + m  2 on the cylinder lRx T 1. It has the 
integral kernel 

1 
Ce(x-y)=(2rcf) -1 F~ ¢ . . . . . . . . . .  e -~p(~- ,)'~" (VI.I 8) p te~  1Jp2  + m  2 ~t'O • 
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Also, let d#c~(q ~) be a Gaussian measure on ~'(IR x T 1) with covariance Ce. Let 
• ~(x) be a regularized approximation to ~(x): 

q~(x) = )~ * ~ ( x ) -  r~ I g~(x 1 - x'l)~b(Xo, xl)dx ' l  , (VI.19) 

where X~ is given by (II.10). We set 

Ate~)(~) = ~ (mCbOP(~)* + raeb*t3P(CP~) + [(?P(cP~)I2)dx. (VI.20) 
[0,  81 x T 1 

Similarly, let Se(x-y)  denote the Green's function for the Euclidean Dirac 
operator on the cylinder. Its integral kernel is 

Se(x--y)=(2~zE) -1  x" ~ - P + m e - i V ~ x - Y ) d p o ,  (VI.21) 

E E E where/~=PoVo+Pt71, and where 7, are the Euclidean Dirac matrices: 

;) ;) 
Let Jg~0R x T 1) denote the Hilbert space 

~ ( N  x T 1) = ~ , ( ~  x T 1 ) 0 ) ~ ( ~  x T1), (VI.22) 

where ~ ( N  x T 1) is the Sobolev space of o r d e r ,  over N x T 1. The norm on ~ is 

ttf[I 2= Z ~(pZ+m2),]f(p)lZdpo. (VI.23) 
p l e ~  ~ 

Elsewhere we require ~(TZ) ,  the Sobolev space over the torus T z. It will be clear 
from the context which space is relevant. Let K~)(~) be the operator on sC1/2 whose 
integral kernel is given by 

K~(~)(x, y) = ½ f ([S~(x- z ) O ~ e ( ~ ( ~ ) ) z ~ ( z ~  - y~) 
T 1 

+ S,(x- z)z~(zl  - y 0 ~ e ( ~ ( y ) ) ]  A + 

+ [Se(x - z)c32p(cl)~(z))*Z,~(za - y 1) 

+ Se(x - -  z)z~(z 1 - y l ) O Z P ( ~ ( y ) ) * ] A _ ) d z l  , (VI.24) 
where 

are the chiral projections, and where z = (Y0, z0. We remark that K(~)(~)e I1(~1/2) 
for almost all • (with respect to dgce). This estimate is a special case of more 
delicate, related estimates in [2]. However, it can be seen directly by applica- 
tion of the Schwarz inequality in the trace norm. Let K-K(e~)(g))  and 
# = ( - - d Z / d x 2 + m 2 )  J-/2. Then taking I~ norms on the Hilbert space J~grl/2, 

II K II 1 = Tr ((K'K)1/2) _< II ~ -  111 ~ II # ( K ' K )  ~ 12 ]l 2. 

Since K * K  is self-adjoint on ~ / 2 ,  and since the adjoints of p on 3ff o and on Y~ 
agree, we use II ~ -  ~ II 2 < const and 

II ]~(K*K) ~/~ II z _-< 1 + II N(K*/) 1/21122 = 1[ + Tr(#aK*K). 
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Since K has a cutoff, 

and 

Tr(#ZK*K)d#c < oo, 

Y IIKII id~c< ~ ,  

as claimed. It follows that the Fredholm determinant det(I--K<e~)(~)) is a random 
variable. 

Consider the following function on 5° ' (~ x T~): 

F(¢~)(4~) = d e t ( I -  K(~)(4~)) exp( - A(~)(~)). (VI.25) 

Proposition VI.6. There exists ~ > 0 independent of t¢ such that 

F(t ") e Lp(Sg'OR x T~), d#c~) , (VI.26) 

for all ~, 0 < x < 0% and for all p satisfying 1 ~ p < 1 + ~. 

Remark. The restriction p < 1 + ~ in (VI.26) arises because two occurrences of ~b in 
At¢~)(~) of (VI.20) are not regularized. The proof below shows that the integrability 
properties of F(~)(<b) improve as x ~ .  

Proof. Since 

where 

Idet (I - K~)(~)) 12 = det(I + L(~)( ~0)), (VI.27) 

(K) __ (x) (~) , L~ (~ ) -  - K~ (~ ) -  K~ (~) + K(~)(~)*K(~)(~). (VI.28) 

Clearly L(e~)(q~)=> - I ,  and thus 

]det (I - K(~)(~))I =< exp (½Tr L(e~)(q~)). 

We claim that the function 

Z(t~)(~) = exp ( - A(t~)(~) + ~. Tr L(~)(~)) (VI.29) 

has the required integrability properties. 
We decompose C~ as 

C -  r ( < ) ~ F ( > )  (VI.30) 

In the Fourier series for C~ in the spatial variable, this splitting is according to 
whether [pd<(n-1) tc  or Ip11>(n-l)t¢. Then we write d#ce=d$,c)~)®d#c}>, 
Clearly, 

Z(e~)(qqPd#q(@) = I Z~)( ~( <=))Pd#c~ ~ ,((b(=<)), (VI.31) 

where ~(=~) is the contribution to ~b from the Fourier modes with IPll < (n-1)to. 
To prove that there is a > 0 such that the right-hand side of (VI.31) is finite for 

1 < p <  t + a  we employ the same technique as in the proof of Lemma VI.5. We 
write ~(--<)=~1~-~2, where 4~ is the SUlTI of Fourier modes with 1p11<1c/2, 
and correspondingly r~(~-)-C(~)mr'(z) The covariance C(¢ 2) satisfies (C(2)) -~ ""d  - -  d ~ ' d  • 

> m2+ (to/2) 2. This and the bound 
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with C = C(x) < co yield the required integrability properties. We leave the details 
of this argument to the reader. 

Let gj, h~eS~(IRx T~), j = 1  .. . . .  k. We consider the k-fold exterior product 
/~W0 with its natural inner product. Then define 

F~e~)(~,g,h)= (~__~ g~, ~ ( I -  K~)(~))- lSehj)/\~codet(l- K(P(~))exp(-A(e~)(~)). 
(VI.32) 

F(e~)(~, g, h) is well defined since for K e Ia the mapping 

z-+ /~(I--zK)-1 de t ( I -  zK) 

is an entire, operator-valued function. 

Proposition VI.7. F(e~)( q~, g, h) e Lp(dYce ), for 0 <= • < co and 1 < p <__ 1 + cc The Lp 
norms are continuous for g j, hj ~ rig'_ l/a, and F(e ~) extends by continuity to this space. 

Proof. Following Seiler [9] we write 

IF(er)(~,g,h)t 2=  ( / ~  C)lagj , ~ (I-K~eK)(~))-lSehj ~ 2 
j = 1 j = 1 /'/~kbg't 12[ 

x exp(-- 2A(e~)(~)) det(I + L~9(~)). (VI.33) 

Let L~)(~)+ and L~e~)(q~)_ be the positive and negative parts of the self-adjoint 
operator L(e~)(~), L(e~)(~)= L(e~)(~)+- L~)(~) .... It follows that 

k 

IFP)(~, g, h)l < lq II c~/~gjlI~,~lt Sthjlt~,~ 
j = l  

x det(l-L(e~)(fb)_)/~(I--L~)(~)_) -1 llaexp(~TrL(e~)(~b)+-A~e~)(q~)) 

j = l  

k 
=ella I~ IlgjlIx~_ ~/~IthlH:e_ ,/aZ(e~}(~), 

j = l  

with Zp)(q ~) given by (VI.29). This upper bound yields the same function of 4~ which 
occurred in the proof of Proposition VI.6. The extension by continuity follows 
from the continuity of the estimate in g and h. 

Let uj e dt o_ 1/2(T1), j = 1 . . . .  , q, and let wj e dr_ 1(7q), j = 1 .....  p. Write 

~j= ~p,~(uj) or ~3~(uj), j =  1,..., q, 
(VI.34) 

~q+j= q)(wj) or (p*(w~), j= l , . . . , p .  

For s >_ 0 set 
¢j(s) = e-sn°¢jesn°, j = 1,..., p + q. (VI.35) 

Let 0 < sj < t ,  j = 1 ....  , p + q. We define the time ordered product 

\ j = l  j = l  j = q + l  
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where rc is a permutation of {1,..., q} such that (i) s~(1) < . . .  < s~(q), and (ii) if s i = sj 
and ~i = tou,(ui), ~j = ~,~(uj), then we place ~i left to ~j. Also, ~ is a permutation of 
{q + 1, ..., p + q} which puts the numbers sj into a nondecreasing order. Let ej(t), 
j = 1 .....  p + q be smooth functions supported in (0, fl). We define the vector 

O = I T  ~j(sj) [ I  a~(s~)Oo d"+"s. (VI.37) 
\ j = l  j = l  

The Feynman-Kac formula gives a path integral representation for the matrix 
elements (~2, exp(-flH(~))g2') with ~2 and ~2' of the form (VI.37). Let ql and q'l be 
the number of the to fields in f2 and ~2', respectively. Let qa and q~ be the number of 
the t~ fields in f2 and ~2', respectively. It is clear that (O, e x p ( -  flH(~))f2') = 0, unless 
ql + q~ = q'~ + qz - k. Let i~ < . . .  < iq~ (and i't < . . .  < i'q;) be the indices corresponding 
to the field to in f2 (and in g2', respectively). Let Jt <--- <Jq~ (and J'l <- .-  <J'q0 be the 
indices corresponding to ~ in (2 (and in O', respectively). Let (Ot~e)(t) = a(fi-- t)*. We 
set 

g~ = w* O ~ % ; . . . ,  gq~ = w*,OB~ ~, gq~+ 1 = w '~ '~ , . . . ,  g~ = w'~%~,  

- -  ~ 1 r t 
h 1 = w~Opcq~,,..., hq~ - wiflt#i~ . . . .  , hq~ + i = wjiej i  . . . .  , h k = wf¢fi;¢~ 

and relabel correspondingly the spinor indices. Similarly, we set f l  = u*Opap . . . . .  fp 

= ~ ° e v ~ ,  L + I  = ~ ' ~ v l , . . . , A ,  = u;¢~. 

Proposition VI.8 (Feynman-Kac formula). With the above definitions 

2 p  

x H ~e(f~)d/~q(~), (VI.38) 
j = l  

where ~ means possible complex conjugate and where e = + t.  

The proof follows the lines of [10, 11] and is based on the following well-known 
bound to establish convergence of a semigroup convergence expansion: 

Lemma VL9. Let  H >=O be a self-adjoint operator and let H 1 be symmetric, and such 
that D(H) C D(H 2) and 

H~ < a H  + b (VI.39) 

with a > 0. Then exp(--fl(H + H1)) has a norm convergent perturbation series 

exp( - - f l (H+H1) )=  ~ (--1)" ~ e x p ( - s l H ) H 1 . . . e x p ( - ( s ~ - s . _ O H  ) 
n>O 0_-<s~- < ... <s , ,</~ 

x H1 exp(-- ( f l -  s.)H)d"s. (VI.40) 

We apply this lemma to H = Hb(~)+ Ho,~ (adding a constant if necessary) and 
H~ =Hb,~(t¢ ). The estimates of Sect. VI.1 ensure that (VI.39) is satisfied. Using 

(Oo ~,tou~(x0e- ( " - ~ ) u ° ' ~ , ( y 0 e -  (~-")u°'~--- e -  (~"- ~"- ~)no,~,(y,)Oo~) 

= det {(SOum(s~- t~; x ~ -  y~)}, (VIAl) 

valid for O < s l  < tl  < ... < s , N  t,  and the Feynman-Kac formula for bosons, we 
obtain (VI.38). 
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VI.3. Finite Temperature States 

We consider the finite temperature states defined in Sect• IV.1 of [1]. These are just 
trace states regularized by the heat kernel of H. Let Ct. d x - y )  be the periodic 
covariance with period fl in the xo direction, and let St, p (x -y )  be the fermionic 
covariance which is antiperiodic in the Xo direction with period ft. Le t / ( (~ (~)  be 
given by (VI.24) with S~ replaced by ~e, p. Below we state a simple Feynman-Kac 
formula involving such trace states. The final representation differs from the 
Feynman-Kac formulas in Sect. VI.2 only by replacing the Green's functions C~ 
and Se by Ct, p and S~,p, respectively. The validity of these representations is a 
consequence of the similar representations in the Gaussian case, see Proposition 
VIA of the first paper of [1]. The analytic proof then follows by the convergence of 
VI.40. Similar trace state representations also hold for states of the form 

Tr(e -~mA,  e- tJ~A2 ... e-,,p,u) 
Tre_~t t , (VI.42) 

where fij > 0 and 2 fij = r- We set 
J 

A~,~(il~) = ~ [ m ~ e ( ~ ) *  + m,~*~P(q~)+ [~e(q~)12]dx. (VI.43) 
[ 0 ,  fl] x T ~ 

Also, let 

~t, p = Tr(e - ~Ro) = [I coth2 (rico(p)). (VI.44) 

Proposition VI.10. The following identity holds 

Tr(exp ( - finffc)) = ~e, ~ f d e t ( I - / ~ ( ~ ) )  exp { - A~(q~)}dlzct, ~(~). (VI.45) 

VI.4. Path Integral Representation of  Tr(exp { - fiH,(~c)}) 

We use covariance operators studied by Osipov [12]: 

c°~(Pl) e-ip(~-Y)dp 
C,(x - y) = (2~) -  ~ I co(pd(p~ + co~(pd ~) 

and 

(VI.46) 

S . . . . . .  2,  (--~+m)co~(Pl) e-ip~x-Y)dp 

• E , - 2~ co,(P 1) e -  ip~x- Y)d ~ (VI.47) 
+ t~(x°--  Y°)7°(2~) J (P~ + ~J-2)CO(P0 e ,  

where co~(pl) = co(p1) - (co(pO ~, and where 

1, if Xo>__0, 
e(x°)= - 1 ,  if x 0 < 0 .  

Let C,,e. p be the periodization of C~ with period # in the x 1 direction and period fl 
in the Xo direction. Similarly, let S,,e,~ be the periodization of S~ periodic with 
period f in the xt direction and antiperiodic with period fi in the Xo direction. Let 
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/~,~)e, a(~) be given by (VI.24) with Se replaced by g~,e, p. As in Subsect. VI.2 we show 
that  

F~)e, p(q~) = det (I - g~,~)e, p(~)) e x p ( -  A~e~,~(~)) e Lp(dl~c~. ~, ~), (VI.48) 

provided ~ is sufficiently small and p is close to 1. 

Proposit ion VI.11. With the above definitions, 

Tr (exp ( -  flH~(tc)) = E~, e, ~ S det  (I - R{,~)e, ~(~)) e x p ( -  A~e~)~(~))d~c~. t. B(rb) 
(VI.49) 

for fl > O, where 

- 1 ]  cothZ(flco,(p)). (VI.50) 
p ~i 
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